xref: /linux/arch/m68k/fpsp040/decbin.S (revision 27dfc44e1ba30d2d49675e21918bf4b3b3b59fa6)
1|
2|	decbin.sa 3.3 12/19/90
3|
4|	Description: Converts normalized packed bcd value pointed to by
5|	register A6 to extended-precision value in FP0.
6|
7|	Input: Normalized packed bcd value in ETEMP(a6).
8|
9|	Output:	Exact floating-point representation of the packed bcd value.
10|
11|	Saves and Modifies: D2-D5
12|
13|	Speed: The program decbin takes ??? cycles to execute.
14|
15|	Object Size:
16|
17|	External Reference(s): None.
18|
19|	Algorithm:
20|	Expected is a normal bcd (i.e. non-exceptional; all inf, zero,
21|	and NaN operands are dispatched without entering this routine)
22|	value in 68881/882 format at location ETEMP(A6).
23|
24|	A1.	Convert the bcd exponent to binary by successive adds and muls.
25|	Set the sign according to SE. Subtract 16 to compensate
26|	for the mantissa which is to be interpreted as 17 integer
27|	digits, rather than 1 integer and 16 fraction digits.
28|	Note: this operation can never overflow.
29|
30|	A2. Convert the bcd mantissa to binary by successive
31|	adds and muls in FP0. Set the sign according to SM.
32|	The mantissa digits will be converted with the decimal point
33|	assumed following the least-significant digit.
34|	Note: this operation can never overflow.
35|
36|	A3. Count the number of leading/trailing zeros in the
37|	bcd string.  If SE is positive, count the leading zeros;
38|	if negative, count the trailing zeros.  Set the adjusted
39|	exponent equal to the exponent from A1 and the zero count
40|	added if SM = 1 and subtracted if SM = 0.  Scale the
41|	mantissa the equivalent of forcing in the bcd value:
42|
43|	SM = 0	a non-zero digit in the integer position
44|	SM = 1	a non-zero digit in Mant0, lsd of the fraction
45|
46|	this will insure that any value, regardless of its
47|	representation (ex. 0.1E2, 1E1, 10E0, 100E-1), is converted
48|	consistently.
49|
50|	A4. Calculate the factor 10^exp in FP1 using a table of
51|	10^(2^n) values.  To reduce the error in forming factors
52|	greater than 10^27, a directed rounding scheme is used with
53|	tables rounded to RN, RM, and RP, according to the table
54|	in the comments of the pwrten section.
55|
56|	A5. Form the final binary number by scaling the mantissa by
57|	the exponent factor.  This is done by multiplying the
58|	mantissa in FP0 by the factor in FP1 if the adjusted
59|	exponent sign is positive, and dividing FP0 by FP1 if
60|	it is negative.
61|
62|	Clean up and return.  Check if the final mul or div resulted
63|	in an inex2 exception.  If so, set inex1 in the fpsr and
64|	check if the inex1 exception is enabled.  If so, set d7 upper
65|	word to $0100.  This will signal unimp.sa that an enabled inex1
66|	exception occurred.  Unimp will fix the stack.
67|
68
69|		Copyright (C) Motorola, Inc. 1990
70|			All Rights Reserved
71|
72|       For details on the license for this file, please see the
73|       file, README, in this same directory.
74
75|DECBIN    idnt    2,1 | Motorola 040 Floating Point Software Package
76
77	|section	8
78
79#include "fpsp.h"
80
81|
82|	PTENRN, PTENRM, and PTENRP are arrays of powers of 10 rounded
83|	to nearest, minus, and plus, respectively.  The tables include
84|	10**{1,2,4,8,16,32,64,128,256,512,1024,2048,4096}.  No rounding
85|	is required until the power is greater than 27, however, all
86|	tables include the first 5 for ease of indexing.
87|
88	|xref	PTENRN
89	|xref	PTENRM
90	|xref	PTENRP
91
92RTABLE:	.byte	0,0,0,0
93	.byte	2,3,2,3
94	.byte	2,3,3,2
95	.byte	3,2,2,3
96
97	.global	decbin
98	.global	calc_e
99	.global	pwrten
100	.global	calc_m
101	.global	norm
102	.global	ap_st_z
103	.global	ap_st_n
104|
105	.set	FNIBS,7
106	.set	FSTRT,0
107|
108	.set	ESTRT,4
109	.set	EDIGITS,2	|
110|
111| Constants in single precision
112FZERO:	.long	0x00000000
113FONE:	.long	0x3F800000
114FTEN:	.long	0x41200000
115
116	.set	TEN,10
117
118|
119decbin:
120	| fmovel	#0,FPCR		;clr real fpcr
121	moveml	%d2-%d5,-(%a7)
122|
123| Calculate exponent:
124|  1. Copy bcd value in memory for use as a working copy.
125|  2. Calculate absolute value of exponent in d1 by mul and add.
126|  3. Correct for exponent sign.
127|  4. Subtract 16 to compensate for interpreting the mant as all integer digits.
128|     (i.e., all digits assumed left of the decimal point.)
129|
130| Register usage:
131|
132|  calc_e:
133|	(*)  d0: temp digit storage
134|	(*)  d1: accumulator for binary exponent
135|	(*)  d2: digit count
136|	(*)  d3: offset pointer
137|	( )  d4: first word of bcd
138|	( )  a0: pointer to working bcd value
139|	( )  a6: pointer to original bcd value
140|	(*)  FP_SCR1: working copy of original bcd value
141|	(*)  L_SCR1: copy of original exponent word
142|
143calc_e:
144	movel	#EDIGITS,%d2	|# of nibbles (digits) in fraction part
145	moveql	#ESTRT,%d3	|counter to pick up digits
146	leal	FP_SCR1(%a6),%a0	|load tmp bcd storage address
147	movel	ETEMP(%a6),(%a0)	|save input bcd value
148	movel	ETEMP_HI(%a6),4(%a0) |save words 2 and 3
149	movel	ETEMP_LO(%a6),8(%a0) |and work with these
150	movel	(%a0),%d4	|get first word of bcd
151	clrl	%d1		|zero d1 for accumulator
152e_gd:
153	mulul	#TEN,%d1	|mul partial product by one digit place
154	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend into d0
155	addl	%d0,%d1		|d1 = d1 + d0
156	addqb	#4,%d3		|advance d3 to the next digit
157	dbf	%d2,e_gd	|if we have used all 3 digits, exit loop
158	btst	#30,%d4		|get SE
159	beqs	e_pos		|don't negate if pos
160	negl	%d1		|negate before subtracting
161e_pos:
162	subl	#16,%d1		|sub to compensate for shift of mant
163	bges	e_save		|if still pos, do not neg
164	negl	%d1		|now negative, make pos and set SE
165	orl	#0x40000000,%d4	|set SE in d4,
166	orl	#0x40000000,(%a0)	|and in working bcd
167e_save:
168	movel	%d1,L_SCR1(%a6)	|save exp in memory
169|
170|
171| Calculate mantissa:
172|  1. Calculate absolute value of mantissa in fp0 by mul and add.
173|  2. Correct for mantissa sign.
174|     (i.e., all digits assumed left of the decimal point.)
175|
176| Register usage:
177|
178|  calc_m:
179|	(*)  d0: temp digit storage
180|	(*)  d1: lword counter
181|	(*)  d2: digit count
182|	(*)  d3: offset pointer
183|	( )  d4: words 2 and 3 of bcd
184|	( )  a0: pointer to working bcd value
185|	( )  a6: pointer to original bcd value
186|	(*) fp0: mantissa accumulator
187|	( )  FP_SCR1: working copy of original bcd value
188|	( )  L_SCR1: copy of original exponent word
189|
190calc_m:
191	moveql	#1,%d1		|word counter, init to 1
192	fmoves	FZERO,%fp0	|accumulator
193|
194|
195|  Since the packed number has a long word between the first & second parts,
196|  get the integer digit then skip down & get the rest of the
197|  mantissa.  We will unroll the loop once.
198|
199	bfextu	(%a0){#28:#4},%d0	|integer part is ls digit in long word
200	faddb	%d0,%fp0		|add digit to sum in fp0
201|
202|
203|  Get the rest of the mantissa.
204|
205loadlw:
206	movel	(%a0,%d1.L*4),%d4	|load mantissa longword into d4
207	moveql	#FSTRT,%d3	|counter to pick up digits
208	moveql	#FNIBS,%d2	|reset number of digits per a0 ptr
209md2b:
210	fmuls	FTEN,%fp0	|fp0 = fp0 * 10
211	bfextu	%d4{%d3:#4},%d0	|get the digit and zero extend
212	faddb	%d0,%fp0	|fp0 = fp0 + digit
213|
214|
215|  If all the digits (8) in that long word have been converted (d2=0),
216|  then inc d1 (=2) to point to the next long word and reset d3 to 0
217|  to initialize the digit offset, and set d2 to 7 for the digit count;
218|  else continue with this long word.
219|
220	addqb	#4,%d3		|advance d3 to the next digit
221	dbf	%d2,md2b		|check for last digit in this lw
222nextlw:
223	addql	#1,%d1		|inc lw pointer in mantissa
224	cmpl	#2,%d1		|test for last lw
225	ble	loadlw		|if not, get last one
226
227|
228|  Check the sign of the mant and make the value in fp0 the same sign.
229|
230m_sign:
231	btst	#31,(%a0)	|test sign of the mantissa
232	beq	ap_st_z		|if clear, go to append/strip zeros
233	fnegx	%fp0		|if set, negate fp0
234
235|
236| Append/strip zeros:
237|
238|  For adjusted exponents which have an absolute value greater than 27*,
239|  this routine calculates the amount needed to normalize the mantissa
240|  for the adjusted exponent.  That number is subtracted from the exp
241|  if the exp was positive, and added if it was negative.  The purpose
242|  of this is to reduce the value of the exponent and the possibility
243|  of error in calculation of pwrten.
244|
245|  1. Branch on the sign of the adjusted exponent.
246|  2p.(positive exp)
247|   2. Check M16 and the digits in lwords 2 and 3 in descending order.
248|   3. Add one for each zero encountered until a non-zero digit.
249|   4. Subtract the count from the exp.
250|   5. Check if the exp has crossed zero in #3 above; make the exp abs
251|	   and set SE.
252|	6. Multiply the mantissa by 10**count.
253|  2n.(negative exp)
254|   2. Check the digits in lwords 3 and 2 in descending order.
255|   3. Add one for each zero encountered until a non-zero digit.
256|   4. Add the count to the exp.
257|   5. Check if the exp has crossed zero in #3 above; clear SE.
258|   6. Divide the mantissa by 10**count.
259|
260|  *Why 27?  If the adjusted exponent is within -28 < expA < 28, than
261|   any adjustment due to append/strip zeros will drive the resultant
262|   exponent towards zero.  Since all pwrten constants with a power
263|   of 27 or less are exact, there is no need to use this routine to
264|   attempt to lessen the resultant exponent.
265|
266| Register usage:
267|
268|  ap_st_z:
269|	(*)  d0: temp digit storage
270|	(*)  d1: zero count
271|	(*)  d2: digit count
272|	(*)  d3: offset pointer
273|	( )  d4: first word of bcd
274|	(*)  d5: lword counter
275|	( )  a0: pointer to working bcd value
276|	( )  FP_SCR1: working copy of original bcd value
277|	( )  L_SCR1: copy of original exponent word
278|
279|
280| First check the absolute value of the exponent to see if this
281| routine is necessary.  If so, then check the sign of the exponent
282| and do append (+) or strip (-) zeros accordingly.
283| This section handles a positive adjusted exponent.
284|
285ap_st_z:
286	movel	L_SCR1(%a6),%d1	|load expA for range test
287	cmpl	#27,%d1		|test is with 27
288	ble	pwrten		|if abs(expA) <28, skip ap/st zeros
289	btst	#30,(%a0)	|check sign of exp
290	bne	ap_st_n		|if neg, go to neg side
291	clrl	%d1		|zero count reg
292	movel	(%a0),%d4		|load lword 1 to d4
293	bfextu	%d4{#28:#4},%d0	|get M16 in d0
294	bnes	ap_p_fx		|if M16 is non-zero, go fix exp
295	addql	#1,%d1		|inc zero count
296	moveql	#1,%d5		|init lword counter
297	movel	(%a0,%d5.L*4),%d4	|get lword 2 to d4
298	bnes	ap_p_cl		|if lw 2 is zero, skip it
299	addql	#8,%d1		|and inc count by 8
300	addql	#1,%d5		|inc lword counter
301	movel	(%a0,%d5.L*4),%d4	|get lword 3 to d4
302ap_p_cl:
303	clrl	%d3		|init offset reg
304	moveql	#7,%d2		|init digit counter
305ap_p_gd:
306	bfextu	%d4{%d3:#4},%d0	|get digit
307	bnes	ap_p_fx		|if non-zero, go to fix exp
308	addql	#4,%d3		|point to next digit
309	addql	#1,%d1		|inc digit counter
310	dbf	%d2,ap_p_gd	|get next digit
311ap_p_fx:
312	movel	%d1,%d0		|copy counter to d2
313	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
314	subl	%d0,%d1		|subtract count from exp
315	bges	ap_p_fm		|if still pos, go to pwrten
316	negl	%d1		|now its neg; get abs
317	movel	(%a0),%d4		|load lword 1 to d4
318	orl	#0x40000000,%d4	| and set SE in d4
319	orl	#0x40000000,(%a0)	| and in memory
320|
321| Calculate the mantissa multiplier to compensate for the striping of
322| zeros from the mantissa.
323|
324ap_p_fm:
325	movel	#PTENRN,%a1	|get address of power-of-ten table
326	clrl	%d3		|init table index
327	fmoves	FONE,%fp1	|init fp1 to 1
328	moveql	#3,%d2		|init d2 to count bits in counter
329ap_p_el:
330	asrl	#1,%d0		|shift lsb into carry
331	bccs	ap_p_en		|if 1, mul fp1 by pwrten factor
332	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
333ap_p_en:
334	addl	#12,%d3		|inc d3 to next rtable entry
335	tstl	%d0		|check if d0 is zero
336	bnes	ap_p_el		|if not, get next bit
337	fmulx	%fp1,%fp0		|mul mantissa by 10**(no_bits_shifted)
338	bra	pwrten		|go calc pwrten
339|
340| This section handles a negative adjusted exponent.
341|
342ap_st_n:
343	clrl	%d1		|clr counter
344	moveql	#2,%d5		|set up d5 to point to lword 3
345	movel	(%a0,%d5.L*4),%d4	|get lword 3
346	bnes	ap_n_cl		|if not zero, check digits
347	subl	#1,%d5		|dec d5 to point to lword 2
348	addql	#8,%d1		|inc counter by 8
349	movel	(%a0,%d5.L*4),%d4	|get lword 2
350ap_n_cl:
351	movel	#28,%d3		|point to last digit
352	moveql	#7,%d2		|init digit counter
353ap_n_gd:
354	bfextu	%d4{%d3:#4},%d0	|get digit
355	bnes	ap_n_fx		|if non-zero, go to exp fix
356	subql	#4,%d3		|point to previous digit
357	addql	#1,%d1		|inc digit counter
358	dbf	%d2,ap_n_gd	|get next digit
359ap_n_fx:
360	movel	%d1,%d0		|copy counter to d0
361	movel	L_SCR1(%a6),%d1	|get adjusted exp from memory
362	subl	%d0,%d1		|subtract count from exp
363	bgts	ap_n_fm		|if still pos, go fix mantissa
364	negl	%d1		|take abs of exp and clr SE
365	movel	(%a0),%d4		|load lword 1 to d4
366	andl	#0xbfffffff,%d4	| and clr SE in d4
367	andl	#0xbfffffff,(%a0)	| and in memory
368|
369| Calculate the mantissa multiplier to compensate for the appending of
370| zeros to the mantissa.
371|
372ap_n_fm:
373	movel	#PTENRN,%a1	|get address of power-of-ten table
374	clrl	%d3		|init table index
375	fmoves	FONE,%fp1	|init fp1 to 1
376	moveql	#3,%d2		|init d2 to count bits in counter
377ap_n_el:
378	asrl	#1,%d0		|shift lsb into carry
379	bccs	ap_n_en		|if 1, mul fp1 by pwrten factor
380	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
381ap_n_en:
382	addl	#12,%d3		|inc d3 to next rtable entry
383	tstl	%d0		|check if d0 is zero
384	bnes	ap_n_el		|if not, get next bit
385	fdivx	%fp1,%fp0		|div mantissa by 10**(no_bits_shifted)
386|
387|
388| Calculate power-of-ten factor from adjusted and shifted exponent.
389|
390| Register usage:
391|
392|  pwrten:
393|	(*)  d0: temp
394|	( )  d1: exponent
395|	(*)  d2: {FPCR[6:5],SM,SE} as index in RTABLE; temp
396|	(*)  d3: FPCR work copy
397|	( )  d4: first word of bcd
398|	(*)  a1: RTABLE pointer
399|  calc_p:
400|	(*)  d0: temp
401|	( )  d1: exponent
402|	(*)  d3: PWRTxx table index
403|	( )  a0: pointer to working copy of bcd
404|	(*)  a1: PWRTxx pointer
405|	(*) fp1: power-of-ten accumulator
406|
407| Pwrten calculates the exponent factor in the selected rounding mode
408| according to the following table:
409|
410|	Sign of Mant  Sign of Exp  Rounding Mode  PWRTEN Rounding Mode
411|
412|	ANY	  ANY	RN	RN
413|
414|	 +	   +	RP	RP
415|	 -	   +	RP	RM
416|	 +	   -	RP	RM
417|	 -	   -	RP	RP
418|
419|	 +	   +	RM	RM
420|	 -	   +	RM	RP
421|	 +	   -	RM	RP
422|	 -	   -	RM	RM
423|
424|	 +	   +	RZ	RM
425|	 -	   +	RZ	RM
426|	 +	   -	RZ	RP
427|	 -	   -	RZ	RP
428|
429|
430pwrten:
431	movel	USER_FPCR(%a6),%d3 |get user's FPCR
432	bfextu	%d3{#26:#2},%d2	|isolate rounding mode bits
433	movel	(%a0),%d4		|reload 1st bcd word to d4
434	asll	#2,%d2		|format d2 to be
435	bfextu	%d4{#0:#2},%d0	| {FPCR[6],FPCR[5],SM,SE}
436	addl	%d0,%d2		|in d2 as index into RTABLE
437	leal	RTABLE,%a1	|load rtable base
438	moveb	(%a1,%d2),%d0	|load new rounding bits from table
439	clrl	%d3			|clear d3 to force no exc and extended
440	bfins	%d0,%d3{#26:#2}	|stuff new rounding bits in FPCR
441	fmovel	%d3,%FPCR		|write new FPCR
442	asrl	#1,%d0		|write correct PTENxx table
443	bccs	not_rp		|to a1
444	leal	PTENRP,%a1	|it is RP
445	bras	calc_p		|go to init section
446not_rp:
447	asrl	#1,%d0		|keep checking
448	bccs	not_rm
449	leal	PTENRM,%a1	|it is RM
450	bras	calc_p		|go to init section
451not_rm:
452	leal	PTENRN,%a1	|it is RN
453calc_p:
454	movel	%d1,%d0		|copy exp to d0;use d0
455	bpls	no_neg		|if exp is negative,
456	negl	%d0		|invert it
457	orl	#0x40000000,(%a0)	|and set SE bit
458no_neg:
459	clrl	%d3		|table index
460	fmoves	FONE,%fp1	|init fp1 to 1
461e_loop:
462	asrl	#1,%d0		|shift next bit into carry
463	bccs	e_next		|if zero, skip the mul
464	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
465e_next:
466	addl	#12,%d3		|inc d3 to next rtable entry
467	tstl	%d0		|check if d0 is zero
468	bnes	e_loop		|not zero, continue shifting
469|
470|
471|  Check the sign of the adjusted exp and make the value in fp0 the
472|  same sign. If the exp was pos then multiply fp1*fp0;
473|  else divide fp0/fp1.
474|
475| Register Usage:
476|  norm:
477|	( )  a0: pointer to working bcd value
478|	(*) fp0: mantissa accumulator
479|	( ) fp1: scaling factor - 10**(abs(exp))
480|
481norm:
482	btst	#30,(%a0)	|test the sign of the exponent
483	beqs	mul		|if clear, go to multiply
484div:
485	fdivx	%fp1,%fp0		|exp is negative, so divide mant by exp
486	bras	end_dec
487mul:
488	fmulx	%fp1,%fp0		|exp is positive, so multiply by exp
489|
490|
491| Clean up and return with result in fp0.
492|
493| If the final mul/div in decbin incurred an inex exception,
494| it will be inex2, but will be reported as inex1 by get_op.
495|
496end_dec:
497	fmovel	%FPSR,%d0		|get status register
498	bclrl	#inex2_bit+8,%d0	|test for inex2 and clear it
499	fmovel	%d0,%FPSR		|return status reg w/o inex2
500	beqs	no_exc		|skip this if no exc
501	orl	#inx1a_mask,USER_FPSR(%a6) |set inex1/ainex
502no_exc:
503	moveml	(%a7)+,%d2-%d5
504	rts
505	|end
506