xref: /linux/arch/m68k/kernel/head.S (revision c46f46d02c90959b82b99badfadc575081666aae)
1/* -*- mode: asm -*-
2**
3** head.S -- This file contains the initial boot code for the
4**	     Linux/68k kernel.
5**
6** Copyright 1993 by Hamish Macdonald
7**
8** 68040 fixes by Michael Rausch
9** 68060 fixes by Roman Hodek
10** MMU cleanup by Randy Thelen
11** Final MMU cleanup by Roman Zippel
12**
13** Atari support by Andreas Schwab, using ideas of Robert de Vries
14** and Bjoern Brauel
15** VME Support by Richard Hirst
16**
17** 94/11/14 Andreas Schwab: put kernel at PAGESIZE
18** 94/11/18 Andreas Schwab: remove identity mapping of STRAM for Atari
19** ++ Bjoern & Roman: ATARI-68040 support for the Medusa
20** 95/11/18 Richard Hirst: Added MVME166 support
21** 96/04/26 Guenther Kelleter: fixed identity mapping for Falcon with
22**			      Magnum- and FX-alternate ram
23** 98/04/25 Phil Blundell: added HP300 support
24** 1998/08/30 David Kilzer: Added support for font_desc structures
25**            for linux-2.1.115
26** 1999/02/11  Richard Zidlicky: added Q40 support (initial version 99/01/01)
27** 2004/05/13 Kars de Jong: Finalised HP300 support
28**
29** This file is subject to the terms and conditions of the GNU General Public
30** License. See the file README.legal in the main directory of this archive
31** for more details.
32**
33*/
34
35/*
36 * Linux startup code.
37 *
38 * At this point, the boot loader has:
39 * Disabled interrupts
40 * Disabled caches
41 * Put us in supervisor state.
42 *
43 * The kernel setup code takes the following steps:
44 * .  Raise interrupt level
45 * .  Set up initial kernel memory mapping.
46 *    .  This sets up a mapping of the 4M of memory the kernel is located in.
47 *    .  It also does a mapping of any initial machine specific areas.
48 * .  Enable the MMU
49 * .  Enable cache memories
50 * .  Jump to kernel startup
51 *
52 * Much of the file restructuring was to accomplish:
53 * 1) Remove register dependency through-out the file.
54 * 2) Increase use of subroutines to perform functions
55 * 3) Increase readability of the code
56 *
57 * Of course, readability is a subjective issue, so it will never be
58 * argued that that goal was accomplished.  It was merely a goal.
59 * A key way to help make code more readable is to give good
60 * documentation.  So, the first thing you will find is exaustive
61 * write-ups on the structure of the file, and the features of the
62 * functional subroutines.
63 *
64 * General Structure:
65 * ------------------
66 *	Without a doubt the single largest chunk of head.S is spent
67 * mapping the kernel and I/O physical space into the logical range
68 * for the kernel.
69 *	There are new subroutines and data structures to make MMU
70 * support cleaner and easier to understand.
71 *	First, you will find a routine call "mmu_map" which maps
72 * a logical to a physical region for some length given a cache
73 * type on behalf of the caller.  This routine makes writing the
74 * actual per-machine specific code very simple.
75 *	A central part of the code, but not a subroutine in itself,
76 * is the mmu_init code which is broken down into mapping the kernel
77 * (the same for all machines) and mapping machine-specific I/O
78 * regions.
79 *	Also, there will be a description of engaging the MMU and
80 * caches.
81 *	You will notice that there is a chunk of code which
82 * can emit the entire MMU mapping of the machine.  This is present
83 * only in debug modes and can be very helpful.
84 *	Further, there is a new console driver in head.S that is
85 * also only engaged in debug mode.  Currently, it's only supported
86 * on the Macintosh class of machines.  However, it is hoped that
87 * others will plug-in support for specific machines.
88 *
89 * ######################################################################
90 *
91 * mmu_map
92 * -------
93 *	mmu_map was written for two key reasons.  First, it was clear
94 * that it was very difficult to read the previous code for mapping
95 * regions of memory.  Second, the Macintosh required such extensive
96 * memory allocations that it didn't make sense to propagate the
97 * existing code any further.
98 *	mmu_map requires some parameters:
99 *
100 *	mmu_map (logical, physical, length, cache_type)
101 *
102 *	While this essentially describes the function in the abstract, you'll
103 * find more indepth description of other parameters at the implementation site.
104 *
105 * mmu_get_root_table_entry
106 * ------------------------
107 * mmu_get_ptr_table_entry
108 * -----------------------
109 * mmu_get_page_table_entry
110 * ------------------------
111 *
112 *	These routines are used by other mmu routines to get a pointer into
113 * a table, if necessary a new table is allocated. These routines are working
114 * basically like pmd_alloc() and pte_alloc() in <asm/pgtable.h>. The root
115 * table needs of course only to be allocated once in mmu_get_root_table_entry,
116 * so that here also some mmu specific initialization is done. The second page
117 * at the start of the kernel (the first page is unmapped later) is used for
118 * the kernel_pg_dir. It must be at a position known at link time (as it's used
119 * to initialize the init task struct) and since it needs special cache
120 * settings, it's the easiest to use this page, the rest of the page is used
121 * for further pointer tables.
122 * mmu_get_page_table_entry allocates always a whole page for page tables, this
123 * means 1024 pages and so 4MB of memory can be mapped. It doesn't make sense
124 * to manage page tables in smaller pieces as nearly all mappings have that
125 * size.
126 *
127 * ######################################################################
128 *
129 *
130 * ######################################################################
131 *
132 * mmu_engage
133 * ----------
134 *	Thanks to a small helping routine enabling the mmu got quite simple
135 * and there is only one way left. mmu_engage makes a complete a new mapping
136 * that only includes the absolute necessary to be able to jump to the final
137 * position and to restore the original mapping.
138 * As this code doesn't need a transparent translation register anymore this
139 * means all registers are free to be used by machines that needs them for
140 * other purposes.
141 *
142 * ######################################################################
143 *
144 * mmu_print
145 * ---------
146 *	This algorithm will print out the page tables of the system as
147 * appropriate for an 030 or an 040.  This is useful for debugging purposes
148 * and as such is enclosed in #ifdef MMU_PRINT/#endif clauses.
149 *
150 * ######################################################################
151 *
152 * console_init
153 * ------------
154 *	The console is also able to be turned off.  The console in head.S
155 * is specifically for debugging and can be very useful.  It is surrounded by
156 * #ifdef / #endif clauses so it doesn't have to ship in known-good
157 * kernels.  It's basic algorithm is to determine the size of the screen
158 * (in height/width and bit depth) and then use that information for
159 * displaying an 8x8 font or an 8x16 (widthxheight).  I prefer the 8x8 for
160 * debugging so I can see more good data.  But it was trivial to add support
161 * for both fonts, so I included it.
162 *	Also, the algorithm for plotting pixels is abstracted so that in
163 * theory other platforms could add support for different kinds of frame
164 * buffers.  This could be very useful.
165 *
166 * console_put_penguin
167 * -------------------
168 *	An important part of any Linux bring up is the penguin and there's
169 * nothing like getting the Penguin on the screen!  This algorithm will work
170 * on any machine for which there is a console_plot_pixel.
171 *
172 * console_scroll
173 * --------------
174 *	My hope is that the scroll algorithm does the right thing on the
175 * various platforms, but it wouldn't be hard to add the test conditions
176 * and new code if it doesn't.
177 *
178 * console_putc
179 * -------------
180 *
181 * ######################################################################
182 *
183 *	Register usage has greatly simplified within head.S. Every subroutine
184 * saves and restores all registers that it modifies (except it returns a
185 * value in there of course). So the only register that needs to be initialized
186 * is the stack pointer.
187 * All other init code and data is now placed in the init section, so it will
188 * be automatically freed at the end of the kernel initialization.
189 *
190 * ######################################################################
191 *
192 * options
193 * -------
194 *	There are many options available in a build of this file.  I've
195 * taken the time to describe them here to save you the time of searching
196 * for them and trying to understand what they mean.
197 *
198 * CONFIG_xxx:	These are the obvious machine configuration defines created
199 * during configuration.  These are defined in autoconf.h.
200 *
201 * CONSOLE_DEBUG:  Only supports a Mac frame buffer but could easily be
202 * extended to support other platforms.
203 *
204 * TEST_MMU:	This is a test harness for running on any given machine but
205 * getting an MMU dump for another class of machine.  The classes of machines
206 * that can be tested are any of the makes (Atari, Amiga, Mac, VME, etc.)
207 * and any of the models (030, 040, 060, etc.).
208 *
209 *	NOTE:	TEST_MMU is NOT permanent!  It is scheduled to be removed
210 *		When head.S boots on Atari, Amiga, Macintosh, and VME
211 *		machines.  At that point the underlying logic will be
212 *		believed to be solid enough to be trusted, and TEST_MMU
213 *		can be dropped.  Do note that that will clean up the
214 *		head.S code significantly as large blocks of #if/#else
215 *		clauses can be removed.
216 *
217 * MMU_NOCACHE_KERNEL:	On the Macintosh platform there was an inquiry into
218 * determing why devices don't appear to work.  A test case was to remove
219 * the cacheability of the kernel bits.
220 *
221 * MMU_PRINT:	There is a routine built into head.S that can display the
222 * MMU data structures.  It outputs its result through the serial_putc
223 * interface.  So where ever that winds up driving data, that's where the
224 * mmu struct will appear.
225 *
226 * SERIAL_DEBUG:	There are a series of putc() macro statements
227 * scattered through out the code to give progress of status to the
228 * person sitting at the console.  This constant determines whether those
229 * are used.
230 *
231 * DEBUG:	This is the standard DEBUG flag that can be set for building
232 *		the kernel.  It has the effect adding additional tests into
233 *		the code.
234 *
235 * FONT_6x11:
236 * FONT_8x8:
237 * FONT_8x16:
238 *		In theory these could be determined at run time or handed
239 *		over by the booter.  But, let's be real, it's a fine hard
240 *		coded value.  (But, you will notice the code is run-time
241 *		flexible!)  A pointer to the font's struct font_desc
242 *		is kept locally in Lconsole_font.  It is used to determine
243 *		font size information dynamically.
244 *
245 * Atari constants:
246 * USE_PRINTER:	Use the printer port for serial debug.
247 * USE_SCC_B:	Use the SCC port A (Serial2) for serial debug.
248 * USE_SCC_A:	Use the SCC port B (Modem2) for serial debug.
249 * USE_MFP:	Use the ST-MFP port (Modem1) for serial debug.
250 *
251 * Macintosh constants:
252 * MAC_USE_SCC_A: Use SCC port A (modem) for serial debug.
253 * MAC_USE_SCC_B: Use SCC port B (printer) for serial debug.
254 */
255
256#include <linux/linkage.h>
257#include <linux/init.h>
258#include <asm/bootinfo.h>
259#include <asm/bootinfo-amiga.h>
260#include <asm/bootinfo-atari.h>
261#include <asm/bootinfo-hp300.h>
262#include <asm/bootinfo-mac.h>
263#include <asm/bootinfo-q40.h>
264#include <asm/bootinfo-vme.h>
265#include <asm/setup.h>
266#include <asm/entry.h>
267#include <asm/pgtable.h>
268#include <asm/page.h>
269#include <asm/asm-offsets.h>
270#ifdef CONFIG_MAC
271#  include <asm/machw.h>
272#endif
273
274#ifdef CONFIG_EARLY_PRINTK
275#  define SERIAL_DEBUG
276#  if defined(CONFIG_MAC) && defined(CONFIG_FONT_SUPPORT)
277#    define CONSOLE_DEBUG
278#  endif
279#endif
280
281#undef MMU_PRINT
282#undef MMU_NOCACHE_KERNEL
283#undef DEBUG
284
285/*
286 * For the head.S console, there are three supported fonts, 6x11, 8x16 and 8x8.
287 * The 8x8 font is harder to read but fits more on the screen.
288 */
289#define FONT_8x8	/* default */
290/* #define FONT_8x16 */	/* 2nd choice */
291/* #define FONT_6x11 */	/* 3rd choice */
292
293.globl kernel_pg_dir
294.globl availmem
295.globl m68k_pgtable_cachemode
296.globl m68k_supervisor_cachemode
297#ifdef CONFIG_MVME16x
298.globl mvme_bdid
299#endif
300#ifdef CONFIG_Q40
301.globl q40_mem_cptr
302#endif
303
304CPUTYPE_040	= 1	/* indicates an 040 */
305CPUTYPE_060	= 2	/* indicates an 060 */
306CPUTYPE_0460	= 3	/* if either above are set, this is set */
307CPUTYPE_020	= 4	/* indicates an 020 */
308
309/* Translation control register */
310TC_ENABLE = 0x8000
311TC_PAGE8K = 0x4000
312TC_PAGE4K = 0x0000
313
314/* Transparent translation registers */
315TTR_ENABLE	= 0x8000	/* enable transparent translation */
316TTR_ANYMODE	= 0x4000	/* user and kernel mode access */
317TTR_KERNELMODE	= 0x2000	/* only kernel mode access */
318TTR_USERMODE	= 0x0000	/* only user mode access */
319TTR_CI		= 0x0400	/* inhibit cache */
320TTR_RW		= 0x0200	/* read/write mode */
321TTR_RWM		= 0x0100	/* read/write mask */
322TTR_FCB2	= 0x0040	/* function code base bit 2 */
323TTR_FCB1	= 0x0020	/* function code base bit 1 */
324TTR_FCB0	= 0x0010	/* function code base bit 0 */
325TTR_FCM2	= 0x0004	/* function code mask bit 2 */
326TTR_FCM1	= 0x0002	/* function code mask bit 1 */
327TTR_FCM0	= 0x0001	/* function code mask bit 0 */
328
329/* Cache Control registers */
330CC6_ENABLE_D	= 0x80000000	/* enable data cache (680[46]0) */
331CC6_FREEZE_D	= 0x40000000	/* freeze data cache (68060) */
332CC6_ENABLE_SB	= 0x20000000	/* enable store buffer (68060) */
333CC6_PUSH_DPI	= 0x10000000	/* disable CPUSH invalidation (68060) */
334CC6_HALF_D	= 0x08000000	/* half-cache mode for data cache (68060) */
335CC6_ENABLE_B	= 0x00800000	/* enable branch cache (68060) */
336CC6_CLRA_B	= 0x00400000	/* clear all entries in branch cache (68060) */
337CC6_CLRU_B	= 0x00200000	/* clear user entries in branch cache (68060) */
338CC6_ENABLE_I	= 0x00008000	/* enable instruction cache (680[46]0) */
339CC6_FREEZE_I	= 0x00004000	/* freeze instruction cache (68060) */
340CC6_HALF_I	= 0x00002000	/* half-cache mode for instruction cache (68060) */
341CC3_ALLOC_WRITE	= 0x00002000	/* write allocate mode(68030) */
342CC3_ENABLE_DB	= 0x00001000	/* enable data burst (68030) */
343CC3_CLR_D	= 0x00000800	/* clear data cache (68030) */
344CC3_CLRE_D	= 0x00000400	/* clear entry in data cache (68030) */
345CC3_FREEZE_D	= 0x00000200	/* freeze data cache (68030) */
346CC3_ENABLE_D	= 0x00000100	/* enable data cache (68030) */
347CC3_ENABLE_IB	= 0x00000010	/* enable instruction burst (68030) */
348CC3_CLR_I	= 0x00000008	/* clear instruction cache (68030) */
349CC3_CLRE_I	= 0x00000004	/* clear entry in instruction cache (68030) */
350CC3_FREEZE_I	= 0x00000002	/* freeze instruction cache (68030) */
351CC3_ENABLE_I	= 0x00000001	/* enable instruction cache (68030) */
352
353/* Miscellaneous definitions */
354PAGESIZE	= 4096
355PAGESHIFT	= 12
356
357ROOT_TABLE_SIZE	= 128
358PTR_TABLE_SIZE	= 128
359PAGE_TABLE_SIZE	= 64
360ROOT_INDEX_SHIFT = 25
361PTR_INDEX_SHIFT  = 18
362PAGE_INDEX_SHIFT = 12
363
364#ifdef DEBUG
365/* When debugging use readable names for labels */
366#ifdef __STDC__
367#define L(name) .head.S.##name
368#else
369#define L(name) .head.S./**/name
370#endif
371#else
372#ifdef __STDC__
373#define L(name) .L##name
374#else
375#define L(name) .L/**/name
376#endif
377#endif
378
379/* The __INITDATA stuff is a no-op when ftrace or kgdb are turned on */
380#ifndef __INITDATA
381#define __INITDATA	.data
382#define __FINIT		.previous
383#endif
384
385/* Several macros to make the writing of subroutines easier:
386 * - func_start marks the beginning of the routine which setups the frame
387 *   register and saves the registers, it also defines another macro
388 *   to automatically restore the registers again.
389 * - func_return marks the end of the routine and simply calls the prepared
390 *   macro to restore registers and jump back to the caller.
391 * - func_define generates another macro to automatically put arguments
392 *   onto the stack call the subroutine and cleanup the stack again.
393 */
394
395/* Within subroutines these macros can be used to access the arguments
396 * on the stack. With STACK some allocated memory on the stack can be
397 * accessed and ARG0 points to the return address (used by mmu_engage).
398 */
399#define	STACK	%a6@(stackstart)
400#define ARG0	%a6@(4)
401#define ARG1	%a6@(8)
402#define ARG2	%a6@(12)
403#define ARG3	%a6@(16)
404#define ARG4	%a6@(20)
405
406.macro	func_start	name,saveregs,stack=0
407L(\name):
408	linkw	%a6,#-\stack
409	moveml	\saveregs,%sp@-
410.set	stackstart,-\stack
411
412.macro	func_return_\name
413	moveml	%sp@+,\saveregs
414	unlk	%a6
415	rts
416.endm
417.endm
418
419.macro	func_return	name
420	func_return_\name
421.endm
422
423.macro	func_call	name
424	jbsr	L(\name)
425.endm
426
427.macro	move_stack	nr,arg1,arg2,arg3,arg4
428.if	\nr
429	move_stack	"(\nr-1)",\arg2,\arg3,\arg4
430	movel	\arg1,%sp@-
431.endif
432.endm
433
434.macro	func_define	name,nr=0
435.macro	\name	arg1,arg2,arg3,arg4
436	move_stack	\nr,\arg1,\arg2,\arg3,\arg4
437	func_call	\name
438.if	\nr
439	lea	%sp@(\nr*4),%sp
440.endif
441.endm
442.endm
443
444func_define	mmu_map,4
445func_define	mmu_map_tt,4
446func_define	mmu_fixup_page_mmu_cache,1
447func_define	mmu_temp_map,2
448func_define	mmu_engage
449func_define	mmu_get_root_table_entry,1
450func_define	mmu_get_ptr_table_entry,2
451func_define	mmu_get_page_table_entry,2
452func_define	mmu_print
453func_define	get_new_page
454#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
455func_define	set_leds
456#endif
457
458.macro	mmu_map_eq	arg1,arg2,arg3
459	mmu_map	\arg1,\arg1,\arg2,\arg3
460.endm
461
462.macro	get_bi_record	record
463	pea	\record
464	func_call	get_bi_record
465	addql	#4,%sp
466.endm
467
468func_define	serial_putc,1
469func_define	console_putc,1
470
471func_define	console_init
472func_define	console_put_penguin
473func_define	console_plot_pixel,3
474func_define	console_scroll
475
476.macro	putc	ch
477#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
478	pea	\ch
479#endif
480#ifdef CONSOLE_DEBUG
481	func_call	console_putc
482#endif
483#ifdef SERIAL_DEBUG
484	func_call	serial_putc
485#endif
486#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
487	addql	#4,%sp
488#endif
489.endm
490
491.macro	dputc	ch
492#ifdef DEBUG
493	putc	\ch
494#endif
495.endm
496
497func_define	putn,1
498
499.macro	dputn	nr
500#ifdef DEBUG
501	putn	\nr
502#endif
503.endm
504
505.macro	puts		string
506#if defined(CONSOLE_DEBUG) || defined(SERIAL_DEBUG)
507	__INITDATA
508.Lstr\@:
509	.string	"\string"
510	__FINIT
511	pea	%pc@(.Lstr\@)
512	func_call	puts
513	addql	#4,%sp
514#endif
515.endm
516
517.macro	dputs	string
518#ifdef DEBUG
519	puts	"\string"
520#endif
521.endm
522
523#define is_not_amiga(lab) cmpl &MACH_AMIGA,%pc@(m68k_machtype); jne lab
524#define is_not_atari(lab) cmpl &MACH_ATARI,%pc@(m68k_machtype); jne lab
525#define is_not_mac(lab) cmpl &MACH_MAC,%pc@(m68k_machtype); jne lab
526#define is_not_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jne lab
527#define is_not_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jne lab
528#define is_not_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jne lab
529#define is_mvme147(lab) cmpl &MACH_MVME147,%pc@(m68k_machtype); jeq lab
530#define is_mvme16x(lab) cmpl &MACH_MVME16x,%pc@(m68k_machtype); jeq lab
531#define is_bvme6000(lab) cmpl &MACH_BVME6000,%pc@(m68k_machtype); jeq lab
532#define is_not_hp300(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); jne lab
533#define is_not_apollo(lab) cmpl &MACH_APOLLO,%pc@(m68k_machtype); jne lab
534#define is_not_q40(lab) cmpl &MACH_Q40,%pc@(m68k_machtype); jne lab
535#define is_not_sun3x(lab) cmpl &MACH_SUN3X,%pc@(m68k_machtype); jne lab
536
537#define hasnt_leds(lab) cmpl &MACH_HP300,%pc@(m68k_machtype); \
538			jeq 42f; \
539			cmpl &MACH_APOLLO,%pc@(m68k_machtype); \
540			jne lab ;\
541		42:\
542
543#define is_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jne lab
544#define is_not_040_or_060(lab)	btst &CPUTYPE_0460,%pc@(L(cputype)+3); jeq lab
545#define is_040(lab)		btst &CPUTYPE_040,%pc@(L(cputype)+3); jne lab
546#define is_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jne lab
547#define is_not_060(lab)		btst &CPUTYPE_060,%pc@(L(cputype)+3); jeq lab
548#define is_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jne lab
549#define is_not_020(lab)		btst &CPUTYPE_020,%pc@(L(cputype)+3); jeq lab
550
551/* On the HP300 we use the on-board LEDs for debug output before
552   the console is running.  Writing a 1 bit turns the corresponding LED
553   _off_ - on the 340 bit 7 is towards the back panel of the machine.  */
554.macro	leds	mask
555#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
556	hasnt_leds(.Lled\@)
557	pea	\mask
558	func_call	set_leds
559	addql	#4,%sp
560.Lled\@:
561#endif
562.endm
563
564__HEAD
565ENTRY(_stext)
566/*
567 * Version numbers of the bootinfo interface
568 * The area from _stext to _start will later be used as kernel pointer table
569 */
570	bras	1f	/* Jump over bootinfo version numbers */
571
572	.long	BOOTINFOV_MAGIC
573	.long	MACH_AMIGA, AMIGA_BOOTI_VERSION
574	.long	MACH_ATARI, ATARI_BOOTI_VERSION
575	.long	MACH_MVME147, MVME147_BOOTI_VERSION
576	.long	MACH_MVME16x, MVME16x_BOOTI_VERSION
577	.long	MACH_BVME6000, BVME6000_BOOTI_VERSION
578	.long	MACH_MAC, MAC_BOOTI_VERSION
579	.long	MACH_Q40, Q40_BOOTI_VERSION
580	.long	MACH_HP300, HP300_BOOTI_VERSION
581	.long	0
5821:	jra	__start
583
584.equ	kernel_pg_dir,_stext
585
586.equ	.,_stext+PAGESIZE
587
588ENTRY(_start)
589	jra	__start
590__INIT
591ENTRY(__start)
592/*
593 * Setup initial stack pointer
594 */
595	lea	%pc@(_stext),%sp
596
597/*
598 * Record the CPU and machine type.
599 */
600	get_bi_record	BI_MACHTYPE
601	lea	%pc@(m68k_machtype),%a1
602	movel	%a0@,%a1@
603
604	get_bi_record	BI_FPUTYPE
605	lea	%pc@(m68k_fputype),%a1
606	movel	%a0@,%a1@
607
608	get_bi_record	BI_MMUTYPE
609	lea	%pc@(m68k_mmutype),%a1
610	movel	%a0@,%a1@
611
612	get_bi_record	BI_CPUTYPE
613	lea	%pc@(m68k_cputype),%a1
614	movel	%a0@,%a1@
615
616	leds	0x1
617
618#ifdef CONFIG_MAC
619/*
620 * For Macintosh, we need to determine the display parameters early (at least
621 * while debugging it).
622 */
623
624	is_not_mac(L(test_notmac))
625
626	get_bi_record	BI_MAC_VADDR
627	lea	%pc@(L(mac_videobase)),%a1
628	movel	%a0@,%a1@
629
630	get_bi_record	BI_MAC_VDEPTH
631	lea	%pc@(L(mac_videodepth)),%a1
632	movel	%a0@,%a1@
633
634	get_bi_record	BI_MAC_VDIM
635	lea	%pc@(L(mac_dimensions)),%a1
636	movel	%a0@,%a1@
637
638	get_bi_record	BI_MAC_VROW
639	lea	%pc@(L(mac_rowbytes)),%a1
640	movel	%a0@,%a1@
641
642	get_bi_record	BI_MAC_SCCBASE
643	lea	%pc@(L(mac_sccbase)),%a1
644	movel	%a0@,%a1@
645
646L(test_notmac):
647#endif /* CONFIG_MAC */
648
649
650/*
651 * There are ultimately two pieces of information we want for all kinds of
652 * processors CpuType and CacheBits.  The CPUTYPE was passed in from booter
653 * and is converted here from a booter type definition to a separate bit
654 * number which allows for the standard is_0x0 macro tests.
655 */
656	movel	%pc@(m68k_cputype),%d0
657	/*
658	 * Assume it's an 030
659	 */
660	clrl	%d1
661
662	/*
663	 * Test the BootInfo cputype for 060
664	 */
665	btst	#CPUB_68060,%d0
666	jeq	1f
667	bset	#CPUTYPE_060,%d1
668	bset	#CPUTYPE_0460,%d1
669	jra	3f
6701:
671	/*
672	 * Test the BootInfo cputype for 040
673	 */
674	btst	#CPUB_68040,%d0
675	jeq	2f
676	bset	#CPUTYPE_040,%d1
677	bset	#CPUTYPE_0460,%d1
678	jra	3f
6792:
680	/*
681	 * Test the BootInfo cputype for 020
682	 */
683	btst	#CPUB_68020,%d0
684	jeq	3f
685	bset	#CPUTYPE_020,%d1
686	jra	3f
6873:
688	/*
689	 * Record the cpu type
690	 */
691	lea	%pc@(L(cputype)),%a0
692	movel	%d1,%a0@
693
694	/*
695	 * NOTE:
696	 *
697	 * Now the macros are valid:
698	 *	is_040_or_060
699	 *	is_not_040_or_060
700	 *	is_040
701	 *	is_060
702	 *	is_not_060
703	 */
704
705	/*
706	 * Determine the cache mode for pages holding MMU tables
707	 * and for supervisor mode, unused for '020 and '030
708	 */
709	clrl	%d0
710	clrl	%d1
711
712	is_not_040_or_060(L(save_cachetype))
713
714	/*
715	 * '040 or '060
716	 * d1 := cacheable write-through
717	 * NOTE: The 68040 manual strongly recommends non-cached for MMU tables,
718	 * but we have been using write-through since at least 2.0.29 so I
719	 * guess it is OK.
720	 */
721#ifdef CONFIG_060_WRITETHROUGH
722	/*
723	 * If this is a 68060 board using drivers with cache coherency
724	 * problems, then supervisor memory accesses need to be write-through
725	 * also; otherwise, we want copyback.
726	 */
727
728	is_not_060(1f)
729	movel	#_PAGE_CACHE040W,%d0
730	jra	L(save_cachetype)
731#endif /* CONFIG_060_WRITETHROUGH */
7321:
733	movew	#_PAGE_CACHE040,%d0
734
735	movel	#_PAGE_CACHE040W,%d1
736
737L(save_cachetype):
738	/* Save cache mode for supervisor mode and page tables
739	 */
740	lea	%pc@(m68k_supervisor_cachemode),%a0
741	movel	%d0,%a0@
742	lea	%pc@(m68k_pgtable_cachemode),%a0
743	movel	%d1,%a0@
744
745/*
746 * raise interrupt level
747 */
748	movew	#0x2700,%sr
749
750/*
751   If running on an Atari, determine the I/O base of the
752   serial port and test if we are running on a Medusa or Hades.
753   This test is necessary here, because on the Hades the serial
754   port is only accessible in the high I/O memory area.
755
756   The test whether it is a Medusa is done by writing to the byte at
757   phys. 0x0. This should result in a bus error on all other machines.
758
759   ...should, but doesn't. The Afterburner040 for the Falcon has the
760   same behaviour (0x0..0x7 are no ROM shadow). So we have to do
761   another test to distinguish Medusa and AB040. This is a
762   read attempt for 0x00ff82fe phys. that should bus error on a Falcon
763   (+AB040), but is in the range where the Medusa always asserts DTACK.
764
765   The test for the Hades is done by reading address 0xb0000000. This
766   should give a bus error on the Medusa.
767 */
768
769#ifdef CONFIG_ATARI
770	is_not_atari(L(notypetest))
771
772	/* get special machine type (Medusa/Hades/AB40) */
773	moveq	#0,%d3 /* default if tag doesn't exist */
774	get_bi_record	BI_ATARI_MCH_TYPE
775	tstl	%d0
776	jbmi	1f
777	movel	%a0@,%d3
778	lea	%pc@(atari_mch_type),%a0
779	movel	%d3,%a0@
7801:
781	/* On the Hades, the iobase must be set up before opening the
782	 * serial port. There are no I/O regs at 0x00ffxxxx at all. */
783	moveq	#0,%d0
784	cmpl	#ATARI_MACH_HADES,%d3
785	jbne	1f
786	movel	#0xff000000,%d0		/* Hades I/O base addr: 0xff000000 */
7871:	lea     %pc@(L(iobase)),%a0
788	movel   %d0,%a0@
789
790L(notypetest):
791#endif
792
793#ifdef CONFIG_VME
794	is_mvme147(L(getvmetype))
795	is_bvme6000(L(getvmetype))
796	is_not_mvme16x(L(gvtdone))
797
798	/* See if the loader has specified the BI_VME_TYPE tag.  Recent
799	 * versions of VMELILO and TFTPLILO do this.  We have to do this
800	 * early so we know how to handle console output.  If the tag
801	 * doesn't exist then we use the Bug for output on MVME16x.
802	 */
803L(getvmetype):
804	get_bi_record	BI_VME_TYPE
805	tstl	%d0
806	jbmi	1f
807	movel	%a0@,%d3
808	lea	%pc@(vme_brdtype),%a0
809	movel	%d3,%a0@
8101:
811#ifdef CONFIG_MVME16x
812	is_not_mvme16x(L(gvtdone))
813
814	/* Need to get the BRD_ID info to differentiate between 162, 167,
815	 * etc.  This is available as a BI_VME_BRDINFO tag with later
816	 * versions of VMELILO and TFTPLILO, otherwise we call the Bug.
817	 */
818	get_bi_record	BI_VME_BRDINFO
819	tstl	%d0
820	jpl	1f
821
822	/* Get pointer to board ID data from Bug */
823	movel	%d2,%sp@-
824	trap	#15
825	.word	0x70		/* trap 0x70 - .BRD_ID */
826	movel	%sp@+,%a0
8271:
828	lea	%pc@(mvme_bdid),%a1
829	/* Structure is 32 bytes long */
830	movel	%a0@+,%a1@+
831	movel	%a0@+,%a1@+
832	movel	%a0@+,%a1@+
833	movel	%a0@+,%a1@+
834	movel	%a0@+,%a1@+
835	movel	%a0@+,%a1@+
836	movel	%a0@+,%a1@+
837	movel	%a0@+,%a1@+
838#endif
839
840L(gvtdone):
841
842#endif
843
844#ifdef CONFIG_HP300
845	is_not_hp300(L(nothp))
846
847	/* Get the address of the UART for serial debugging */
848	get_bi_record	BI_HP300_UART_ADDR
849	tstl	%d0
850	jbmi	1f
851	movel	%a0@,%d3
852	lea	%pc@(L(uartbase)),%a0
853	movel	%d3,%a0@
854	get_bi_record	BI_HP300_UART_SCODE
855	tstl	%d0
856	jbmi	1f
857	movel	%a0@,%d3
858	lea	%pc@(L(uart_scode)),%a0
859	movel	%d3,%a0@
8601:
861L(nothp):
862#endif
863
864/*
865 * Initialize serial port
866 */
867	jbsr	L(serial_init)
868
869/*
870 * Initialize console
871 */
872#ifdef CONFIG_MAC
873	is_not_mac(L(nocon))
874#  ifdef CONSOLE_DEBUG
875	console_init
876#    ifdef CONFIG_LOGO
877	console_put_penguin
878#    endif /* CONFIG_LOGO */
879#  endif /* CONSOLE_DEBUG */
880L(nocon):
881#endif /* CONFIG_MAC */
882
883
884	putc	'\n'
885	putc	'A'
886	leds	0x2
887	dputn	%pc@(L(cputype))
888	dputn	%pc@(m68k_supervisor_cachemode)
889	dputn	%pc@(m68k_pgtable_cachemode)
890	dputc	'\n'
891
892/*
893 * Save physical start address of kernel
894 */
895	lea	%pc@(L(phys_kernel_start)),%a0
896	lea	%pc@(_stext),%a1
897	subl	#_stext,%a1
898	addl	#PAGE_OFFSET,%a1
899	movel	%a1,%a0@
900
901	putc	'B'
902
903	leds	0x4
904
905/*
906 *	mmu_init
907 *
908 *	This block of code does what's necessary to map in the various kinds
909 *	of machines for execution of Linux.
910 *	First map the first 4 MB of kernel code & data
911 */
912
913	mmu_map	#PAGE_OFFSET,%pc@(L(phys_kernel_start)),#4*1024*1024,\
914		%pc@(m68k_supervisor_cachemode)
915
916	putc	'C'
917
918#ifdef CONFIG_AMIGA
919
920L(mmu_init_amiga):
921
922	is_not_amiga(L(mmu_init_not_amiga))
923/*
924 * mmu_init_amiga
925 */
926
927	putc	'D'
928
929	is_not_040_or_060(1f)
930
931	/*
932	 * 040: Map the 16Meg range physical 0x0 up to logical 0x8000.0000
933	 */
934	mmu_map		#0x80000000,#0,#0x01000000,#_PAGE_NOCACHE_S
935	/*
936	 * Map the Zorro III I/O space with transparent translation
937	 * for frame buffer memory etc.
938	 */
939	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE_S
940
941	jbra	L(mmu_init_done)
942
9431:
944	/*
945	 * 030:	Map the 32Meg range physical 0x0 up to logical 0x8000.0000
946	 */
947	mmu_map		#0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
948	mmu_map_tt	#1,#0x40000000,#0x20000000,#_PAGE_NOCACHE030
949
950	jbra	L(mmu_init_done)
951
952L(mmu_init_not_amiga):
953#endif
954
955#ifdef CONFIG_ATARI
956
957L(mmu_init_atari):
958
959	is_not_atari(L(mmu_init_not_atari))
960
961	putc	'E'
962
963/* On the Atari, we map the I/O region (phys. 0x00ffxxxx) by mapping
964   the last 16 MB of virtual address space to the first 16 MB (i.e.
965   0xffxxxxxx -> 0x00xxxxxx). For this, an additional pointer table is
966   needed. I/O ranges are marked non-cachable.
967
968   For the Medusa it is better to map the I/O region transparently
969   (i.e. 0xffxxxxxx -> 0xffxxxxxx), because some I/O registers are
970   accessible only in the high area.
971
972   On the Hades all I/O registers are only accessible in the high
973   area.
974*/
975
976	/* I/O base addr for non-Medusa, non-Hades: 0x00000000 */
977	moveq	#0,%d0
978	movel	%pc@(atari_mch_type),%d3
979	cmpl	#ATARI_MACH_MEDUSA,%d3
980	jbeq	2f
981	cmpl	#ATARI_MACH_HADES,%d3
982	jbne	1f
9832:	movel	#0xff000000,%d0 /* Medusa/Hades base addr: 0xff000000 */
9841:	movel	%d0,%d3
985
986	is_040_or_060(L(spata68040))
987
988	/* Map everything non-cacheable, though not all parts really
989	 * need to disable caches (crucial only for 0xff8000..0xffffff
990	 * (standard I/O) and 0xf00000..0xf3ffff (IDE)). The remainder
991	 * isn't really used, except for sometimes peeking into the
992	 * ROMs (mirror at phys. 0x0), so caching isn't necessary for
993	 * this. */
994	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE030
995
996	jbra	L(mmu_init_done)
997
998L(spata68040):
999
1000	mmu_map	#0xff000000,%d3,#0x01000000,#_PAGE_NOCACHE_S
1001
1002	jbra	L(mmu_init_done)
1003
1004L(mmu_init_not_atari):
1005#endif
1006
1007#ifdef CONFIG_Q40
1008	is_not_q40(L(notq40))
1009	/*
1010	 * add transparent mapping for 0xff00 0000 - 0xffff ffff
1011	 * non-cached serialized etc..
1012	 * this includes master chip, DAC, RTC and ISA ports
1013	 * 0xfe000000-0xfeffffff is for screen and ROM
1014	 */
1015
1016	putc    'Q'
1017
1018	mmu_map_tt	#0,#0xfe000000,#0x01000000,#_PAGE_CACHE040W
1019	mmu_map_tt	#1,#0xff000000,#0x01000000,#_PAGE_NOCACHE_S
1020
1021	jbra	L(mmu_init_done)
1022
1023L(notq40):
1024#endif
1025
1026#ifdef CONFIG_HP300
1027	is_not_hp300(L(nothp300))
1028
1029	/* On the HP300, we map the ROM, INTIO and DIO regions (phys. 0x00xxxxxx)
1030	 * by mapping 32MB (on 020/030) or 16 MB (on 040) from 0xf0xxxxxx -> 0x00xxxxxx).
1031	 * The ROM mapping is needed because the LEDs are mapped there too.
1032	 */
1033
1034	is_040(1f)
1035
1036	/*
1037	 * 030: Map the 32Meg range physical 0x0 up to logical 0xf000.0000
1038	 */
1039	mmu_map	#0xf0000000,#0,#0x02000000,#_PAGE_NOCACHE030
1040
1041	jbra	L(mmu_init_done)
1042
10431:
1044	/*
1045	 * 040: Map the 16Meg range physical 0x0 up to logical 0xf000.0000
1046	 */
1047	mmu_map #0xf0000000,#0,#0x01000000,#_PAGE_NOCACHE_S
1048
1049	jbra	L(mmu_init_done)
1050
1051L(nothp300):
1052#endif /* CONFIG_HP300 */
1053
1054#ifdef CONFIG_MVME147
1055
1056	is_not_mvme147(L(not147))
1057
1058	/*
1059	 * On MVME147 we have already created kernel page tables for
1060	 * 4MB of RAM at address 0, so now need to do a transparent
1061	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1062	 * so we can access on-board i/o areas.
1063	 */
1064
1065	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE030
1066
1067	jbra	L(mmu_init_done)
1068
1069L(not147):
1070#endif /* CONFIG_MVME147 */
1071
1072#ifdef CONFIG_MVME16x
1073
1074	is_not_mvme16x(L(not16x))
1075
1076	/*
1077	 * On MVME16x we have already created kernel page tables for
1078	 * 4MB of RAM at address 0, so now need to do a transparent
1079	 * mapping of the top of memory space.  Make it 0.5GByte for now.
1080	 * Supervisor only access, so transparent mapping doesn't
1081	 * clash with User code virtual address space.
1082	 * this covers IO devices, PROM and SRAM.  The PROM and SRAM
1083	 * mapping is needed to allow 167Bug to run.
1084	 * IO is in the range 0xfff00000 to 0xfffeffff.
1085	 * PROM is 0xff800000->0xffbfffff and SRAM is
1086	 * 0xffe00000->0xffe1ffff.
1087	 */
1088
1089	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1090
1091	jbra	L(mmu_init_done)
1092
1093L(not16x):
1094#endif	/* CONFIG_MVME162 | CONFIG_MVME167 */
1095
1096#ifdef CONFIG_BVME6000
1097
1098	is_not_bvme6000(L(not6000))
1099
1100	/*
1101	 * On BVME6000 we have already created kernel page tables for
1102	 * 4MB of RAM at address 0, so now need to do a transparent
1103	 * mapping of the top of memory space.  Make it 0.5GByte for now,
1104	 * so we can access on-board i/o areas.
1105	 * Supervisor only access, so transparent mapping doesn't
1106	 * clash with User code virtual address space.
1107	 */
1108
1109	mmu_map_tt	#1,#0xe0000000,#0x20000000,#_PAGE_NOCACHE_S
1110
1111	jbra	L(mmu_init_done)
1112
1113L(not6000):
1114#endif /* CONFIG_BVME6000 */
1115
1116/*
1117 * mmu_init_mac
1118 *
1119 * The Macintosh mappings are less clear.
1120 *
1121 * Even as of this writing, it is unclear how the
1122 * Macintosh mappings will be done.  However, as
1123 * the first author of this code I'm proposing the
1124 * following model:
1125 *
1126 * Map the kernel (that's already done),
1127 * Map the I/O (on most machines that's the
1128 * 0x5000.0000 ... 0x5300.0000 range,
1129 * Map the video frame buffer using as few pages
1130 * as absolutely (this requirement mostly stems from
1131 * the fact that when the frame buffer is at
1132 * 0x0000.0000 then we know there is valid RAM just
1133 * above the screen that we don't want to waste!).
1134 *
1135 * By the way, if the frame buffer is at 0x0000.0000
1136 * then the Macintosh is known as an RBV based Mac.
1137 *
1138 * By the way 2, the code currently maps in a bunch of
1139 * regions.  But I'd like to cut that out.  (And move most
1140 * of the mappings up into the kernel proper ... or only
1141 * map what's necessary.)
1142 */
1143
1144#ifdef CONFIG_MAC
1145
1146L(mmu_init_mac):
1147
1148	is_not_mac(L(mmu_init_not_mac))
1149
1150	putc	'F'
1151
1152	is_not_040_or_060(1f)
1153
1154	moveq	#_PAGE_NOCACHE_S,%d3
1155	jbra	2f
11561:
1157	moveq	#_PAGE_NOCACHE030,%d3
11582:
1159	/*
1160	 * Mac Note: screen address of logical 0xF000.0000 -> <screen physical>
1161	 *	     we simply map the 4MB that contains the videomem
1162	 */
1163
1164	movel	#VIDEOMEMMASK,%d0
1165	andl	%pc@(L(mac_videobase)),%d0
1166
1167	mmu_map		#VIDEOMEMBASE,%d0,#VIDEOMEMSIZE,%d3
1168	/* ROM from 4000 0000 to 4200 0000 (only for mac_reset()) */
1169	mmu_map_eq	#0x40000000,#0x02000000,%d3
1170	/* IO devices (incl. serial port) from 5000 0000 to 5300 0000 */
1171	mmu_map_eq	#0x50000000,#0x03000000,%d3
1172	/* Nubus slot space (video at 0xF0000000, rom at 0xF0F80000) */
1173	mmu_map_tt	#1,#0xf8000000,#0x08000000,%d3
1174
1175	jbra	L(mmu_init_done)
1176
1177L(mmu_init_not_mac):
1178#endif
1179
1180#ifdef CONFIG_SUN3X
1181	is_not_sun3x(L(notsun3x))
1182
1183	/* oh, the pain..  We're gonna want the prom code after
1184	 * starting the MMU, so we copy the mappings, translating
1185	 * from 8k -> 4k pages as we go.
1186	 */
1187
1188	/* copy maps from 0xfee00000 to 0xff000000 */
1189	movel	#0xfee00000, %d0
1190	moveq	#ROOT_INDEX_SHIFT, %d1
1191	lsrl	%d1,%d0
1192	mmu_get_root_table_entry	%d0
1193
1194	movel	#0xfee00000, %d0
1195	moveq	#PTR_INDEX_SHIFT, %d1
1196	lsrl	%d1,%d0
1197	andl	#PTR_TABLE_SIZE-1, %d0
1198	mmu_get_ptr_table_entry		%a0,%d0
1199
1200	movel	#0xfee00000, %d0
1201	moveq	#PAGE_INDEX_SHIFT, %d1
1202	lsrl	%d1,%d0
1203	andl	#PAGE_TABLE_SIZE-1, %d0
1204	mmu_get_page_table_entry	%a0,%d0
1205
1206	/* this is where the prom page table lives */
1207	movel	0xfefe00d4, %a1
1208	movel	%a1@, %a1
1209
1210	movel	#((0x200000 >> 13)-1), %d1
1211
12121:
1213	movel	%a1@+, %d3
1214	movel	%d3,%a0@+
1215	addl	#0x1000,%d3
1216	movel	%d3,%a0@+
1217
1218	dbra	%d1,1b
1219
1220	/* setup tt1 for I/O */
1221	mmu_map_tt	#1,#0x40000000,#0x40000000,#_PAGE_NOCACHE_S
1222	jbra	L(mmu_init_done)
1223
1224L(notsun3x):
1225#endif
1226
1227#ifdef CONFIG_APOLLO
1228	is_not_apollo(L(notapollo))
1229
1230	putc	'P'
1231	mmu_map         #0x80000000,#0,#0x02000000,#_PAGE_NOCACHE030
1232
1233L(notapollo):
1234	jbra	L(mmu_init_done)
1235#endif
1236
1237L(mmu_init_done):
1238
1239	putc	'G'
1240	leds	0x8
1241
1242/*
1243 * mmu_fixup
1244 *
1245 * On the 040 class machines, all pages that are used for the
1246 * mmu have to be fixed up. According to Motorola, pages holding mmu
1247 * tables should be non-cacheable on a '040 and write-through on a
1248 * '060. But analysis of the reasons for this, and practical
1249 * experience, showed that write-through also works on a '040.
1250 *
1251 * Allocated memory so far goes from kernel_end to memory_start that
1252 * is used for all kind of tables, for that the cache attributes
1253 * are now fixed.
1254 */
1255L(mmu_fixup):
1256
1257	is_not_040_or_060(L(mmu_fixup_done))
1258
1259#ifdef MMU_NOCACHE_KERNEL
1260	jbra	L(mmu_fixup_done)
1261#endif
1262
1263	/* first fix the page at the start of the kernel, that
1264	 * contains also kernel_pg_dir.
1265	 */
1266	movel	%pc@(L(phys_kernel_start)),%d0
1267	subl	#PAGE_OFFSET,%d0
1268	lea	%pc@(_stext),%a0
1269	subl	%d0,%a0
1270	mmu_fixup_page_mmu_cache	%a0
1271
1272	movel	%pc@(L(kernel_end)),%a0
1273	subl	%d0,%a0
1274	movel	%pc@(L(memory_start)),%a1
1275	subl	%d0,%a1
1276	bra	2f
12771:
1278	mmu_fixup_page_mmu_cache	%a0
1279	addw	#PAGESIZE,%a0
12802:
1281	cmpl	%a0,%a1
1282	jgt	1b
1283
1284L(mmu_fixup_done):
1285
1286#ifdef MMU_PRINT
1287	mmu_print
1288#endif
1289
1290/*
1291 * mmu_engage
1292 *
1293 * This chunk of code performs the gruesome task of engaging the MMU.
1294 * The reason its gruesome is because when the MMU becomes engaged it
1295 * maps logical addresses to physical addresses.  The Program Counter
1296 * register is then passed through the MMU before the next instruction
1297 * is fetched (the instruction following the engage MMU instruction).
1298 * This may mean one of two things:
1299 * 1. The Program Counter falls within the logical address space of
1300 *    the kernel of which there are two sub-possibilities:
1301 *    A. The PC maps to the correct instruction (logical PC == physical
1302 *       code location), or
1303 *    B. The PC does not map through and the processor will read some
1304 *       data (or instruction) which is not the logically next instr.
1305 *    As you can imagine, A is good and B is bad.
1306 * Alternatively,
1307 * 2. The Program Counter does not map through the MMU.  The processor
1308 *    will take a Bus Error.
1309 * Clearly, 2 is bad.
1310 * It doesn't take a wiz kid to figure you want 1.A.
1311 * This code creates that possibility.
1312 * There are two possible 1.A. states (we now ignore the other above states):
1313 * A. The kernel is located at physical memory addressed the same as
1314 *    the logical memory for the kernel, i.e., 0x01000.
1315 * B. The kernel is located some where else.  e.g., 0x0400.0000
1316 *
1317 *    Under some conditions the Macintosh can look like A or B.
1318 * [A friend and I once noted that Apple hardware engineers should be
1319 * wacked twice each day: once when they show up at work (as in, Whack!,
1320 * "This is for the screwy hardware we know you're going to design today."),
1321 * and also at the end of the day (as in, Whack! "I don't know what
1322 * you designed today, but I'm sure it wasn't good."). -- rst]
1323 *
1324 * This code works on the following premise:
1325 * If the kernel start (%d5) is within the first 16 Meg of RAM,
1326 * then create a mapping for the kernel at logical 0x8000.0000 to
1327 * the physical location of the pc.  And, create a transparent
1328 * translation register for the first 16 Meg.  Then, after the MMU
1329 * is engaged, the PC can be moved up into the 0x8000.0000 range
1330 * and then the transparent translation can be turned off and then
1331 * the PC can jump to the correct logical location and it will be
1332 * home (finally).  This is essentially the code that the Amiga used
1333 * to use.  Now, it's generalized for all processors.  Which means
1334 * that a fresh (but temporary) mapping has to be created.  The mapping
1335 * is made in page 0 (an as of yet unused location -- except for the
1336 * stack!).  This temporary mapping will only require 1 pointer table
1337 * and a single page table (it can map 256K).
1338 *
1339 * OK, alternatively, imagine that the Program Counter is not within
1340 * the first 16 Meg.  Then, just use Transparent Translation registers
1341 * to do the right thing.
1342 *
1343 * Last, if _start is already at 0x01000, then there's nothing special
1344 * to do (in other words, in a degenerate case of the first case above,
1345 * do nothing).
1346 *
1347 * Let's do it.
1348 *
1349 *
1350 */
1351
1352	putc	'H'
1353
1354	mmu_engage
1355
1356/*
1357 * After this point no new memory is allocated and
1358 * the start of available memory is stored in availmem.
1359 * (The bootmem allocator requires now the physicall address.)
1360 */
1361
1362	movel	L(memory_start),availmem
1363
1364#ifdef CONFIG_AMIGA
1365	is_not_amiga(1f)
1366	/* fixup the Amiga custom register location before printing */
1367	clrl	L(custom)
13681:
1369#endif
1370
1371#ifdef CONFIG_ATARI
1372	is_not_atari(1f)
1373	/* fixup the Atari iobase register location before printing */
1374	movel	#0xff000000,L(iobase)
13751:
1376#endif
1377
1378#ifdef CONFIG_MAC
1379	is_not_mac(1f)
1380	movel	#~VIDEOMEMMASK,%d0
1381	andl	L(mac_videobase),%d0
1382	addl	#VIDEOMEMBASE,%d0
1383	movel	%d0,L(mac_videobase)
1384#ifdef CONSOLE_DEBUG
1385	movel	%pc@(L(phys_kernel_start)),%d0
1386	subl	#PAGE_OFFSET,%d0
1387	subl	%d0,L(console_font)
1388	subl	%d0,L(console_font_data)
1389#endif
1390	orl	#0x50000000,L(mac_sccbase)
13911:
1392#endif
1393
1394#ifdef CONFIG_HP300
1395	is_not_hp300(2f)
1396	/*
1397	 * Fix up the iobase register to point to the new location of the LEDs.
1398	 */
1399	movel	#0xf0000000,L(iobase)
1400
1401	/*
1402	 * Energise the FPU and caches.
1403	 */
1404	is_040(1f)
1405	movel	#0x60,0xf05f400c
1406	jbra	2f
1407
1408	/*
1409	 * 040: slightly different, apparently.
1410	 */
14111:	movew	#0,0xf05f400e
1412	movew	#0x64,0xf05f400e
14132:
1414#endif
1415
1416#ifdef CONFIG_SUN3X
1417	is_not_sun3x(1f)
1418
1419	/* enable copro */
1420	oriw	#0x4000,0x61000000
14211:
1422#endif
1423
1424#ifdef CONFIG_APOLLO
1425	is_not_apollo(1f)
1426
1427	/*
1428	 * Fix up the iobase before printing
1429	 */
1430	movel	#0x80000000,L(iobase)
14311:
1432#endif
1433
1434	putc	'I'
1435	leds	0x10
1436
1437/*
1438 * Enable caches
1439 */
1440
1441	is_not_040_or_060(L(cache_not_680460))
1442
1443L(cache680460):
1444	.chip	68040
1445	nop
1446	cpusha	%bc
1447	nop
1448
1449	is_060(L(cache68060))
1450
1451	movel	#CC6_ENABLE_D+CC6_ENABLE_I,%d0
1452	/* MMU stuff works in copyback mode now, so enable the cache */
1453	movec	%d0,%cacr
1454	jra	L(cache_done)
1455
1456L(cache68060):
1457	movel	#CC6_ENABLE_D+CC6_ENABLE_I+CC6_ENABLE_SB+CC6_PUSH_DPI+CC6_ENABLE_B+CC6_CLRA_B,%d0
1458	/* MMU stuff works in copyback mode now, so enable the cache */
1459	movec	%d0,%cacr
1460	/* enable superscalar dispatch in PCR */
1461	moveq	#1,%d0
1462	.chip	68060
1463	movec	%d0,%pcr
1464
1465	jbra	L(cache_done)
1466L(cache_not_680460):
1467L(cache68030):
1468	.chip	68030
1469	movel	#CC3_ENABLE_DB+CC3_CLR_D+CC3_ENABLE_D+CC3_ENABLE_IB+CC3_CLR_I+CC3_ENABLE_I,%d0
1470	movec	%d0,%cacr
1471
1472	jra	L(cache_done)
1473	.chip	68k
1474L(cache_done):
1475
1476	putc	'J'
1477
1478/*
1479 * Setup initial stack pointer
1480 */
1481	lea	init_task,%curptr
1482	lea	init_thread_union+THREAD_SIZE,%sp
1483
1484	putc	'K'
1485
1486	subl	%a6,%a6		/* clear a6 for gdb */
1487
1488/*
1489 * The new 64bit printf support requires an early exception initialization.
1490 */
1491	jbsr	base_trap_init
1492
1493/* jump to the kernel start */
1494
1495	putc	'\n'
1496	leds	0x55
1497
1498	jbsr	start_kernel
1499
1500/*
1501 * Find a tag record in the bootinfo structure
1502 * The bootinfo structure is located right after the kernel
1503 * Returns: d0: size (-1 if not found)
1504 *          a0: data pointer (end-of-records if not found)
1505 */
1506func_start	get_bi_record,%d1
1507
1508	movel	ARG1,%d0
1509	lea	%pc@(_end),%a0
15101:	tstw	%a0@(BIR_TAG)
1511	jeq	3f
1512	cmpw	%a0@(BIR_TAG),%d0
1513	jeq	2f
1514	addw	%a0@(BIR_SIZE),%a0
1515	jra	1b
15162:	moveq	#0,%d0
1517	movew	%a0@(BIR_SIZE),%d0
1518	lea	%a0@(BIR_DATA),%a0
1519	jra	4f
15203:	moveq	#-1,%d0
1521	lea	%a0@(BIR_SIZE),%a0
15224:
1523func_return	get_bi_record
1524
1525
1526/*
1527 *	MMU Initialization Begins Here
1528 *
1529 *	The structure of the MMU tables on the 68k machines
1530 *	is thus:
1531 *	Root Table
1532 *		Logical addresses are translated through
1533 *	a hierarchical translation mechanism where the high-order
1534 *	seven bits of the logical address (LA) are used as an
1535 *	index into the "root table."  Each entry in the root
1536 *	table has a bit which specifies if it's a valid pointer to a
1537 *	pointer table.  Each entry defines a 32KMeg range of memory.
1538 *	If an entry is invalid then that logical range of 32M is
1539 *	invalid and references to that range of memory (when the MMU
1540 *	is enabled) will fault.  If the entry is valid, then it does
1541 *	one of two things.  On 040/060 class machines, it points to
1542 *	a pointer table which then describes more finely the memory
1543 *	within that 32M range.  On 020/030 class machines, a technique
1544 *	called "early terminating descriptors" are used.  This technique
1545 *	allows an entire 32Meg to be described by a single entry in the
1546 *	root table.  Thus, this entry in the root table, contains the
1547 *	physical address of the memory or I/O at the logical address
1548 *	which the entry represents and it also contains the necessary
1549 *	cache bits for this region.
1550 *
1551 *	Pointer Tables
1552 *		Per the Root Table, there will be one or more
1553 *	pointer tables.  Each pointer table defines a 32M range.
1554 *	Not all of the 32M range need be defined.  Again, the next
1555 *	seven bits of the logical address are used an index into
1556 *	the pointer table to point to page tables (if the pointer
1557 *	is valid).  There will undoubtedly be more than one
1558 *	pointer table for the kernel because each pointer table
1559 *	defines a range of only 32M.  Valid pointer table entries
1560 *	point to page tables, or are early terminating entries
1561 *	themselves.
1562 *
1563 *	Page Tables
1564 *		Per the Pointer Tables, each page table entry points
1565 *	to the physical page in memory that supports the logical
1566 *	address that translates to the particular index.
1567 *
1568 *	In short, the Logical Address gets translated as follows:
1569 *		bits 31..26 - index into the Root Table
1570 *		bits 25..18 - index into the Pointer Table
1571 *		bits 17..12 - index into the Page Table
1572 *		bits 11..0  - offset into a particular 4K page
1573 *
1574 *	The algorithms which follows do one thing: they abstract
1575 *	the MMU hardware.  For example, there are three kinds of
1576 *	cache settings that are relevant.  Either, memory is
1577 *	being mapped in which case it is either Kernel Code (or
1578 *	the RamDisk) or it is MMU data.  On the 030, the MMU data
1579 *	option also describes the kernel.  Or, I/O is being mapped
1580 *	in which case it has its own kind of cache bits.  There
1581 *	are constants which abstract these notions from the code that
1582 *	actually makes the call to map some range of memory.
1583 *
1584 *
1585 *
1586 */
1587
1588#ifdef MMU_PRINT
1589/*
1590 *	mmu_print
1591 *
1592 *	This algorithm will print out the current MMU mappings.
1593 *
1594 *	Input:
1595 *		%a5 points to the root table.  Everything else is calculated
1596 *			from this.
1597 */
1598
1599#define mmu_next_valid		0
1600#define mmu_start_logical	4
1601#define mmu_next_logical	8
1602#define mmu_start_physical	12
1603#define mmu_next_physical	16
1604
1605#define MMU_PRINT_INVALID		-1
1606#define MMU_PRINT_VALID			1
1607#define MMU_PRINT_UNINITED		0
1608
1609#define putZc(z,n)		jbne 1f; putc z; jbra 2f; 1: putc n; 2:
1610
1611func_start	mmu_print,%a0-%a6/%d0-%d7
1612
1613	movel	%pc@(L(kernel_pgdir_ptr)),%a5
1614	lea	%pc@(L(mmu_print_data)),%a0
1615	movel	#MMU_PRINT_UNINITED,%a0@(mmu_next_valid)
1616
1617	is_not_040_or_060(mmu_030_print)
1618
1619mmu_040_print:
1620	puts	"\nMMU040\n"
1621	puts	"rp:"
1622	putn	%a5
1623	putc	'\n'
1624#if 0
1625	/*
1626	 * The following #if/#endif block is a tight algorithm for dumping the 040
1627	 * MMU Map in gory detail.  It really isn't that practical unless the
1628	 * MMU Map algorithm appears to go awry and you need to debug it at the
1629	 * entry per entry level.
1630	 */
1631	movel	#ROOT_TABLE_SIZE,%d5
1632#if 0
1633	movel	%a5@+,%d7		| Burn an entry to skip the kernel mappings,
1634	subql	#1,%d5			| they (might) work
1635#endif
16361:	tstl	%d5
1637	jbeq	mmu_print_done
1638	subq	#1,%d5
1639	movel	%a5@+,%d7
1640	btst	#1,%d7
1641	jbeq	1b
1642
16432:	putn	%d7
1644	andil	#0xFFFFFE00,%d7
1645	movel	%d7,%a4
1646	movel	#PTR_TABLE_SIZE,%d4
1647	putc	' '
16483:	tstl	%d4
1649	jbeq	11f
1650	subq	#1,%d4
1651	movel	%a4@+,%d7
1652	btst	#1,%d7
1653	jbeq	3b
1654
16554:	putn	%d7
1656	andil	#0xFFFFFF00,%d7
1657	movel	%d7,%a3
1658	movel	#PAGE_TABLE_SIZE,%d3
16595:	movel	#8,%d2
16606:	tstl	%d3
1661	jbeq	31f
1662	subq	#1,%d3
1663	movel	%a3@+,%d6
1664	btst	#0,%d6
1665	jbeq	6b
16667:	tstl	%d2
1667	jbeq	8f
1668	subq	#1,%d2
1669	putc	' '
1670	jbra	91f
16718:	putc	'\n'
1672	movel	#8+1+8+1+1,%d2
16739:	putc	' '
1674	dbra	%d2,9b
1675	movel	#7,%d2
167691:	putn	%d6
1677	jbra	6b
1678
167931:	putc	'\n'
1680	movel	#8+1,%d2
168132:	putc	' '
1682	dbra	%d2,32b
1683	jbra	3b
1684
168511:	putc	'\n'
1686	jbra	1b
1687#endif /* MMU 040 Dumping code that's gory and detailed */
1688
1689	lea	%pc@(kernel_pg_dir),%a5
1690	movel	%a5,%a0			/* a0 has the address of the root table ptr */
1691	movel	#0x00000000,%a4		/* logical address */
1692	moveql	#0,%d0
169340:
1694	/* Increment the logical address and preserve in d5 */
1695	movel	%a4,%d5
1696	addil	#PAGESIZE<<13,%d5
1697	movel	%a0@+,%d6
1698	btst	#1,%d6
1699	jbne	41f
1700	jbsr	mmu_print_tuple_invalidate
1701	jbra	48f
170241:
1703	movel	#0,%d1
1704	andil	#0xfffffe00,%d6
1705	movel	%d6,%a1
170642:
1707	movel	%a4,%d5
1708	addil	#PAGESIZE<<6,%d5
1709	movel	%a1@+,%d6
1710	btst	#1,%d6
1711	jbne	43f
1712	jbsr	mmu_print_tuple_invalidate
1713	jbra	47f
171443:
1715	movel	#0,%d2
1716	andil	#0xffffff00,%d6
1717	movel	%d6,%a2
171844:
1719	movel	%a4,%d5
1720	addil	#PAGESIZE,%d5
1721	movel	%a2@+,%d6
1722	btst	#0,%d6
1723	jbne	45f
1724	jbsr	mmu_print_tuple_invalidate
1725	jbra	46f
172645:
1727	moveml	%d0-%d1,%sp@-
1728	movel	%a4,%d0
1729	movel	%d6,%d1
1730	andil	#0xfffff4e0,%d1
1731	lea	%pc@(mmu_040_print_flags),%a6
1732	jbsr	mmu_print_tuple
1733	moveml	%sp@+,%d0-%d1
173446:
1735	movel	%d5,%a4
1736	addq	#1,%d2
1737	cmpib	#64,%d2
1738	jbne	44b
173947:
1740	movel	%d5,%a4
1741	addq	#1,%d1
1742	cmpib	#128,%d1
1743	jbne	42b
174448:
1745	movel	%d5,%a4			/* move to the next logical address */
1746	addq	#1,%d0
1747	cmpib	#128,%d0
1748	jbne	40b
1749
1750	.chip	68040
1751	movec	%dtt1,%d0
1752	movel	%d0,%d1
1753	andiw	#0x8000,%d1		/* is it valid ? */
1754	jbeq	1f			/* No, bail out */
1755
1756	movel	%d0,%d1
1757	andil	#0xff000000,%d1		/* Get the address */
1758	putn	%d1
1759	puts	"=="
1760	putn	%d1
1761
1762	movel	%d0,%d6
1763	jbsr	mmu_040_print_flags_tt
17641:
1765	movec	%dtt0,%d0
1766	movel	%d0,%d1
1767	andiw	#0x8000,%d1		/* is it valid ? */
1768	jbeq	1f			/* No, bail out */
1769
1770	movel	%d0,%d1
1771	andil	#0xff000000,%d1		/* Get the address */
1772	putn	%d1
1773	puts	"=="
1774	putn	%d1
1775
1776	movel	%d0,%d6
1777	jbsr	mmu_040_print_flags_tt
17781:
1779	.chip	68k
1780
1781	jbra	mmu_print_done
1782
1783mmu_040_print_flags:
1784	btstl	#10,%d6
1785	putZc(' ','G')	/* global bit */
1786	btstl	#7,%d6
1787	putZc(' ','S')	/* supervisor bit */
1788mmu_040_print_flags_tt:
1789	btstl	#6,%d6
1790	jbne	3f
1791	putc	'C'
1792	btstl	#5,%d6
1793	putZc('w','c')	/* write through or copy-back */
1794	jbra	4f
17953:
1796	putc	'N'
1797	btstl	#5,%d6
1798	putZc('s',' ')	/* serialized non-cacheable, or non-cacheable */
17994:
1800	rts
1801
1802mmu_030_print_flags:
1803	btstl	#6,%d6
1804	putZc('C','I')	/* write through or copy-back */
1805	rts
1806
1807mmu_030_print:
1808	puts	"\nMMU030\n"
1809	puts	"\nrp:"
1810	putn	%a5
1811	putc	'\n'
1812	movel	%a5,%d0
1813	andil	#0xfffffff0,%d0
1814	movel	%d0,%a0
1815	movel	#0x00000000,%a4		/* logical address */
1816	movel	#0,%d0
181730:
1818	movel	%a4,%d5
1819	addil	#PAGESIZE<<13,%d5
1820	movel	%a0@+,%d6
1821	btst	#1,%d6			/* is it a table ptr? */
1822	jbne	31f			/* yes */
1823	btst	#0,%d6			/* is it early terminating? */
1824	jbeq	1f			/* no */
1825	jbsr	mmu_030_print_helper
1826	jbra	38f
18271:
1828	jbsr	mmu_print_tuple_invalidate
1829	jbra	38f
183031:
1831	movel	#0,%d1
1832	andil	#0xfffffff0,%d6
1833	movel	%d6,%a1
183432:
1835	movel	%a4,%d5
1836	addil	#PAGESIZE<<6,%d5
1837	movel	%a1@+,%d6
1838	btst	#1,%d6			/* is it a table ptr? */
1839	jbne	33f			/* yes */
1840	btst	#0,%d6			/* is it a page descriptor? */
1841	jbeq	1f			/* no */
1842	jbsr	mmu_030_print_helper
1843	jbra	37f
18441:
1845	jbsr	mmu_print_tuple_invalidate
1846	jbra	37f
184733:
1848	movel	#0,%d2
1849	andil	#0xfffffff0,%d6
1850	movel	%d6,%a2
185134:
1852	movel	%a4,%d5
1853	addil	#PAGESIZE,%d5
1854	movel	%a2@+,%d6
1855	btst	#0,%d6
1856	jbne	35f
1857	jbsr	mmu_print_tuple_invalidate
1858	jbra	36f
185935:
1860	jbsr	mmu_030_print_helper
186136:
1862	movel	%d5,%a4
1863	addq	#1,%d2
1864	cmpib	#64,%d2
1865	jbne	34b
186637:
1867	movel	%d5,%a4
1868	addq	#1,%d1
1869	cmpib	#128,%d1
1870	jbne	32b
187138:
1872	movel	%d5,%a4			/* move to the next logical address */
1873	addq	#1,%d0
1874	cmpib	#128,%d0
1875	jbne	30b
1876
1877mmu_print_done:
1878	puts	"\n"
1879
1880func_return	mmu_print
1881
1882
1883mmu_030_print_helper:
1884	moveml	%d0-%d1,%sp@-
1885	movel	%a4,%d0
1886	movel	%d6,%d1
1887	lea	%pc@(mmu_030_print_flags),%a6
1888	jbsr	mmu_print_tuple
1889	moveml	%sp@+,%d0-%d1
1890	rts
1891
1892mmu_print_tuple_invalidate:
1893	moveml	%a0/%d7,%sp@-
1894
1895	lea	%pc@(L(mmu_print_data)),%a0
1896	tstl	%a0@(mmu_next_valid)
1897	jbmi	mmu_print_tuple_invalidate_exit
1898
1899	movel	#MMU_PRINT_INVALID,%a0@(mmu_next_valid)
1900
1901	putn	%a4
1902
1903	puts	"##\n"
1904
1905mmu_print_tuple_invalidate_exit:
1906	moveml	%sp@+,%a0/%d7
1907	rts
1908
1909
1910mmu_print_tuple:
1911	moveml	%d0-%d7/%a0,%sp@-
1912
1913	lea	%pc@(L(mmu_print_data)),%a0
1914
1915	tstl	%a0@(mmu_next_valid)
1916	jble	mmu_print_tuple_print
1917
1918	cmpl	%a0@(mmu_next_physical),%d1
1919	jbeq	mmu_print_tuple_increment
1920
1921mmu_print_tuple_print:
1922	putn	%d0
1923	puts	"->"
1924	putn	%d1
1925
1926	movel	%d1,%d6
1927	jbsr	%a6@
1928
1929mmu_print_tuple_record:
1930	movel	#MMU_PRINT_VALID,%a0@(mmu_next_valid)
1931
1932	movel	%d1,%a0@(mmu_next_physical)
1933
1934mmu_print_tuple_increment:
1935	movel	%d5,%d7
1936	subl	%a4,%d7
1937	addl	%d7,%a0@(mmu_next_physical)
1938
1939mmu_print_tuple_exit:
1940	moveml	%sp@+,%d0-%d7/%a0
1941	rts
1942
1943mmu_print_machine_cpu_types:
1944	puts	"machine: "
1945
1946	is_not_amiga(1f)
1947	puts	"amiga"
1948	jbra	9f
19491:
1950	is_not_atari(2f)
1951	puts	"atari"
1952	jbra	9f
19532:
1954	is_not_mac(3f)
1955	puts	"macintosh"
1956	jbra	9f
19573:	puts	"unknown"
19589:	putc	'\n'
1959
1960	puts	"cputype: 0"
1961	is_not_060(1f)
1962	putc	'6'
1963	jbra	9f
19641:
1965	is_not_040_or_060(2f)
1966	putc	'4'
1967	jbra	9f
19682:	putc	'3'
19699:	putc	'0'
1970	putc	'\n'
1971
1972	rts
1973#endif /* MMU_PRINT */
1974
1975/*
1976 * mmu_map_tt
1977 *
1978 * This is a specific function which works on all 680x0 machines.
1979 * On 030, 040 & 060 it will attempt to use Transparent Translation
1980 * registers (tt1).
1981 * On 020 it will call the standard mmu_map which will use early
1982 * terminating descriptors.
1983 */
1984func_start	mmu_map_tt,%d0/%d1/%a0,4
1985
1986	dputs	"mmu_map_tt:"
1987	dputn	ARG1
1988	dputn	ARG2
1989	dputn	ARG3
1990	dputn	ARG4
1991	dputc	'\n'
1992
1993	is_020(L(do_map))
1994
1995	/* Extract the highest bit set
1996	 */
1997	bfffo	ARG3{#0,#32},%d1
1998	cmpw	#8,%d1
1999	jcc	L(do_map)
2000
2001	/* And get the mask
2002	 */
2003	moveq	#-1,%d0
2004	lsrl	%d1,%d0
2005	lsrl	#1,%d0
2006
2007	/* Mask the address
2008	 */
2009	movel	%d0,%d1
2010	notl	%d1
2011	andl	ARG2,%d1
2012
2013	/* Generate the upper 16bit of the tt register
2014	 */
2015	lsrl	#8,%d0
2016	orl	%d0,%d1
2017	clrw	%d1
2018
2019	is_040_or_060(L(mmu_map_tt_040))
2020
2021	/* set 030 specific bits (read/write access for supervisor mode
2022	 * (highest function code set, lower two bits masked))
2023	 */
2024	orw	#TTR_ENABLE+TTR_RWM+TTR_FCB2+TTR_FCM1+TTR_FCM0,%d1
2025	movel	ARG4,%d0
2026	btst	#6,%d0
2027	jeq	1f
2028	orw	#TTR_CI,%d1
2029
20301:	lea	STACK,%a0
2031	dputn	%d1
2032	movel	%d1,%a0@
2033	.chip	68030
2034	tstl	ARG1
2035	jne	1f
2036	pmove	%a0@,%tt0
2037	jra	2f
20381:	pmove	%a0@,%tt1
20392:	.chip	68k
2040	jra	L(mmu_map_tt_done)
2041
2042	/* set 040 specific bits
2043	 */
2044L(mmu_map_tt_040):
2045	orw	#TTR_ENABLE+TTR_KERNELMODE,%d1
2046	orl	ARG4,%d1
2047	dputn	%d1
2048
2049	.chip	68040
2050	tstl	ARG1
2051	jne	1f
2052	movec	%d1,%itt0
2053	movec	%d1,%dtt0
2054	jra	2f
20551:	movec	%d1,%itt1
2056	movec	%d1,%dtt1
20572:	.chip	68k
2058
2059	jra	L(mmu_map_tt_done)
2060
2061L(do_map):
2062	mmu_map_eq	ARG2,ARG3,ARG4
2063
2064L(mmu_map_tt_done):
2065
2066func_return	mmu_map_tt
2067
2068/*
2069 *	mmu_map
2070 *
2071 *	This routine will map a range of memory using a pointer
2072 *	table and allocating the pages on the fly from the kernel.
2073 *	The pointer table does not have to be already linked into
2074 *	the root table, this routine will do that if necessary.
2075 *
2076 *	NOTE
2077 *	This routine will assert failure and use the serial_putc
2078 *	routines in the case of a run-time error.  For example,
2079 *	if the address is already mapped.
2080 *
2081 *	NOTE-2
2082 *	This routine will use early terminating descriptors
2083 *	where possible for the 68020+68851 and 68030 type
2084 *	processors.
2085 */
2086func_start	mmu_map,%d0-%d4/%a0-%a4
2087
2088	dputs	"\nmmu_map:"
2089	dputn	ARG1
2090	dputn	ARG2
2091	dputn	ARG3
2092	dputn	ARG4
2093	dputc	'\n'
2094
2095	/* Get logical address and round it down to 256KB
2096	 */
2097	movel	ARG1,%d0
2098	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2099	movel	%d0,%a3
2100
2101	/* Get the end address
2102	 */
2103	movel	ARG1,%a4
2104	addl	ARG3,%a4
2105	subql	#1,%a4
2106
2107	/* Get physical address and round it down to 256KB
2108	 */
2109	movel	ARG2,%d0
2110	andl	#-(PAGESIZE*PAGE_TABLE_SIZE),%d0
2111	movel	%d0,%a2
2112
2113	/* Add page attributes to the physical address
2114	 */
2115	movel	ARG4,%d0
2116	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2117	addw	%d0,%a2
2118
2119	dputn	%a2
2120	dputn	%a3
2121	dputn	%a4
2122
2123	is_not_040_or_060(L(mmu_map_030))
2124
2125	addw	#_PAGE_GLOBAL040,%a2
2126/*
2127 *	MMU 040 & 060 Support
2128 *
2129 *	The MMU usage for the 040 and 060 is different enough from
2130 *	the 030 and 68851 that there is separate code.  This comment
2131 *	block describes the data structures and algorithms built by
2132 *	this code.
2133 *
2134 *	The 040 does not support early terminating descriptors, as
2135 *	the 030 does.  Therefore, a third level of table is needed
2136 *	for the 040, and that would be the page table.  In Linux,
2137 *	page tables are allocated directly from the memory above the
2138 *	kernel.
2139 *
2140 */
2141
2142L(mmu_map_040):
2143	/* Calculate the offset into the root table
2144	 */
2145	movel	%a3,%d0
2146	moveq	#ROOT_INDEX_SHIFT,%d1
2147	lsrl	%d1,%d0
2148	mmu_get_root_table_entry	%d0
2149
2150	/* Calculate the offset into the pointer table
2151	 */
2152	movel	%a3,%d0
2153	moveq	#PTR_INDEX_SHIFT,%d1
2154	lsrl	%d1,%d0
2155	andl	#PTR_TABLE_SIZE-1,%d0
2156	mmu_get_ptr_table_entry		%a0,%d0
2157
2158	/* Calculate the offset into the page table
2159	 */
2160	movel	%a3,%d0
2161	moveq	#PAGE_INDEX_SHIFT,%d1
2162	lsrl	%d1,%d0
2163	andl	#PAGE_TABLE_SIZE-1,%d0
2164	mmu_get_page_table_entry	%a0,%d0
2165
2166	/* The page table entry must not no be busy
2167	 */
2168	tstl	%a0@
2169	jne	L(mmu_map_error)
2170
2171	/* Do the mapping and advance the pointers
2172	 */
2173	movel	%a2,%a0@
21742:
2175	addw	#PAGESIZE,%a2
2176	addw	#PAGESIZE,%a3
2177
2178	/* Ready with mapping?
2179	 */
2180	lea	%a3@(-1),%a0
2181	cmpl	%a0,%a4
2182	jhi	L(mmu_map_040)
2183	jra	L(mmu_map_done)
2184
2185L(mmu_map_030):
2186	/* Calculate the offset into the root table
2187	 */
2188	movel	%a3,%d0
2189	moveq	#ROOT_INDEX_SHIFT,%d1
2190	lsrl	%d1,%d0
2191	mmu_get_root_table_entry	%d0
2192
2193	/* Check if logical address 32MB aligned,
2194	 * so we can try to map it once
2195	 */
2196	movel	%a3,%d0
2197	andl	#(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1)&(-ROOT_TABLE_SIZE),%d0
2198	jne	1f
2199
2200	/* Is there enough to map for 32MB at once
2201	 */
2202	lea	%a3@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE-1),%a1
2203	cmpl	%a1,%a4
2204	jcs	1f
2205
2206	addql	#1,%a1
2207
2208	/* The root table entry must not no be busy
2209	 */
2210	tstl	%a0@
2211	jne	L(mmu_map_error)
2212
2213	/* Do the mapping and advance the pointers
2214	 */
2215	dputs	"early term1"
2216	dputn	%a2
2217	dputn	%a3
2218	dputn	%a1
2219	dputc	'\n'
2220	movel	%a2,%a0@
2221
2222	movel	%a1,%a3
2223	lea	%a2@(PTR_TABLE_SIZE*PAGE_TABLE_SIZE*PAGESIZE),%a2
2224	jra	L(mmu_mapnext_030)
22251:
2226	/* Calculate the offset into the pointer table
2227	 */
2228	movel	%a3,%d0
2229	moveq	#PTR_INDEX_SHIFT,%d1
2230	lsrl	%d1,%d0
2231	andl	#PTR_TABLE_SIZE-1,%d0
2232	mmu_get_ptr_table_entry		%a0,%d0
2233
2234	/* The pointer table entry must not no be busy
2235	 */
2236	tstl	%a0@
2237	jne	L(mmu_map_error)
2238
2239	/* Do the mapping and advance the pointers
2240	 */
2241	dputs	"early term2"
2242	dputn	%a2
2243	dputn	%a3
2244	dputc	'\n'
2245	movel	%a2,%a0@
2246
2247	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a2
2248	addl	#PAGE_TABLE_SIZE*PAGESIZE,%a3
2249
2250L(mmu_mapnext_030):
2251	/* Ready with mapping?
2252	 */
2253	lea	%a3@(-1),%a0
2254	cmpl	%a0,%a4
2255	jhi	L(mmu_map_030)
2256	jra	L(mmu_map_done)
2257
2258L(mmu_map_error):
2259
2260	dputs	"mmu_map error:"
2261	dputn	%a2
2262	dputn	%a3
2263	dputc	'\n'
2264
2265L(mmu_map_done):
2266
2267func_return	mmu_map
2268
2269/*
2270 *	mmu_fixup
2271 *
2272 *	On the 040 class machines, all pages that are used for the
2273 *	mmu have to be fixed up.
2274 */
2275
2276func_start	mmu_fixup_page_mmu_cache,%d0/%a0
2277
2278	dputs	"mmu_fixup_page_mmu_cache"
2279	dputn	ARG1
2280
2281	/* Calculate the offset into the root table
2282	 */
2283	movel	ARG1,%d0
2284	moveq	#ROOT_INDEX_SHIFT,%d1
2285	lsrl	%d1,%d0
2286	mmu_get_root_table_entry	%d0
2287
2288	/* Calculate the offset into the pointer table
2289	 */
2290	movel	ARG1,%d0
2291	moveq	#PTR_INDEX_SHIFT,%d1
2292	lsrl	%d1,%d0
2293	andl	#PTR_TABLE_SIZE-1,%d0
2294	mmu_get_ptr_table_entry		%a0,%d0
2295
2296	/* Calculate the offset into the page table
2297	 */
2298	movel	ARG1,%d0
2299	moveq	#PAGE_INDEX_SHIFT,%d1
2300	lsrl	%d1,%d0
2301	andl	#PAGE_TABLE_SIZE-1,%d0
2302	mmu_get_page_table_entry	%a0,%d0
2303
2304	movel	%a0@,%d0
2305	andil	#_CACHEMASK040,%d0
2306	orl	%pc@(m68k_pgtable_cachemode),%d0
2307	movel	%d0,%a0@
2308
2309	dputc	'\n'
2310
2311func_return	mmu_fixup_page_mmu_cache
2312
2313/*
2314 *	mmu_temp_map
2315 *
2316 *	create a temporary mapping to enable the mmu,
2317 *	this we don't need any transparation translation tricks.
2318 */
2319
2320func_start	mmu_temp_map,%d0/%d1/%a0/%a1
2321
2322	dputs	"mmu_temp_map"
2323	dputn	ARG1
2324	dputn	ARG2
2325	dputc	'\n'
2326
2327	lea	%pc@(L(temp_mmap_mem)),%a1
2328
2329	/* Calculate the offset in the root table
2330	 */
2331	movel	ARG2,%d0
2332	moveq	#ROOT_INDEX_SHIFT,%d1
2333	lsrl	%d1,%d0
2334	mmu_get_root_table_entry	%d0
2335
2336	/* Check if the table is temporary allocated, so we have to reuse it
2337	 */
2338	movel	%a0@,%d0
2339	cmpl	%pc@(L(memory_start)),%d0
2340	jcc	1f
2341
2342	/* Temporary allocate a ptr table and insert it into the root table
2343	 */
2344	movel	%a1@,%d0
2345	addl	#PTR_TABLE_SIZE*4,%a1@
2346	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2347	movel	%d0,%a0@
2348	dputs	" (new)"
23491:
2350	dputn	%d0
2351	/* Mask the root table entry for the ptr table
2352	 */
2353	andw	#-ROOT_TABLE_SIZE,%d0
2354	movel	%d0,%a0
2355
2356	/* Calculate the offset into the pointer table
2357	 */
2358	movel	ARG2,%d0
2359	moveq	#PTR_INDEX_SHIFT,%d1
2360	lsrl	%d1,%d0
2361	andl	#PTR_TABLE_SIZE-1,%d0
2362	lea	%a0@(%d0*4),%a0
2363	dputn	%a0
2364
2365	/* Check if a temporary page table is already allocated
2366	 */
2367	movel	%a0@,%d0
2368	jne	1f
2369
2370	/* Temporary allocate a page table and insert it into the ptr table
2371	 */
2372	movel	%a1@,%d0
2373	/* The 512 should be PAGE_TABLE_SIZE*4, but that violates the
2374	   alignment restriction for pointer tables on the '0[46]0.  */
2375	addl	#512,%a1@
2376	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2377	movel	%d0,%a0@
2378	dputs	" (new)"
23791:
2380	dputn	%d0
2381	/* Mask the ptr table entry for the page table
2382	 */
2383	andw	#-PTR_TABLE_SIZE,%d0
2384	movel	%d0,%a0
2385
2386	/* Calculate the offset into the page table
2387	 */
2388	movel	ARG2,%d0
2389	moveq	#PAGE_INDEX_SHIFT,%d1
2390	lsrl	%d1,%d0
2391	andl	#PAGE_TABLE_SIZE-1,%d0
2392	lea	%a0@(%d0*4),%a0
2393	dputn	%a0
2394
2395	/* Insert the address into the page table
2396	 */
2397	movel	ARG1,%d0
2398	andw	#-PAGESIZE,%d0
2399	orw	#_PAGE_PRESENT+_PAGE_ACCESSED+_PAGE_DIRTY,%d0
2400	movel	%d0,%a0@
2401	dputn	%d0
2402
2403	dputc	'\n'
2404
2405func_return	mmu_temp_map
2406
2407func_start	mmu_engage,%d0-%d2/%a0-%a3
2408
2409	moveq	#ROOT_TABLE_SIZE-1,%d0
2410	/* Temporarily use a different root table.  */
2411	lea	%pc@(L(kernel_pgdir_ptr)),%a0
2412	movel	%a0@,%a2
2413	movel	%pc@(L(memory_start)),%a1
2414	movel	%a1,%a0@
2415	movel	%a2,%a0
24161:
2417	movel	%a0@+,%a1@+
2418	dbra	%d0,1b
2419
2420	lea	%pc@(L(temp_mmap_mem)),%a0
2421	movel	%a1,%a0@
2422
2423	movew	#PAGESIZE-1,%d0
24241:
2425	clrl	%a1@+
2426	dbra	%d0,1b
2427
2428	lea	%pc@(1b),%a0
2429	movel	#1b,%a1
2430	/* Skip temp mappings if phys == virt */
2431	cmpl	%a0,%a1
2432	jeq	1f
2433
2434	mmu_temp_map	%a0,%a0
2435	mmu_temp_map	%a0,%a1
2436
2437	addw	#PAGESIZE,%a0
2438	addw	#PAGESIZE,%a1
2439	mmu_temp_map	%a0,%a0
2440	mmu_temp_map	%a0,%a1
24411:
2442	movel	%pc@(L(memory_start)),%a3
2443	movel	%pc@(L(phys_kernel_start)),%d2
2444
2445	is_not_040_or_060(L(mmu_engage_030))
2446
2447L(mmu_engage_040):
2448	.chip	68040
2449	nop
2450	cinva	%bc
2451	nop
2452	pflusha
2453	nop
2454	movec	%a3,%srp
2455	movel	#TC_ENABLE+TC_PAGE4K,%d0
2456	movec	%d0,%tc		/* enable the MMU */
2457	jmp	1f:l
24581:	nop
2459	movec	%a2,%srp
2460	nop
2461	cinva	%bc
2462	nop
2463	pflusha
2464	.chip	68k
2465	jra	L(mmu_engage_cleanup)
2466
2467L(mmu_engage_030_temp):
2468	.space	12
2469L(mmu_engage_030):
2470	.chip	68030
2471	lea	%pc@(L(mmu_engage_030_temp)),%a0
2472	movel	#0x80000002,%a0@
2473	movel	%a3,%a0@(4)
2474	movel	#0x0808,%d0
2475	movec	%d0,%cacr
2476	pmove	%a0@,%srp
2477	pflusha
2478	/*
2479	 * enable,super root enable,4096 byte pages,7 bit root index,
2480	 * 7 bit pointer index, 6 bit page table index.
2481	 */
2482	movel	#0x82c07760,%a0@(8)
2483	pmove	%a0@(8),%tc	/* enable the MMU */
2484	jmp	1f:l
24851:	movel	%a2,%a0@(4)
2486	movel	#0x0808,%d0
2487	movec	%d0,%cacr
2488	pmove	%a0@,%srp
2489	pflusha
2490	.chip	68k
2491
2492L(mmu_engage_cleanup):
2493	subl	#PAGE_OFFSET,%d2
2494	subl	%d2,%a2
2495	movel	%a2,L(kernel_pgdir_ptr)
2496	subl	%d2,%fp
2497	subl	%d2,%sp
2498	subl	%d2,ARG0
2499
2500func_return	mmu_engage
2501
2502func_start	mmu_get_root_table_entry,%d0/%a1
2503
2504#if 0
2505	dputs	"mmu_get_root_table_entry:"
2506	dputn	ARG1
2507	dputs	" ="
2508#endif
2509
2510	movel	%pc@(L(kernel_pgdir_ptr)),%a0
2511	tstl	%a0
2512	jne	2f
2513
2514	dputs	"\nmmu_init:"
2515
2516	/* Find the start of free memory, get_bi_record does this for us,
2517	 * as the bootinfo structure is located directly behind the kernel
2518	 * and and we simply search for the last entry.
2519	 */
2520	get_bi_record	BI_LAST
2521	addw	#PAGESIZE-1,%a0
2522	movel	%a0,%d0
2523	andw	#-PAGESIZE,%d0
2524
2525	dputn	%d0
2526
2527	lea	%pc@(L(memory_start)),%a0
2528	movel	%d0,%a0@
2529	lea	%pc@(L(kernel_end)),%a0
2530	movel	%d0,%a0@
2531
2532	/* we have to return the first page at _stext since the init code
2533	 * in mm/init.c simply expects kernel_pg_dir there, the rest of
2534	 * page is used for further ptr tables in get_ptr_table.
2535	 */
2536	lea	%pc@(_stext),%a0
2537	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2538	movel	%a0,%a1@
2539	addl	#ROOT_TABLE_SIZE*4,%a1@
2540
2541	lea	%pc@(L(mmu_num_pointer_tables)),%a1
2542	addql	#1,%a1@
2543
2544	/* clear the page
2545	 */
2546	movel	%a0,%a1
2547	movew	#PAGESIZE/4-1,%d0
25481:
2549	clrl	%a1@+
2550	dbra	%d0,1b
2551
2552	lea	%pc@(L(kernel_pgdir_ptr)),%a1
2553	movel	%a0,%a1@
2554
2555	dputn	%a0
2556	dputc	'\n'
25572:
2558	movel	ARG1,%d0
2559	lea	%a0@(%d0*4),%a0
2560
2561#if 0
2562	dputn	%a0
2563	dputc	'\n'
2564#endif
2565
2566func_return	mmu_get_root_table_entry
2567
2568
2569
2570func_start	mmu_get_ptr_table_entry,%d0/%a1
2571
2572#if 0
2573	dputs	"mmu_get_ptr_table_entry:"
2574	dputn	ARG1
2575	dputn	ARG2
2576	dputs	" ="
2577#endif
2578
2579	movel	ARG1,%a0
2580	movel	%a0@,%d0
2581	jne	2f
2582
2583	/* Keep track of the number of pointer tables we use
2584	 */
2585	dputs	"\nmmu_get_new_ptr_table:"
2586	lea	%pc@(L(mmu_num_pointer_tables)),%a0
2587	movel	%a0@,%d0
2588	addql	#1,%a0@
2589
2590	/* See if there is a free pointer table in our cache of pointer tables
2591	 */
2592	lea	%pc@(L(mmu_cached_pointer_tables)),%a1
2593	andw	#7,%d0
2594	jne	1f
2595
2596	/* Get a new pointer table page from above the kernel memory
2597	 */
2598	get_new_page
2599	movel	%a0,%a1@
26001:
2601	/* There is an unused pointer table in our cache... use it
2602	 */
2603	movel	%a1@,%d0
2604	addl	#PTR_TABLE_SIZE*4,%a1@
2605
2606	dputn	%d0
2607	dputc	'\n'
2608
2609	/* Insert the new pointer table into the root table
2610	 */
2611	movel	ARG1,%a0
2612	orw	#_PAGE_TABLE+_PAGE_ACCESSED,%d0
2613	movel	%d0,%a0@
26142:
2615	/* Extract the pointer table entry
2616	 */
2617	andw	#-PTR_TABLE_SIZE,%d0
2618	movel	%d0,%a0
2619	movel	ARG2,%d0
2620	lea	%a0@(%d0*4),%a0
2621
2622#if 0
2623	dputn	%a0
2624	dputc	'\n'
2625#endif
2626
2627func_return	mmu_get_ptr_table_entry
2628
2629
2630func_start	mmu_get_page_table_entry,%d0/%a1
2631
2632#if 0
2633	dputs	"mmu_get_page_table_entry:"
2634	dputn	ARG1
2635	dputn	ARG2
2636	dputs	" ="
2637#endif
2638
2639	movel	ARG1,%a0
2640	movel	%a0@,%d0
2641	jne	2f
2642
2643	/* If the page table entry doesn't exist, we allocate a complete new
2644	 * page and use it as one continues big page table which can cover
2645	 * 4MB of memory, nearly almost all mappings have that alignment.
2646	 */
2647	get_new_page
2648	addw	#_PAGE_TABLE+_PAGE_ACCESSED,%a0
2649
2650	/* align pointer table entry for a page of page tables
2651	 */
2652	movel	ARG1,%d0
2653	andw	#-(PAGESIZE/PAGE_TABLE_SIZE),%d0
2654	movel	%d0,%a1
2655
2656	/* Insert the page tables into the pointer entries
2657	 */
2658	moveq	#PAGESIZE/PAGE_TABLE_SIZE/4-1,%d0
26591:
2660	movel	%a0,%a1@+
2661	lea	%a0@(PAGE_TABLE_SIZE*4),%a0
2662	dbra	%d0,1b
2663
2664	/* Now we can get the initialized pointer table entry
2665	 */
2666	movel	ARG1,%a0
2667	movel	%a0@,%d0
26682:
2669	/* Extract the page table entry
2670	 */
2671	andw	#-PAGE_TABLE_SIZE,%d0
2672	movel	%d0,%a0
2673	movel	ARG2,%d0
2674	lea	%a0@(%d0*4),%a0
2675
2676#if 0
2677	dputn	%a0
2678	dputc	'\n'
2679#endif
2680
2681func_return	mmu_get_page_table_entry
2682
2683/*
2684 *	get_new_page
2685 *
2686 *	Return a new page from the memory start and clear it.
2687 */
2688func_start	get_new_page,%d0/%a1
2689
2690	dputs	"\nget_new_page:"
2691
2692	/* allocate the page and adjust memory_start
2693	 */
2694	lea	%pc@(L(memory_start)),%a0
2695	movel	%a0@,%a1
2696	addl	#PAGESIZE,%a0@
2697
2698	/* clear the new page
2699	 */
2700	movel	%a1,%a0
2701	movew	#PAGESIZE/4-1,%d0
27021:
2703	clrl	%a1@+
2704	dbra	%d0,1b
2705
2706	dputn	%a0
2707	dputc	'\n'
2708
2709func_return	get_new_page
2710
2711
2712
2713/*
2714 * Debug output support
2715 * Atarians have a choice between the parallel port, the serial port
2716 * from the MFP or a serial port of the SCC
2717 */
2718
2719#ifdef CONFIG_MAC
2720/* You may define either or both of these. */
2721#define MAC_USE_SCC_A /* Modem port */
2722#define MAC_USE_SCC_B /* Printer port */
2723
2724#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2725L(scc_initable_mac):
2726	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2727	.byte	3,0xc0		/* receiver: 8 bpc */
2728	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2729	.byte	10,0		/* NRZ */
2730	.byte	11,0x50		/* use baud rate generator */
2731	.byte	12,1,13,0	/* 38400 baud */
2732	.byte	14,1		/* Baud rate generator enable */
2733	.byte	3,0xc1		/* enable receiver */
2734	.byte	5,0xea		/* enable transmitter */
2735	.byte	-1
2736	.even
2737#endif
2738#endif /* CONFIG_MAC */
2739
2740#ifdef CONFIG_ATARI
2741/* #define USE_PRINTER */
2742/* #define USE_SCC_B */
2743/* #define USE_SCC_A */
2744#define USE_MFP
2745
2746#if defined(USE_SCC_A) || defined(USE_SCC_B)
2747#define USE_SCC
2748/* Initialisation table for SCC */
2749L(scc_initable):
2750	.byte	9,12		/* Reset */
2751	.byte	4,0x44		/* x16, 1 stopbit, no parity */
2752	.byte	3,0xc0		/* receiver: 8 bpc */
2753	.byte	5,0xe2		/* transmitter: 8 bpc, assert dtr/rts */
2754	.byte	9,0		/* no interrupts */
2755	.byte	10,0		/* NRZ */
2756	.byte	11,0x50		/* use baud rate generator */
2757	.byte	12,24,13,0	/* 9600 baud */
2758	.byte	14,2,14,3	/* use master clock for BRG, enable */
2759	.byte	3,0xc1		/* enable receiver */
2760	.byte	5,0xea		/* enable transmitter */
2761	.byte	-1
2762	.even
2763#endif
2764
2765#ifdef USE_PRINTER
2766
2767LPSG_SELECT	= 0xff8800
2768LPSG_READ	= 0xff8800
2769LPSG_WRITE	= 0xff8802
2770LPSG_IO_A	= 14
2771LPSG_IO_B	= 15
2772LPSG_CONTROL	= 7
2773LSTMFP_GPIP	= 0xfffa01
2774LSTMFP_DDR	= 0xfffa05
2775LSTMFP_IERB	= 0xfffa09
2776
2777#elif defined(USE_SCC_B)
2778
2779LSCC_CTRL	= 0xff8c85
2780LSCC_DATA	= 0xff8c87
2781
2782#elif defined(USE_SCC_A)
2783
2784LSCC_CTRL	= 0xff8c81
2785LSCC_DATA	= 0xff8c83
2786
2787#elif defined(USE_MFP)
2788
2789LMFP_UCR     = 0xfffa29
2790LMFP_TDCDR   = 0xfffa1d
2791LMFP_TDDR    = 0xfffa25
2792LMFP_TSR     = 0xfffa2d
2793LMFP_UDR     = 0xfffa2f
2794
2795#endif
2796#endif	/* CONFIG_ATARI */
2797
2798/*
2799 * Serial port output support.
2800 */
2801
2802/*
2803 * Initialize serial port hardware for 9600/8/1
2804 */
2805func_start	serial_init,%d0/%d1/%a0/%a1
2806	/*
2807	 *	Some of the register usage that follows
2808	 *	CONFIG_AMIGA
2809	 *		a0 = pointer to boot info record
2810	 *		d0 = boot info offset
2811	 *	CONFIG_ATARI
2812	 *		a0 = address of SCC
2813	 *		a1 = Liobase address/address of scc_initable
2814	 *		d0 = init data for serial port
2815	 *	CONFIG_MAC
2816	 *		a0 = address of SCC
2817	 *		a1 = address of scc_initable_mac
2818	 *		d0 = init data for serial port
2819	 */
2820
2821#ifdef CONFIG_AMIGA
2822#define SERIAL_DTR	7
2823#define SERIAL_CNTRL	CIABBASE+C_PRA
2824
2825	is_not_amiga(1f)
2826	lea	%pc@(L(custom)),%a0
2827	movel	#-ZTWOBASE,%a0@
2828	bclr	#SERIAL_DTR,SERIAL_CNTRL-ZTWOBASE
2829	get_bi_record	BI_AMIGA_SERPER
2830	movew	%a0@,CUSTOMBASE+C_SERPER-ZTWOBASE
2831|	movew	#61,CUSTOMBASE+C_SERPER-ZTWOBASE
28321:
2833#endif
2834
2835#ifdef CONFIG_ATARI
2836	is_not_atari(4f)
2837	movel	%pc@(L(iobase)),%a1
2838#if defined(USE_PRINTER)
2839	bclr	#0,%a1@(LSTMFP_IERB)
2840	bclr	#0,%a1@(LSTMFP_DDR)
2841	moveb	#LPSG_CONTROL,%a1@(LPSG_SELECT)
2842	moveb	#0xff,%a1@(LPSG_WRITE)
2843	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
2844	clrb	%a1@(LPSG_WRITE)
2845	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
2846	moveb	%a1@(LPSG_READ),%d0
2847	bset	#5,%d0
2848	moveb	%d0,%a1@(LPSG_WRITE)
2849#elif defined(USE_SCC)
2850	lea	%a1@(LSCC_CTRL),%a0
2851	lea	%pc@(L(scc_initable)),%a1
28522:	moveb	%a1@+,%d0
2853	jmi	3f
2854	moveb	%d0,%a0@
2855	moveb	%a1@+,%a0@
2856	jra	2b
28573:	clrb	%a0@
2858#elif defined(USE_MFP)
2859	bclr	#1,%a1@(LMFP_TSR)
2860	moveb   #0x88,%a1@(LMFP_UCR)
2861	andb	#0x70,%a1@(LMFP_TDCDR)
2862	moveb   #2,%a1@(LMFP_TDDR)
2863	orb	#1,%a1@(LMFP_TDCDR)
2864	bset	#1,%a1@(LMFP_TSR)
2865#endif
2866	jra	L(serial_init_done)
28674:
2868#endif
2869
2870#ifdef CONFIG_MAC
2871	is_not_mac(L(serial_init_not_mac))
2872#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2873#define mac_scc_cha_b_ctrl_offset	0x0
2874#define mac_scc_cha_a_ctrl_offset	0x2
2875#define mac_scc_cha_b_data_offset	0x4
2876#define mac_scc_cha_a_data_offset	0x6
2877	movel	%pc@(L(mac_sccbase)),%a0
2878	/* Reset SCC register pointer */
2879	moveb	%a0@(mac_scc_cha_a_ctrl_offset),%d0
2880	/* Reset SCC device: write register pointer then register value */
2881	moveb	#9,%a0@(mac_scc_cha_a_ctrl_offset)
2882	moveb	#0xc0,%a0@(mac_scc_cha_a_ctrl_offset)
2883	/* Wait for 5 PCLK cycles, which is about 68 CPU cycles */
2884	/* 5 / 3.6864 MHz = approx. 1.36 us = 68 / 50 MHz */
2885	movel	#35,%d0
28865:
2887	subq	#1,%d0
2888	jne	5b
2889#endif
2890#ifdef MAC_USE_SCC_A
2891	/* Initialize channel A */
2892	lea	%pc@(L(scc_initable_mac)),%a1
28935:	moveb	%a1@+,%d0
2894	jmi	6f
2895	moveb	%d0,%a0@(mac_scc_cha_a_ctrl_offset)
2896	moveb	%a1@+,%a0@(mac_scc_cha_a_ctrl_offset)
2897	jra	5b
28986:
2899#endif	/* MAC_USE_SCC_A */
2900#ifdef MAC_USE_SCC_B
2901	/* Initialize channel B */
2902	lea	%pc@(L(scc_initable_mac)),%a1
29037:	moveb	%a1@+,%d0
2904	jmi	8f
2905	moveb	%d0,%a0@(mac_scc_cha_b_ctrl_offset)
2906	moveb	%a1@+,%a0@(mac_scc_cha_b_ctrl_offset)
2907	jra	7b
29088:
2909#endif	/* MAC_USE_SCC_B */
2910	jra	L(serial_init_done)
2911L(serial_init_not_mac):
2912#endif	/* CONFIG_MAC */
2913
2914#ifdef CONFIG_Q40
2915	is_not_q40(2f)
2916/* debug output goes into SRAM, so we don't do it unless requested
2917   - check for '%LX$' signature in SRAM   */
2918	lea	%pc@(q40_mem_cptr),%a1
2919	move.l	#0xff020010,%a1@  /* must be inited - also used by debug=mem */
2920	move.l	#0xff020000,%a1
2921	cmp.b	#'%',%a1@
2922	bne	2f	/*nodbg*/
2923	addq.w	#4,%a1
2924	cmp.b	#'L',%a1@
2925	bne	2f	/*nodbg*/
2926	addq.w	#4,%a1
2927	cmp.b	#'X',%a1@
2928	bne	2f	/*nodbg*/
2929	addq.w	#4,%a1
2930	cmp.b	#'$',%a1@
2931	bne	2f	/*nodbg*/
2932	/* signature OK */
2933	lea	%pc@(L(q40_do_debug)),%a1
2934	tas	%a1@
2935/*nodbg: q40_do_debug is 0 by default*/
29362:
2937#endif
2938
2939#ifdef CONFIG_MVME16x
2940	is_not_mvme16x(L(serial_init_not_mvme16x))
2941	moveb	#0x10,M167_PCSCCMICR
2942	moveb	#0x10,M167_PCSCCTICR
2943	moveb	#0x10,M167_PCSCCRICR
2944	jra	L(serial_init_done)
2945L(serial_init_not_mvme16x):
2946#endif
2947
2948#ifdef CONFIG_APOLLO
2949/* We count on the PROM initializing SIO1 */
2950#endif
2951
2952#ifdef CONFIG_HP300
2953/* We count on the boot loader initialising the UART */
2954#endif
2955
2956L(serial_init_done):
2957func_return	serial_init
2958
2959/*
2960 * Output character on serial port.
2961 */
2962func_start	serial_putc,%d0/%d1/%a0/%a1
2963
2964	movel	ARG1,%d0
2965	cmpib	#'\n',%d0
2966	jbne	1f
2967
2968	/* A little safe recursion is good for the soul */
2969	serial_putc	#'\r'
29701:
2971
2972#ifdef CONFIG_AMIGA
2973	is_not_amiga(2f)
2974	andw	#0x00ff,%d0
2975	oriw	#0x0100,%d0
2976	movel	%pc@(L(custom)),%a0
2977	movew	%d0,%a0@(CUSTOMBASE+C_SERDAT)
29781:	movew	%a0@(CUSTOMBASE+C_SERDATR),%d0
2979	andw	#0x2000,%d0
2980	jeq	1b
2981	jra	L(serial_putc_done)
29822:
2983#endif
2984
2985#ifdef CONFIG_MAC
2986	is_not_mac(5f)
2987#if defined(MAC_USE_SCC_A) || defined(MAC_USE_SCC_B)
2988	movel	%pc@(L(mac_sccbase)),%a1
2989#endif
2990#ifdef MAC_USE_SCC_A
29913:	btst	#2,%a1@(mac_scc_cha_a_ctrl_offset)
2992	jeq	3b
2993	moveb	%d0,%a1@(mac_scc_cha_a_data_offset)
2994#endif	/* MAC_USE_SCC_A */
2995#ifdef MAC_USE_SCC_B
29964:	btst	#2,%a1@(mac_scc_cha_b_ctrl_offset)
2997	jeq	4b
2998	moveb	%d0,%a1@(mac_scc_cha_b_data_offset)
2999#endif	/* MAC_USE_SCC_B */
3000	jra	L(serial_putc_done)
30015:
3002#endif	/* CONFIG_MAC */
3003
3004#ifdef CONFIG_ATARI
3005	is_not_atari(4f)
3006	movel	%pc@(L(iobase)),%a1
3007#if defined(USE_PRINTER)
30083:	btst	#0,%a1@(LSTMFP_GPIP)
3009	jne	3b
3010	moveb	#LPSG_IO_B,%a1@(LPSG_SELECT)
3011	moveb	%d0,%a1@(LPSG_WRITE)
3012	moveb	#LPSG_IO_A,%a1@(LPSG_SELECT)
3013	moveb	%a1@(LPSG_READ),%d0
3014	bclr	#5,%d0
3015	moveb	%d0,%a1@(LPSG_WRITE)
3016	nop
3017	nop
3018	bset	#5,%d0
3019	moveb	%d0,%a1@(LPSG_WRITE)
3020#elif defined(USE_SCC)
30213:	btst	#2,%a1@(LSCC_CTRL)
3022	jeq	3b
3023	moveb	%d0,%a1@(LSCC_DATA)
3024#elif defined(USE_MFP)
30253:	btst	#7,%a1@(LMFP_TSR)
3026	jeq	3b
3027	moveb	%d0,%a1@(LMFP_UDR)
3028#endif
3029	jra	L(serial_putc_done)
30304:
3031#endif	/* CONFIG_ATARI */
3032
3033#ifdef CONFIG_MVME147
3034	is_not_mvme147(2f)
30351:	btst	#2,M147_SCC_CTRL_A
3036	jeq	1b
3037	moveb	%d0,M147_SCC_DATA_A
3038	jbra	L(serial_putc_done)
30392:
3040#endif
3041
3042#ifdef CONFIG_MVME16x
3043	is_not_mvme16x(2f)
3044	/*
3045	 * If the loader gave us a board type then we can use that to
3046	 * select an appropriate output routine; otherwise we just use
3047	 * the Bug code.  If we have to use the Bug that means the Bug
3048	 * workspace has to be valid, which means the Bug has to use
3049	 * the SRAM, which is non-standard.
3050	 */
3051	moveml	%d0-%d7/%a2-%a6,%sp@-
3052	movel	vme_brdtype,%d1
3053	jeq	1f			| No tag - use the Bug
3054	cmpi	#VME_TYPE_MVME162,%d1
3055	jeq	6f
3056	cmpi	#VME_TYPE_MVME172,%d1
3057	jne	5f
3058	/* 162/172; it's an SCC */
30596:	btst	#2,M162_SCC_CTRL_A
3060	nop
3061	nop
3062	nop
3063	jeq	6b
3064	moveb	#8,M162_SCC_CTRL_A
3065	nop
3066	nop
3067	nop
3068	moveb	%d0,M162_SCC_CTRL_A
3069	jra	3f
30705:
3071	/* 166/167/177; it's a CD2401 */
3072	moveb	#0,M167_CYCAR
3073	moveb	M167_CYIER,%d2
3074	moveb	#0x02,M167_CYIER
30757:
3076	btst	#5,M167_PCSCCTICR
3077	jeq	7b
3078	moveb	M167_PCTPIACKR,%d1
3079	moveb	M167_CYLICR,%d1
3080	jeq	8f
3081	moveb	#0x08,M167_CYTEOIR
3082	jra	7b
30838:
3084	moveb	%d0,M167_CYTDR
3085	moveb	#0,M167_CYTEOIR
3086	moveb	%d2,M167_CYIER
3087	jra	3f
30881:
3089	moveb	%d0,%sp@-
3090	trap	#15
3091	.word	0x0020	/* TRAP 0x020 */
30923:
3093	moveml	%sp@+,%d0-%d7/%a2-%a6
3094	jbra	L(serial_putc_done)
30952:
3096#endif /* CONFIG_MVME16x */
3097
3098#ifdef CONFIG_BVME6000
3099	is_not_bvme6000(2f)
3100	/*
3101	 * The BVME6000 machine has a serial port ...
3102	 */
31031:	btst	#2,BVME_SCC_CTRL_A
3104	jeq	1b
3105	moveb	%d0,BVME_SCC_DATA_A
3106	jbra	L(serial_putc_done)
31072:
3108#endif
3109
3110#ifdef CONFIG_SUN3X
3111	is_not_sun3x(2f)
3112	movel	%d0,-(%sp)
3113	movel	0xFEFE0018,%a1
3114	jbsr	(%a1)
3115	addq	#4,%sp
3116	jbra	L(serial_putc_done)
31172:
3118#endif
3119
3120#ifdef CONFIG_Q40
3121	is_not_q40(2f)
3122	tst.l	%pc@(L(q40_do_debug))	/* only debug if requested */
3123	beq	2f
3124	lea	%pc@(q40_mem_cptr),%a1
3125	move.l	%a1@,%a0
3126	move.b	%d0,%a0@
3127	addq.l	#4,%a0
3128	move.l	%a0,%a1@
3129	jbra    L(serial_putc_done)
31302:
3131#endif
3132
3133#ifdef CONFIG_APOLLO
3134	is_not_apollo(2f)
3135	movl    %pc@(L(iobase)),%a1
3136	moveb	%d0,%a1@(LTHRB0)
31371:      moveb   %a1@(LSRB0),%d0
3138	andb	#0x4,%d0
3139	beq	1b
3140	jbra	L(serial_putc_done)
31412:
3142#endif
3143
3144#ifdef CONFIG_HP300
3145	is_not_hp300(3f)
3146	movl    %pc@(L(iobase)),%a1
3147	addl	%pc@(L(uartbase)),%a1
3148	movel	%pc@(L(uart_scode)),%d1	/* Check the scode */
3149	jmi	3f			/* Unset? Exit */
3150	cmpi	#256,%d1		/* APCI scode? */
3151	jeq	2f
31521:      moveb   %a1@(DCALSR),%d1	/* Output to DCA */
3153	andb	#0x20,%d1
3154	beq	1b
3155	moveb	%d0,%a1@(DCADATA)
3156	jbra	L(serial_putc_done)
31572:	moveb	%a1@(APCILSR),%d1	/* Output to APCI */
3158	andb	#0x20,%d1
3159	beq	2b
3160	moveb	%d0,%a1@(APCIDATA)
3161	jbra	L(serial_putc_done)
31623:
3163#endif
3164
3165L(serial_putc_done):
3166func_return	serial_putc
3167
3168/*
3169 * Output a string.
3170 */
3171func_start	puts,%d0/%a0
3172
3173	movel	ARG1,%a0
3174	jra	2f
31751:
3176#ifdef CONSOLE_DEBUG
3177	console_putc	%d0
3178#endif
3179#ifdef SERIAL_DEBUG
3180	serial_putc	%d0
3181#endif
31822:	moveb	%a0@+,%d0
3183	jne	1b
3184
3185func_return	puts
3186
3187/*
3188 * Output number in hex notation.
3189 */
3190
3191func_start	putn,%d0-%d2
3192
3193	putc	' '
3194
3195	movel	ARG1,%d0
3196	moveq	#7,%d1
31971:	roll	#4,%d0
3198	move	%d0,%d2
3199	andb	#0x0f,%d2
3200	addb	#'0',%d2
3201	cmpb	#'9',%d2
3202	jls	2f
3203	addb	#'A'-('9'+1),%d2
32042:
3205#ifdef CONSOLE_DEBUG
3206	console_putc	%d2
3207#endif
3208#ifdef SERIAL_DEBUG
3209	serial_putc	%d2
3210#endif
3211	dbra	%d1,1b
3212
3213func_return	putn
3214
3215#ifdef CONFIG_EARLY_PRINTK
3216/*
3217 *	This routine takes its parameters on the stack.  It then
3218 *	turns around and calls the internal routines.  This routine
3219 *	is used by the boot console.
3220 *
3221 *	The calling parameters are:
3222 *		void debug_cons_nputs(const char *str, unsigned length)
3223 *
3224 *	This routine does NOT understand variable arguments only
3225 *	simple strings!
3226 */
3227ENTRY(debug_cons_nputs)
3228	moveml	%d0/%d1/%a0,%sp@-
3229	movew	%sr,%sp@-
3230	ori	#0x0700,%sr
3231	movel	%sp@(18),%a0		/* fetch parameter */
3232	movel	%sp@(22),%d1		/* fetch parameter */
3233	jra	2f
32341:
3235#ifdef CONSOLE_DEBUG
3236	console_putc	%d0
3237#endif
3238#ifdef SERIAL_DEBUG
3239	serial_putc	%d0
3240#endif
3241	subq	#1,%d1
32422:	jeq	3f
3243	moveb	%a0@+,%d0
3244	jne	1b
32453:
3246	movew	%sp@+,%sr
3247	moveml	%sp@+,%d0/%d1/%a0
3248	rts
3249#endif /* CONFIG_EARLY_PRINTK */
3250
3251#if defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3252func_start	set_leds,%d0/%a0
3253	movel	ARG1,%d0
3254#ifdef CONFIG_HP300
3255	is_not_hp300(1f)
3256	movel	%pc@(L(iobase)),%a0
3257	moveb	%d0,%a0@(0x1ffff)
3258	jra	2f
3259#endif
32601:
3261#ifdef CONFIG_APOLLO
3262	movel   %pc@(L(iobase)),%a0
3263	lsll    #8,%d0
3264	eorw    #0xff00,%d0
3265	moveb	%d0,%a0@(LCPUCTRL)
3266#endif
32672:
3268func_return	set_leds
3269#endif
3270
3271#ifdef CONSOLE_DEBUG
3272/*
3273 *	For continuity, see the data alignment
3274 *	to which this structure is tied.
3275 */
3276#define Lconsole_struct_cur_column	0
3277#define Lconsole_struct_cur_row		4
3278#define Lconsole_struct_num_columns	8
3279#define Lconsole_struct_num_rows	12
3280#define Lconsole_struct_left_edge	16
3281
3282func_start	console_init,%a0-%a4/%d0-%d7
3283	/*
3284	 *	Some of the register usage that follows
3285	 *		a0 = pointer to boot_info
3286	 *		a1 = pointer to screen
3287	 *		a2 = pointer to console_globals
3288	 *		d3 = pixel width of screen
3289	 *		d4 = pixel height of screen
3290	 *		(d3,d4) ~= (x,y) of a point just below
3291	 *			and to the right of the screen
3292	 *			NOT on the screen!
3293	 *		d5 = number of bytes per scan line
3294	 *		d6 = number of bytes on the entire screen
3295	 */
3296
3297	lea	%pc@(L(console_globals)),%a2
3298	movel	%pc@(L(mac_videobase)),%a1
3299	movel	%pc@(L(mac_rowbytes)),%d5
3300	movel	%pc@(L(mac_dimensions)),%d3	/* -> low byte */
3301	movel	%d3,%d4
3302	swap	%d4		/* -> high byte */
3303	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3304	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3305
3306	movel	%d5,%d6
3307|	subl	#20,%d6
3308	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3309	divul	#8,%d6		/* we'll clear 8 bytes at a time */
3310	moveq	#-1,%d0		/* Mac_black */
3311	subq	#1,%d6
3312
3313L(console_clear_loop):
3314	movel	%d0,%a1@+
3315	movel	%d0,%a1@+
3316	dbra	%d6,L(console_clear_loop)
3317
3318	/* Calculate font size */
3319
3320#if   defined(FONT_8x8) && defined(CONFIG_FONT_8x8)
3321	lea	%pc@(font_vga_8x8),%a0
3322#elif defined(FONT_8x16) && defined(CONFIG_FONT_8x16)
3323	lea	%pc@(font_vga_8x16),%a0
3324#elif defined(FONT_6x11) && defined(CONFIG_FONT_6x11)
3325	lea	%pc@(font_vga_6x11),%a0
3326#elif defined(CONFIG_FONT_8x8) /* default */
3327	lea	%pc@(font_vga_8x8),%a0
3328#else /* no compiled-in font */
3329	lea	0,%a0
3330#endif
3331
3332	/*
3333	 *	At this point we make a shift in register usage
3334	 *	a1 = address of console_font pointer
3335	 */
3336	lea	%pc@(L(console_font)),%a1
3337	movel	%a0,%a1@	/* store pointer to struct fbcon_font_desc in console_font */
3338	tstl	%a0
3339	jeq	1f
3340	lea	%pc@(L(console_font_data)),%a4
3341	movel	%a0@(FONT_DESC_DATA),%d0
3342	subl	#L(console_font),%a1
3343	addl	%a1,%d0
3344	movel	%d0,%a4@
3345
3346	/*
3347	 *	Calculate global maxs
3348	 *	Note - we can use either an
3349	 *	8 x 16 or 8 x 8 character font
3350	 *	6 x 11 also supported
3351	 */
3352		/* ASSERT: a0 = contents of Lconsole_font */
3353	movel	%d3,%d0				/* screen width in pixels */
3354	divul	%a0@(FONT_DESC_WIDTH),%d0	/* d0 = max num chars per row */
3355
3356	movel	%d4,%d1				/* screen height in pixels */
3357	divul	%a0@(FONT_DESC_HEIGHT),%d1	/* d1 = max num rows */
3358
3359	movel	%d0,%a2@(Lconsole_struct_num_columns)
3360	movel	%d1,%a2@(Lconsole_struct_num_rows)
3361
3362	/*
3363	 *	Clear the current row and column
3364	 */
3365	clrl	%a2@(Lconsole_struct_cur_column)
3366	clrl	%a2@(Lconsole_struct_cur_row)
3367	clrl	%a2@(Lconsole_struct_left_edge)
3368
3369	/*
3370	 * Initialization is complete
3371	 */
33721:
3373func_return	console_init
3374
3375#ifdef CONFIG_LOGO
3376func_start	console_put_penguin,%a0-%a1/%d0-%d7
3377	/*
3378	 *	Get 'that_penguin' onto the screen in the upper right corner
3379	 *	penguin is 64 x 74 pixels, align against right edge of screen
3380	 */
3381	lea	%pc@(L(mac_dimensions)),%a0
3382	movel	%a0@,%d0
3383	andil	#0xffff,%d0
3384	subil	#64,%d0		/* snug up against the right edge */
3385	clrl	%d1		/* start at the top */
3386	movel	#73,%d7
3387	lea	%pc@(L(that_penguin)),%a1
3388L(console_penguin_row):
3389	movel	#31,%d6
3390L(console_penguin_pixel_pair):
3391	moveb	%a1@,%d2
3392	lsrb	#4,%d2
3393	console_plot_pixel %d0,%d1,%d2
3394	addq	#1,%d0
3395	moveb	%a1@+,%d2
3396	console_plot_pixel %d0,%d1,%d2
3397	addq	#1,%d0
3398	dbra	%d6,L(console_penguin_pixel_pair)
3399
3400	subil	#64,%d0
3401	addq	#1,%d1
3402	dbra	%d7,L(console_penguin_row)
3403
3404func_return	console_put_penguin
3405
3406/* include penguin bitmap */
3407L(that_penguin):
3408#include "../mac/mac_penguin.S"
3409#endif
3410
3411	/*
3412	 * Calculate source and destination addresses
3413	 *	output	a1 = dest
3414	 *		a2 = source
3415	 */
3416
3417func_start	console_scroll,%a0-%a4/%d0-%d7
3418	lea	%pc@(L(mac_videobase)),%a0
3419	movel	%a0@,%a1
3420	movel	%a1,%a2
3421	lea	%pc@(L(mac_rowbytes)),%a0
3422	movel	%a0@,%d5
3423	movel	%pc@(L(console_font)),%a0
3424	tstl	%a0
3425	jeq	1f
3426	mulul	%a0@(FONT_DESC_HEIGHT),%d5	/* account for # scan lines per character */
3427	addal	%d5,%a2
3428
3429	/*
3430	 * Get dimensions
3431	 */
3432	lea	%pc@(L(mac_dimensions)),%a0
3433	movel	%a0@,%d3
3434	movel	%d3,%d4
3435	swap	%d4
3436	andl	#0xffff,%d3	/* d3 = screen width in pixels */
3437	andl	#0xffff,%d4	/* d4 = screen height in pixels */
3438
3439	/*
3440	 * Calculate number of bytes to move
3441	 */
3442	lea	%pc@(L(mac_rowbytes)),%a0
3443	movel	%a0@,%d6
3444	movel	%pc@(L(console_font)),%a0
3445	subl	%a0@(FONT_DESC_HEIGHT),%d4	/* we're not scrolling the top row! */
3446	mulul	%d4,%d6		/* scan line bytes x num scan lines */
3447	divul	#32,%d6		/* we'll move 8 longs at a time */
3448	subq	#1,%d6
3449
3450L(console_scroll_loop):
3451	movel	%a2@+,%a1@+
3452	movel	%a2@+,%a1@+
3453	movel	%a2@+,%a1@+
3454	movel	%a2@+,%a1@+
3455	movel	%a2@+,%a1@+
3456	movel	%a2@+,%a1@+
3457	movel	%a2@+,%a1@+
3458	movel	%a2@+,%a1@+
3459	dbra	%d6,L(console_scroll_loop)
3460
3461	lea	%pc@(L(mac_rowbytes)),%a0
3462	movel	%a0@,%d6
3463	movel	%pc@(L(console_font)),%a0
3464	mulul	%a0@(FONT_DESC_HEIGHT),%d6	/* scan line bytes x font height */
3465	divul	#32,%d6			/* we'll move 8 words at a time */
3466	subq	#1,%d6
3467
3468	moveq	#-1,%d0
3469L(console_scroll_clear_loop):
3470	movel	%d0,%a1@+
3471	movel	%d0,%a1@+
3472	movel	%d0,%a1@+
3473	movel	%d0,%a1@+
3474	movel	%d0,%a1@+
3475	movel	%d0,%a1@+
3476	movel	%d0,%a1@+
3477	movel	%d0,%a1@+
3478	dbra	%d6,L(console_scroll_clear_loop)
3479
34801:
3481func_return	console_scroll
3482
3483
3484func_start	console_putc,%a0/%a1/%d0-%d7
3485
3486	is_not_mac(L(console_exit))
3487	tstl	%pc@(L(console_font))
3488	jeq	L(console_exit)
3489
3490	/* Output character in d7 on console.
3491	 */
3492	movel	ARG1,%d7
3493	cmpib	#'\n',%d7
3494	jbne	1f
3495
3496	/* A little safe recursion is good for the soul */
3497	console_putc	#'\r'
34981:
3499	lea	%pc@(L(console_globals)),%a0
3500
3501	cmpib	#10,%d7
3502	jne	L(console_not_lf)
3503	movel	%a0@(Lconsole_struct_cur_row),%d0
3504	addil	#1,%d0
3505	movel	%d0,%a0@(Lconsole_struct_cur_row)
3506	movel	%a0@(Lconsole_struct_num_rows),%d1
3507	cmpl	%d1,%d0
3508	jcs	1f
3509	subil	#1,%d0
3510	movel	%d0,%a0@(Lconsole_struct_cur_row)
3511	console_scroll
35121:
3513	jra	L(console_exit)
3514
3515L(console_not_lf):
3516	cmpib	#13,%d7
3517	jne	L(console_not_cr)
3518	clrl	%a0@(Lconsole_struct_cur_column)
3519	jra	L(console_exit)
3520
3521L(console_not_cr):
3522	cmpib	#1,%d7
3523	jne	L(console_not_home)
3524	clrl	%a0@(Lconsole_struct_cur_row)
3525	clrl	%a0@(Lconsole_struct_cur_column)
3526	jra	L(console_exit)
3527
3528/*
3529 *	At this point we know that the %d7 character is going to be
3530 *	rendered on the screen.  Register usage is -
3531 *		a0 = pointer to console globals
3532 *		a1 = font data
3533 *		d0 = cursor column
3534 *		d1 = cursor row to draw the character
3535 *		d7 = character number
3536 */
3537L(console_not_home):
3538	movel	%a0@(Lconsole_struct_cur_column),%d0
3539	addql	#1,%a0@(Lconsole_struct_cur_column)
3540	movel	%a0@(Lconsole_struct_num_columns),%d1
3541	cmpl	%d1,%d0
3542	jcs	1f
3543	console_putc	#'\n'	/* recursion is OK! */
35441:
3545	movel	%a0@(Lconsole_struct_cur_row),%d1
3546
3547	/*
3548	 *	At this point we make a shift in register usage
3549	 *	a0 = address of pointer to font data (fbcon_font_desc)
3550	 */
3551	movel	%pc@(L(console_font)),%a0
3552	movel	%pc@(L(console_font_data)),%a1	/* Load fbcon_font_desc.data into a1 */
3553	andl	#0x000000ff,%d7
3554		/* ASSERT: a0 = contents of Lconsole_font */
3555	mulul	%a0@(FONT_DESC_HEIGHT),%d7	/* d7 = index into font data */
3556	addl	%d7,%a1			/* a1 = points to char image */
3557
3558	/*
3559	 *	At this point we make a shift in register usage
3560	 *	d0 = pixel coordinate, x
3561	 *	d1 = pixel coordinate, y
3562	 *	d2 = (bit 0) 1/0 for white/black (!) pixel on screen
3563	 *	d3 = font scan line data (8 pixels)
3564	 *	d6 = count down for the font's pixel width (8)
3565	 *	d7 = count down for the font's pixel count in height
3566	 */
3567		/* ASSERT: a0 = contents of Lconsole_font */
3568	mulul	%a0@(FONT_DESC_WIDTH),%d0
3569	mulul	%a0@(FONT_DESC_HEIGHT),%d1
3570	movel	%a0@(FONT_DESC_HEIGHT),%d7	/* Load fbcon_font_desc.height into d7 */
3571	subq	#1,%d7
3572L(console_read_char_scanline):
3573	moveb	%a1@+,%d3
3574
3575		/* ASSERT: a0 = contents of Lconsole_font */
3576	movel	%a0@(FONT_DESC_WIDTH),%d6	/* Load fbcon_font_desc.width into d6 */
3577	subql	#1,%d6
3578
3579L(console_do_font_scanline):
3580	lslb	#1,%d3
3581	scsb	%d2		/* convert 1 bit into a byte */
3582	console_plot_pixel %d0,%d1,%d2
3583	addq	#1,%d0
3584	dbra	%d6,L(console_do_font_scanline)
3585
3586		/* ASSERT: a0 = contents of Lconsole_font */
3587	subl	%a0@(FONT_DESC_WIDTH),%d0
3588	addq	#1,%d1
3589	dbra	%d7,L(console_read_char_scanline)
3590
3591L(console_exit):
3592func_return	console_putc
3593
3594	/*
3595	 *	Input:
3596	 *		d0 = x coordinate
3597	 *		d1 = y coordinate
3598	 *		d2 = (bit 0) 1/0 for white/black (!)
3599	 *	All registers are preserved
3600	 */
3601func_start	console_plot_pixel,%a0-%a1/%d0-%d4
3602
3603	movel	%pc@(L(mac_videobase)),%a1
3604	movel	%pc@(L(mac_videodepth)),%d3
3605	movel	ARG1,%d0
3606	movel	ARG2,%d1
3607	mulul	%pc@(L(mac_rowbytes)),%d1
3608	movel	ARG3,%d2
3609
3610	/*
3611	 *	Register usage:
3612	 *		d0 = x coord becomes byte offset into frame buffer
3613	 *		d1 = y coord
3614	 *		d2 = black or white (0/1)
3615	 *		d3 = video depth
3616	 *		d4 = temp of x (d0) for many bit depths
3617	 */
3618L(test_1bit):
3619	cmpb	#1,%d3
3620	jbne	L(test_2bit)
3621	movel	%d0,%d4		/* we need the low order 3 bits! */
3622	divul	#8,%d0
3623	addal	%d0,%a1
3624	addal	%d1,%a1
3625	andb	#7,%d4
3626	eorb	#7,%d4		/* reverse the x-coordinate w/ screen-bit # */
3627	andb	#1,%d2
3628	jbne	L(white_1)
3629	bsetb	%d4,%a1@
3630	jbra	L(console_plot_pixel_exit)
3631L(white_1):
3632	bclrb	%d4,%a1@
3633	jbra	L(console_plot_pixel_exit)
3634
3635L(test_2bit):
3636	cmpb	#2,%d3
3637	jbne	L(test_4bit)
3638	movel	%d0,%d4		/* we need the low order 2 bits! */
3639	divul	#4,%d0
3640	addal	%d0,%a1
3641	addal	%d1,%a1
3642	andb	#3,%d4
3643	eorb	#3,%d4		/* reverse the x-coordinate w/ screen-bit # */
3644	lsll	#1,%d4		/* ! */
3645	andb	#1,%d2
3646	jbne	L(white_2)
3647	bsetb	%d4,%a1@
3648	addq	#1,%d4
3649	bsetb	%d4,%a1@
3650	jbra	L(console_plot_pixel_exit)
3651L(white_2):
3652	bclrb	%d4,%a1@
3653	addq	#1,%d4
3654	bclrb	%d4,%a1@
3655	jbra	L(console_plot_pixel_exit)
3656
3657L(test_4bit):
3658	cmpb	#4,%d3
3659	jbne	L(test_8bit)
3660	movel	%d0,%d4		/* we need the low order bit! */
3661	divul	#2,%d0
3662	addal	%d0,%a1
3663	addal	%d1,%a1
3664	andb	#1,%d4
3665	eorb	#1,%d4
3666	lsll	#2,%d4		/* ! */
3667	andb	#1,%d2
3668	jbne	L(white_4)
3669	bsetb	%d4,%a1@
3670	addq	#1,%d4
3671	bsetb	%d4,%a1@
3672	addq	#1,%d4
3673	bsetb	%d4,%a1@
3674	addq	#1,%d4
3675	bsetb	%d4,%a1@
3676	jbra	L(console_plot_pixel_exit)
3677L(white_4):
3678	bclrb	%d4,%a1@
3679	addq	#1,%d4
3680	bclrb	%d4,%a1@
3681	addq	#1,%d4
3682	bclrb	%d4,%a1@
3683	addq	#1,%d4
3684	bclrb	%d4,%a1@
3685	jbra	L(console_plot_pixel_exit)
3686
3687L(test_8bit):
3688	cmpb	#8,%d3
3689	jbne	L(test_16bit)
3690	addal	%d0,%a1
3691	addal	%d1,%a1
3692	andb	#1,%d2
3693	jbne	L(white_8)
3694	moveb	#0xff,%a1@
3695	jbra	L(console_plot_pixel_exit)
3696L(white_8):
3697	clrb	%a1@
3698	jbra	L(console_plot_pixel_exit)
3699
3700L(test_16bit):
3701	cmpb	#16,%d3
3702	jbne	L(console_plot_pixel_exit)
3703	addal	%d0,%a1
3704	addal	%d0,%a1
3705	addal	%d1,%a1
3706	andb	#1,%d2
3707	jbne	L(white_16)
3708	clrw	%a1@
3709	jbra	L(console_plot_pixel_exit)
3710L(white_16):
3711	movew	#0x0fff,%a1@
3712	jbra	L(console_plot_pixel_exit)
3713
3714L(console_plot_pixel_exit):
3715func_return	console_plot_pixel
3716#endif /* CONSOLE_DEBUG */
3717
3718
3719__INITDATA
3720	.align	4
3721
3722#if defined(CONFIG_ATARI) || defined(CONFIG_AMIGA) || \
3723    defined(CONFIG_HP300) || defined(CONFIG_APOLLO)
3724L(custom):
3725L(iobase):
3726	.long 0
3727#endif
3728
3729#ifdef CONSOLE_DEBUG
3730L(console_globals):
3731	.long	0		/* cursor column */
3732	.long	0		/* cursor row */
3733	.long	0		/* max num columns */
3734	.long	0		/* max num rows */
3735	.long	0		/* left edge */
3736L(console_font):
3737	.long	0		/* pointer to console font (struct font_desc) */
3738L(console_font_data):
3739	.long	0		/* pointer to console font data */
3740#endif /* CONSOLE_DEBUG */
3741
3742#if defined(MMU_PRINT)
3743L(mmu_print_data):
3744	.long	0		/* valid flag */
3745	.long	0		/* start logical */
3746	.long	0		/* next logical */
3747	.long	0		/* start physical */
3748	.long	0		/* next physical */
3749#endif /* MMU_PRINT */
3750
3751L(cputype):
3752	.long	0
3753L(mmu_cached_pointer_tables):
3754	.long	0
3755L(mmu_num_pointer_tables):
3756	.long	0
3757L(phys_kernel_start):
3758	.long	0
3759L(kernel_end):
3760	.long	0
3761L(memory_start):
3762	.long	0
3763L(kernel_pgdir_ptr):
3764	.long	0
3765L(temp_mmap_mem):
3766	.long	0
3767
3768#if defined (CONFIG_MVME147)
3769M147_SCC_CTRL_A = 0xfffe3002
3770M147_SCC_DATA_A = 0xfffe3003
3771#endif
3772
3773#if defined (CONFIG_MVME16x)
3774M162_SCC_CTRL_A = 0xfff45005
3775M167_CYCAR = 0xfff450ee
3776M167_CYIER = 0xfff45011
3777M167_CYLICR = 0xfff45026
3778M167_CYTEOIR = 0xfff45085
3779M167_CYTDR = 0xfff450f8
3780M167_PCSCCMICR = 0xfff4201d
3781M167_PCSCCTICR = 0xfff4201e
3782M167_PCSCCRICR = 0xfff4201f
3783M167_PCTPIACKR = 0xfff42025
3784#endif
3785
3786#if defined (CONFIG_BVME6000)
3787BVME_SCC_CTRL_A	= 0xffb0000b
3788BVME_SCC_DATA_A	= 0xffb0000f
3789#endif
3790
3791#if defined(CONFIG_MAC)
3792L(mac_videobase):
3793	.long	0
3794L(mac_videodepth):
3795	.long	0
3796L(mac_dimensions):
3797	.long	0
3798L(mac_rowbytes):
3799	.long	0
3800L(mac_sccbase):
3801	.long	0
3802#endif /* CONFIG_MAC */
3803
3804#if defined (CONFIG_APOLLO)
3805LSRB0        = 0x10412
3806LTHRB0       = 0x10416
3807LCPUCTRL     = 0x10100
3808#endif
3809
3810#if defined(CONFIG_HP300)
3811DCADATA	     = 0x11
3812DCALSR	     = 0x1b
3813APCIDATA     = 0x00
3814APCILSR      = 0x14
3815L(uartbase):
3816	.long	0
3817L(uart_scode):
3818	.long	-1
3819#endif
3820
3821__FINIT
3822	.data
3823	.align	4
3824
3825availmem:
3826	.long	0
3827m68k_pgtable_cachemode:
3828	.long	0
3829m68k_supervisor_cachemode:
3830	.long	0
3831#if defined(CONFIG_MVME16x)
3832mvme_bdid:
3833	.long	0,0,0,0,0,0,0,0
3834#endif
3835#if defined(CONFIG_Q40)
3836q40_mem_cptr:
3837	.long	0
3838L(q40_do_debug):
3839	.long	0
3840#endif
3841