xref: /linux/arch/m68k/include/asm/mac_psc.h (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Apple Peripheral System Controller (PSC)
4  *
5  * The PSC is used on the AV Macs to control IO functions not handled
6  * by the VIAs (Ethernet, DSP, SCC, Sound). This includes nine DMA
7  * channels.
8  *
9  * The first seven DMA channels appear to be "one-shot" and are actually
10  * sets of two channels; one member is active while the other is being
11  * configured, and then you flip the active member and start all over again.
12  * The one-shot channels are grouped together and are:
13  *
14  * 1. SCSI
15  * 2. Ethernet Read
16  * 3. Ethernet Write
17  * 4. Floppy Disk Controller
18  * 5. SCC Channel A Receive
19  * 6. SCC Channel B Receive
20  * 7. SCC Channel A Transmit
21  *
22  * The remaining two channels are handled somewhat differently. They appear
23  * to be closely tied and share one set of registers. They also seem to run
24  * continuously, although how you keep the buffer filled in this scenario is
25  * not understood as there seems to be only one input and one output buffer
26  * pointer.
27  *
28  * Much of this was extrapolated from what was known about the Ethernet
29  * registers and subsequently confirmed using MacsBug (ie by pinging the
30  * machine with easy-to-find patterns and looking for them in the DMA
31  * buffers, or by sending a file over the serial ports and finding the
32  * file in the buffers.)
33  *
34  * 1999-05-25 (jmt)
35  */
36 
37 #define PSC_BASE	(0x50F31000)
38 
39 /*
40  * The IER/IFR registers work like the VIA, except that it has 4
41  * of them each on different interrupt levels, and each register
42  * set only seems to handle four interrupts instead of seven.
43  *
44  * To access a particular set of registers, add 0xn0 to the base
45  * where n = 3,4,5 or 6.
46  */
47 
48 #define pIFRbase	0x100
49 #define pIERbase	0x104
50 
51 /*
52  * One-shot DMA control registers
53  */
54 
55 #define PSC_MYSTERY	0x804
56 
57 #define PSC_CTL_BASE	0xC00
58 
59 #define PSC_SCSI_CTL	0xC00
60 #define PSC_ENETRD_CTL  0xC10
61 #define PSC_ENETWR_CTL  0xC20
62 #define PSC_FDC_CTL	0xC30
63 #define PSC_SCCA_CTL	0xC40
64 #define PSC_SCCB_CTL	0xC50
65 #define PSC_SCCATX_CTL	0xC60
66 
67 /*
68  * DMA channels. Add +0x10 for the second channel in the set.
69  * You're supposed to use one channel while the other runs and
70  * then flip channels and do the whole thing again.
71  */
72 
73 #define PSC_ADDR_BASE	0x1000
74 #define PSC_LEN_BASE	0x1004
75 #define PSC_CMD_BASE	0x1008
76 
77 #define PSC_SET0	0x00
78 #define PSC_SET1	0x10
79 
80 #define PSC_SCSI_ADDR	0x1000	/* confirmed */
81 #define PSC_SCSI_LEN	0x1004	/* confirmed */
82 #define PSC_SCSI_CMD	0x1008	/* confirmed */
83 #define PSC_ENETRD_ADDR 0x1020	/* confirmed */
84 #define PSC_ENETRD_LEN  0x1024	/* confirmed */
85 #define PSC_ENETRD_CMD  0x1028	/* confirmed */
86 #define PSC_ENETWR_ADDR 0x1040	/* confirmed */
87 #define PSC_ENETWR_LEN  0x1044	/* confirmed */
88 #define PSC_ENETWR_CMD  0x1048	/* confirmed */
89 #define PSC_FDC_ADDR	0x1060	/* strongly suspected */
90 #define PSC_FDC_LEN	0x1064	/* strongly suspected */
91 #define PSC_FDC_CMD	0x1068	/* strongly suspected */
92 #define PSC_SCCA_ADDR	0x1080	/* confirmed */
93 #define PSC_SCCA_LEN	0x1084	/* confirmed */
94 #define PSC_SCCA_CMD	0x1088	/* confirmed */
95 #define PSC_SCCB_ADDR	0x10A0	/* confirmed */
96 #define PSC_SCCB_LEN	0x10A4	/* confirmed */
97 #define PSC_SCCB_CMD	0x10A8	/* confirmed */
98 #define PSC_SCCATX_ADDR	0x10C0	/* confirmed */
99 #define PSC_SCCATX_LEN	0x10C4	/* confirmed */
100 #define PSC_SCCATX_CMD	0x10C8	/* confirmed */
101 
102 /*
103  * Free-running DMA registers. The only part known for sure are the bits in
104  * the control register, the buffer addresses and the buffer length. Everything
105  * else is anybody's guess.
106  *
107  * These registers seem to be mirrored every thirty-two bytes up until offset
108  * 0x300. It's safe to assume then that a new set of registers starts there.
109  */
110 
111 #define PSC_SND_CTL	0x200	/*
112 				 * [ 16-bit ]
113 				 * Sound (Singer?) control register.
114 				 *
115 				 * bit 0  : ????
116 				 * bit 1  : ????
117 				 * bit 2  : Set to one to enable sound
118 				 *          output. Possibly a mute flag.
119 				 * bit 3  : ????
120 				 * bit 4  : ????
121 				 * bit 5  : ????
122 				 * bit 6  : Set to one to enable pass-thru
123 				 *          audio. In this mode the audio data
124 				 *          seems to appear in both the input
125 				 *          buffer and the output buffer.
126 				 * bit 7  : Set to one to activate the
127 				 *          sound input DMA or zero to
128 				 *          disable it.
129 				 * bit 8  : Set to one to activate the
130 				 *          sound output DMA or zero to
131 				 *          disable it.
132 				 * bit 9  : \
133 				 * bit 11 :  |
134 				 *          These two bits control the sample
135 				 *          rate. Usually set to binary 10 and
136 				 *	    MacOS 8.0 says I'm at 48 KHz. Using
137 				 *	    a binary value of 01 makes things
138 				 *	    sound about 1/2 speed (24 KHz?) and
139 				 *          binary 00 is slower still (22 KHz?)
140 				 *
141 				 * Setting this to 0x0000 is a good way to
142 				 * kill all DMA at boot time so that the
143 				 * PSC won't overwrite the kernel image
144 				 * with sound data.
145 				 */
146 
147 /*
148  * 0x0202 - 0x0203 is unused. Writing there
149  * seems to clobber the control register.
150  */
151 
152 #define PSC_SND_SOURCE	0x204	/*
153 				 * [ 32-bit ]
154 				 * Controls input source and volume:
155 				 *
156 				 * bits 12-15 : input source volume, 0 - F
157 				 * bits 16-19 : unknown, always 0x5
158 				 * bits 20-23 : input source selection:
159 				 *                  0x3 = CD Audio
160 				 *                  0x4 = External Audio
161 				 *
162 				 * The volume is definitely not the general
163 				 * output volume as it doesn't affect the
164 				 * alert sound volume.
165 				 */
166 #define PSC_SND_STATUS1	0x208	/*
167 				 * [ 32-bit ]
168 				 * Appears to be a read-only status register.
169 				 * The usual value is 0x00400002.
170 				 */
171 #define PSC_SND_HUH3	0x20C	/*
172 				 * [ 16-bit ]
173 				 * Unknown 16-bit value, always 0x0000.
174 				 */
175 #define PSC_SND_BITS2GO	0x20E	/*
176 				 * [ 16-bit ]
177 				 * Counts down to zero from some constant
178 				 * value. The value appears to be the
179 				 * number of _bits_ remaining before the
180 				 * buffer is full, which would make sense
181 				 * since Apple's docs say the sound DMA
182 				 * channels are 1 bit wide.
183 				 */
184 #define PSC_SND_INADDR	0x210	/*
185 				 * [ 32-bit ]
186 				 * Address of the sound input DMA buffer
187 				 */
188 #define PSC_SND_OUTADDR	0x214	/*
189 				 * [ 32-bit ]
190 				 * Address of the sound output DMA buffer
191 				 */
192 #define PSC_SND_LEN	0x218	/*
193 				 * [ 16-bit ]
194 				 * Length of both buffers in eight-byte units.
195 				 */
196 #define PSC_SND_HUH4	0x21A	/*
197 				 * [ 16-bit ]
198 				 * Unknown, always 0x0000.
199 				 */
200 #define PSC_SND_STATUS2	0x21C	/*
201 				 * [ 16-bit ]
202 				 * Appears to e a read-only status register.
203 				 * The usual value is 0x0200.
204 				 */
205 #define PSC_SND_HUH5	0x21E	/*
206 				 * [ 16-bit ]
207 				 * Unknown, always 0x0000.
208 				 */
209 
210 #ifndef __ASSEMBLY__
211 
212 extern volatile __u8 *psc;
213 
214 extern void psc_register_interrupts(void);
215 extern void psc_irq_enable(int);
216 extern void psc_irq_disable(int);
217 
218 /*
219  *	Access functions
220  */
221 
222 static inline void psc_write_byte(int offset, __u8 data)
223 {
224 	*((volatile __u8 *)(psc + offset)) = data;
225 }
226 
227 static inline void psc_write_word(int offset, __u16 data)
228 {
229 	*((volatile __u16 *)(psc + offset)) = data;
230 }
231 
232 static inline void psc_write_long(int offset, __u32 data)
233 {
234 	*((volatile __u32 *)(psc + offset)) = data;
235 }
236 
237 static inline u8 psc_read_byte(int offset)
238 {
239 	return *((volatile __u8 *)(psc + offset));
240 }
241 
242 static inline u16 psc_read_word(int offset)
243 {
244 	return *((volatile __u16 *)(psc + offset));
245 }
246 
247 static inline u32 psc_read_long(int offset)
248 {
249 	return *((volatile __u32 *)(psc + offset));
250 }
251 
252 #endif /* __ASSEMBLY__ */
253