xref: /linux/arch/m68k/fpsp040/slog2.S (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1|
2|	slog2.sa 3.1 12/10/90
3|
4|       The entry point slog10 computes the base-10
5|	logarithm of an input argument X.
6|	slog10d does the same except the input value is a
7|	denormalized number.
8|	sLog2 and sLog2d are the base-2 analogues.
9|
10|       INPUT:	Double-extended value in memory location pointed to
11|		by address register a0.
12|
13|       OUTPUT: log_10(X) or log_2(X) returned in floating-point
14|		register fp0.
15|
16|       ACCURACY and MONOTONICITY: The returned result is within 1.7
17|		ulps in 64 significant bit, i.e. within 0.5003 ulp
18|		to 53 bits if the result is subsequently rounded
19|		to double precision. The result is provably monotonic
20|		in double precision.
21|
22|       SPEED:	Two timings are measured, both in the copy-back mode.
23|		The first one is measured when the function is invoked
24|		the first time (so the instructions and data are not
25|		in cache), and the second one is measured when the
26|		function is reinvoked at the same input argument.
27|
28|       ALGORITHM and IMPLEMENTATION NOTES:
29|
30|       slog10d:
31|
32|       Step 0.   If X < 0, create a NaN and raise the invalid operation
33|                 flag. Otherwise, save FPCR in D1; set FpCR to default.
34|       Notes:    Default means round-to-nearest mode, no floating-point
35|                 traps, and precision control = double extended.
36|
37|       Step 1.   Call slognd to obtain Y = log(X), the natural log of X.
38|       Notes:    Even if X is denormalized, log(X) is always normalized.
39|
40|       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).
41|            2.1  Restore the user FPCR
42|            2.2  Return ans := Y * INV_L10.
43|
44|
45|       slog10:
46|
47|       Step 0.   If X < 0, create a NaN and raise the invalid operation
48|                 flag. Otherwise, save FPCR in D1; set FpCR to default.
49|       Notes:    Default means round-to-nearest mode, no floating-point
50|                 traps, and precision control = double extended.
51|
52|       Step 1.   Call sLogN to obtain Y = log(X), the natural log of X.
53|
54|       Step 2.   Compute log_10(X) = log(X) * (1/log(10)).
55|            2.1  Restore the user FPCR
56|            2.2  Return ans := Y * INV_L10.
57|
58|
59|       sLog2d:
60|
61|       Step 0.   If X < 0, create a NaN and raise the invalid operation
62|                 flag. Otherwise, save FPCR in D1; set FpCR to default.
63|       Notes:    Default means round-to-nearest mode, no floating-point
64|                 traps, and precision control = double extended.
65|
66|       Step 1.   Call slognd to obtain Y = log(X), the natural log of X.
67|       Notes:    Even if X is denormalized, log(X) is always normalized.
68|
69|       Step 2.   Compute log_10(X) = log(X) * (1/log(2)).
70|            2.1  Restore the user FPCR
71|            2.2  Return ans := Y * INV_L2.
72|
73|
74|       sLog2:
75|
76|       Step 0.   If X < 0, create a NaN and raise the invalid operation
77|                 flag. Otherwise, save FPCR in D1; set FpCR to default.
78|       Notes:    Default means round-to-nearest mode, no floating-point
79|                 traps, and precision control = double extended.
80|
81|       Step 1.   If X is not an integer power of two, i.e., X != 2^k,
82|                 go to Step 3.
83|
84|       Step 2.   Return k.
85|            2.1  Get integer k, X = 2^k.
86|            2.2  Restore the user FPCR.
87|            2.3  Return ans := convert-to-double-extended(k).
88|
89|       Step 3.   Call sLogN to obtain Y = log(X), the natural log of X.
90|
91|       Step 4.   Compute log_2(X) = log(X) * (1/log(2)).
92|            4.1  Restore the user FPCR
93|            4.2  Return ans := Y * INV_L2.
94|
95
96|		Copyright (C) Motorola, Inc. 1990
97|			All Rights Reserved
98|
99|       For details on the license for this file, please see the
100|       file, README, in this same directory.
101
102|SLOG2    idnt    2,1 | Motorola 040 Floating Point Software Package
103
104	|section	8
105
106	|xref	t_frcinx
107	|xref	t_operr
108	|xref	slogn
109	|xref	slognd
110
111INV_L10:  .long 0x3FFD0000,0xDE5BD8A9,0x37287195,0x00000000
112
113INV_L2:   .long 0x3FFF0000,0xB8AA3B29,0x5C17F0BC,0x00000000
114
115	.global	slog10d
116slog10d:
117|--entry point for Log10(X), X is denormalized
118	movel		(%a0),%d0
119	blt		invalid
120	movel		%d1,-(%sp)
121	clrl		%d1
122	bsr		slognd			| ...log(X), X denorm.
123	fmovel		(%sp)+,%fpcr
124	fmulx		INV_L10,%fp0
125	bra		t_frcinx
126
127	.global	slog10
128slog10:
129|--entry point for Log10(X), X is normalized
130
131	movel		(%a0),%d0
132	blt		invalid
133	movel		%d1,-(%sp)
134	clrl		%d1
135	bsr		slogn			| ...log(X), X normal.
136	fmovel		(%sp)+,%fpcr
137	fmulx		INV_L10,%fp0
138	bra		t_frcinx
139
140
141	.global	slog2d
142slog2d:
143|--entry point for Log2(X), X is denormalized
144
145	movel		(%a0),%d0
146	blt		invalid
147	movel		%d1,-(%sp)
148	clrl		%d1
149	bsr		slognd			| ...log(X), X denorm.
150	fmovel		(%sp)+,%fpcr
151	fmulx		INV_L2,%fp0
152	bra		t_frcinx
153
154	.global	slog2
155slog2:
156|--entry point for Log2(X), X is normalized
157	movel		(%a0),%d0
158	blt		invalid
159
160	movel		8(%a0),%d0
161	bnes		continue		| ...X is not 2^k
162
163	movel		4(%a0),%d0
164	andl		#0x7FFFFFFF,%d0
165	tstl		%d0
166	bnes		continue
167
168|--X = 2^k.
169	movew		(%a0),%d0
170	andl		#0x00007FFF,%d0
171	subl		#0x3FFF,%d0
172	fmovel		%d1,%fpcr
173	fmovel		%d0,%fp0
174	bra		t_frcinx
175
176continue:
177	movel		%d1,-(%sp)
178	clrl		%d1
179	bsr		slogn			| ...log(X), X normal.
180	fmovel		(%sp)+,%fpcr
181	fmulx		INV_L2,%fp0
182	bra		t_frcinx
183
184invalid:
185	bra		t_operr
186
187	|end
188