1*1da177e4SLinus Torvalds| 2*1da177e4SLinus Torvalds| satanh.sa 3.3 12/19/90 3*1da177e4SLinus Torvalds| 4*1da177e4SLinus Torvalds| The entry point satanh computes the inverse 5*1da177e4SLinus Torvalds| hyperbolic tangent of 6*1da177e4SLinus Torvalds| an input argument; satanhd does the same except for denormalized 7*1da177e4SLinus Torvalds| input. 8*1da177e4SLinus Torvalds| 9*1da177e4SLinus Torvalds| Input: Double-extended number X in location pointed to 10*1da177e4SLinus Torvalds| by address register a0. 11*1da177e4SLinus Torvalds| 12*1da177e4SLinus Torvalds| Output: The value arctanh(X) returned in floating-point register Fp0. 13*1da177e4SLinus Torvalds| 14*1da177e4SLinus Torvalds| Accuracy and Monotonicity: The returned result is within 3 ulps in 15*1da177e4SLinus Torvalds| 64 significant bit, i.e. within 0.5001 ulp to 53 bits if the 16*1da177e4SLinus Torvalds| result is subsequently rounded to double precision. The 17*1da177e4SLinus Torvalds| result is provably monotonic in double precision. 18*1da177e4SLinus Torvalds| 19*1da177e4SLinus Torvalds| Speed: The program satanh takes approximately 270 cycles. 20*1da177e4SLinus Torvalds| 21*1da177e4SLinus Torvalds| Algorithm: 22*1da177e4SLinus Torvalds| 23*1da177e4SLinus Torvalds| ATANH 24*1da177e4SLinus Torvalds| 1. If |X| >= 1, go to 3. 25*1da177e4SLinus Torvalds| 26*1da177e4SLinus Torvalds| 2. (|X| < 1) Calculate atanh(X) by 27*1da177e4SLinus Torvalds| sgn := sign(X) 28*1da177e4SLinus Torvalds| y := |X| 29*1da177e4SLinus Torvalds| z := 2y/(1-y) 30*1da177e4SLinus Torvalds| atanh(X) := sgn * (1/2) * logp1(z) 31*1da177e4SLinus Torvalds| Exit. 32*1da177e4SLinus Torvalds| 33*1da177e4SLinus Torvalds| 3. If |X| > 1, go to 5. 34*1da177e4SLinus Torvalds| 35*1da177e4SLinus Torvalds| 4. (|X| = 1) Generate infinity with an appropriate sign and 36*1da177e4SLinus Torvalds| divide-by-zero by 37*1da177e4SLinus Torvalds| sgn := sign(X) 38*1da177e4SLinus Torvalds| atan(X) := sgn / (+0). 39*1da177e4SLinus Torvalds| Exit. 40*1da177e4SLinus Torvalds| 41*1da177e4SLinus Torvalds| 5. (|X| > 1) Generate an invalid operation by 0 * infinity. 42*1da177e4SLinus Torvalds| Exit. 43*1da177e4SLinus Torvalds| 44*1da177e4SLinus Torvalds 45*1da177e4SLinus Torvalds| Copyright (C) Motorola, Inc. 1990 46*1da177e4SLinus Torvalds| All Rights Reserved 47*1da177e4SLinus Torvalds| 48*1da177e4SLinus Torvalds| THIS IS UNPUBLISHED PROPRIETARY SOURCE CODE OF MOTOROLA 49*1da177e4SLinus Torvalds| The copyright notice above does not evidence any 50*1da177e4SLinus Torvalds| actual or intended publication of such source code. 51*1da177e4SLinus Torvalds 52*1da177e4SLinus Torvalds|satanh idnt 2,1 | Motorola 040 Floating Point Software Package 53*1da177e4SLinus Torvalds 54*1da177e4SLinus Torvalds |section 8 55*1da177e4SLinus Torvalds 56*1da177e4SLinus Torvalds |xref t_dz 57*1da177e4SLinus Torvalds |xref t_operr 58*1da177e4SLinus Torvalds |xref t_frcinx 59*1da177e4SLinus Torvalds |xref t_extdnrm 60*1da177e4SLinus Torvalds |xref slognp1 61*1da177e4SLinus Torvalds 62*1da177e4SLinus Torvalds .global satanhd 63*1da177e4SLinus Torvaldssatanhd: 64*1da177e4SLinus Torvalds|--ATANH(X) = X FOR DENORMALIZED X 65*1da177e4SLinus Torvalds 66*1da177e4SLinus Torvalds bra t_extdnrm 67*1da177e4SLinus Torvalds 68*1da177e4SLinus Torvalds .global satanh 69*1da177e4SLinus Torvaldssatanh: 70*1da177e4SLinus Torvalds movel (%a0),%d0 71*1da177e4SLinus Torvalds movew 4(%a0),%d0 72*1da177e4SLinus Torvalds andil #0x7FFFFFFF,%d0 73*1da177e4SLinus Torvalds cmpil #0x3FFF8000,%d0 74*1da177e4SLinus Torvalds bges ATANHBIG 75*1da177e4SLinus Torvalds 76*1da177e4SLinus Torvalds|--THIS IS THE USUAL CASE, |X| < 1 77*1da177e4SLinus Torvalds|--Y = |X|, Z = 2Y/(1-Y), ATANH(X) = SIGN(X) * (1/2) * LOG1P(Z). 78*1da177e4SLinus Torvalds 79*1da177e4SLinus Torvalds fabsx (%a0),%fp0 | ...Y = |X| 80*1da177e4SLinus Torvalds fmovex %fp0,%fp1 81*1da177e4SLinus Torvalds fnegx %fp1 | ...-Y 82*1da177e4SLinus Torvalds faddx %fp0,%fp0 | ...2Y 83*1da177e4SLinus Torvalds fadds #0x3F800000,%fp1 | ...1-Y 84*1da177e4SLinus Torvalds fdivx %fp1,%fp0 | ...2Y/(1-Y) 85*1da177e4SLinus Torvalds movel (%a0),%d0 86*1da177e4SLinus Torvalds andil #0x80000000,%d0 87*1da177e4SLinus Torvalds oril #0x3F000000,%d0 | ...SIGN(X)*HALF 88*1da177e4SLinus Torvalds movel %d0,-(%sp) 89*1da177e4SLinus Torvalds 90*1da177e4SLinus Torvalds fmovemx %fp0-%fp0,(%a0) | ...overwrite input 91*1da177e4SLinus Torvalds movel %d1,-(%sp) 92*1da177e4SLinus Torvalds clrl %d1 93*1da177e4SLinus Torvalds bsr slognp1 | ...LOG1P(Z) 94*1da177e4SLinus Torvalds fmovel (%sp)+,%fpcr 95*1da177e4SLinus Torvalds fmuls (%sp)+,%fp0 96*1da177e4SLinus Torvalds bra t_frcinx 97*1da177e4SLinus Torvalds 98*1da177e4SLinus TorvaldsATANHBIG: 99*1da177e4SLinus Torvalds fabsx (%a0),%fp0 | ...|X| 100*1da177e4SLinus Torvalds fcmps #0x3F800000,%fp0 101*1da177e4SLinus Torvalds fbgt t_operr 102*1da177e4SLinus Torvalds bra t_dz 103*1da177e4SLinus Torvalds 104*1da177e4SLinus Torvalds |end 105