xref: /linux/arch/m68k/atari/time.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /*
2  * linux/arch/m68k/atari/time.c
3  *
4  * Atari time and real time clock stuff
5  *
6  * Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
7  *
8  * This file is subject to the terms and conditions of the GNU General Public
9  * License.  See the file COPYING in the main directory of this archive
10  * for more details.
11  */
12 
13 #include <linux/types.h>
14 #include <linux/mc146818rtc.h>
15 #include <linux/interrupt.h>
16 #include <linux/init.h>
17 #include <linux/rtc.h>
18 #include <linux/bcd.h>
19 #include <linux/clocksource.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 
23 #include <asm/atariints.h>
24 #include <asm/machdep.h>
25 
26 #include "atari.h"
27 
28 DEFINE_SPINLOCK(rtc_lock);
29 EXPORT_SYMBOL_GPL(rtc_lock);
30 
31 static u64 atari_read_clk(struct clocksource *cs);
32 
33 static struct clocksource atari_clk = {
34 	.name   = "mfp",
35 	.rating = 100,
36 	.read   = atari_read_clk,
37 	.mask   = CLOCKSOURCE_MASK(32),
38 	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
39 };
40 
41 static u32 clk_total;
42 static u8 last_timer_count;
43 
44 static irqreturn_t mfp_timer_c_handler(int irq, void *dev_id)
45 {
46 	unsigned long flags;
47 
48 	local_irq_save(flags);
49 	do {
50 		last_timer_count = st_mfp.tim_dt_c;
51 	} while (last_timer_count == 1);
52 	clk_total += INT_TICKS;
53 	legacy_timer_tick(1);
54 	timer_heartbeat();
55 	local_irq_restore(flags);
56 
57 	return IRQ_HANDLED;
58 }
59 
60 void __init
61 atari_sched_init(void)
62 {
63     /* set Timer C data Register */
64     st_mfp.tim_dt_c = INT_TICKS;
65     /* start timer C, div = 1:100 */
66     st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 15) | 0x60;
67     /* install interrupt service routine for MFP Timer C */
68     if (request_irq(IRQ_MFP_TIMC, mfp_timer_c_handler, IRQF_TIMER, "timer",
69                     NULL))
70 	pr_err("Couldn't register timer interrupt\n");
71 
72     clocksource_register_hz(&atari_clk, INT_CLK);
73 }
74 
75 /* ++andreas: gettimeoffset fixed to check for pending interrupt */
76 
77 static u64 atari_read_clk(struct clocksource *cs)
78 {
79 	unsigned long flags;
80 	u8 count;
81 	u32 ticks;
82 
83 	local_irq_save(flags);
84 	/* Ensure that the count is monotonically decreasing, even though
85 	 * the result may briefly stop changing after counter wrap-around.
86 	 */
87 	count = min(st_mfp.tim_dt_c, last_timer_count);
88 	last_timer_count = count;
89 
90 	ticks = INT_TICKS - count;
91 	ticks += clk_total;
92 	local_irq_restore(flags);
93 
94 	return ticks;
95 }
96 
97 
98 static void mste_read(struct MSTE_RTC *val)
99 {
100 #define COPY(v) val->v=(mste_rtc.v & 0xf)
101 	do {
102 		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
103 		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
104 		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
105 		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
106 		COPY(year_tens) ;
107 	/* prevent from reading the clock while it changed */
108 	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
109 #undef COPY
110 }
111 
112 static void mste_write(struct MSTE_RTC *val)
113 {
114 #define COPY(v) mste_rtc.v=val->v
115 	do {
116 		COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
117 		COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
118 		COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
119 		COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
120 		COPY(year_tens) ;
121 	/* prevent from writing the clock while it changed */
122 	} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
123 #undef COPY
124 }
125 
126 #define	RTC_READ(reg)				\
127     ({	unsigned char	__val;			\
128 		(void) atari_writeb(reg,&tt_rtc.regsel);	\
129 		__val = tt_rtc.data;		\
130 		__val;				\
131 	})
132 
133 #define	RTC_WRITE(reg,val)			\
134     do {					\
135 		atari_writeb(reg,&tt_rtc.regsel);	\
136 		tt_rtc.data = (val);		\
137 	} while(0)
138 
139 
140 #define HWCLK_POLL_INTERVAL	5
141 
142 int atari_mste_hwclk( int op, struct rtc_time *t )
143 {
144     int hour, year;
145     int hr24=0;
146     struct MSTE_RTC val;
147 
148     mste_rtc.mode=(mste_rtc.mode | 1);
149     hr24=mste_rtc.mon_tens & 1;
150     mste_rtc.mode=(mste_rtc.mode & ~1);
151 
152     if (op) {
153         /* write: prepare values */
154 
155         val.sec_ones = t->tm_sec % 10;
156         val.sec_tens = t->tm_sec / 10;
157         val.min_ones = t->tm_min % 10;
158         val.min_tens = t->tm_min / 10;
159         hour = t->tm_hour;
160         if (!hr24) {
161 	    if (hour > 11)
162 		hour += 20 - 12;
163 	    if (hour == 0 || hour == 20)
164 		hour += 12;
165         }
166         val.hr_ones = hour % 10;
167         val.hr_tens = hour / 10;
168         val.day_ones = t->tm_mday % 10;
169         val.day_tens = t->tm_mday / 10;
170         val.mon_ones = (t->tm_mon+1) % 10;
171         val.mon_tens = (t->tm_mon+1) / 10;
172         year = t->tm_year - 80;
173         val.year_ones = year % 10;
174         val.year_tens = year / 10;
175         val.weekday = t->tm_wday;
176         mste_write(&val);
177         mste_rtc.mode=(mste_rtc.mode | 1);
178         val.year_ones = (year % 4);	/* leap year register */
179         mste_rtc.mode=(mste_rtc.mode & ~1);
180     }
181     else {
182         mste_read(&val);
183         t->tm_sec = val.sec_ones + val.sec_tens * 10;
184         t->tm_min = val.min_ones + val.min_tens * 10;
185         hour = val.hr_ones + val.hr_tens * 10;
186 	if (!hr24) {
187 	    if (hour == 12 || hour == 12 + 20)
188 		hour -= 12;
189 	    if (hour >= 20)
190                 hour += 12 - 20;
191         }
192 	t->tm_hour = hour;
193 	t->tm_mday = val.day_ones + val.day_tens * 10;
194         t->tm_mon  = val.mon_ones + val.mon_tens * 10 - 1;
195         t->tm_year = val.year_ones + val.year_tens * 10 + 80;
196         t->tm_wday = val.weekday;
197     }
198     return 0;
199 }
200 
201 int atari_tt_hwclk( int op, struct rtc_time *t )
202 {
203     int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
204     unsigned long	flags;
205     unsigned char	ctrl;
206     int pm = 0;
207 
208     ctrl = RTC_READ(RTC_CONTROL); /* control registers are
209                                    * independent from the UIP */
210 
211     if (op) {
212         /* write: prepare values */
213 
214         sec  = t->tm_sec;
215         min  = t->tm_min;
216         hour = t->tm_hour;
217         day  = t->tm_mday;
218         mon  = t->tm_mon + 1;
219         year = t->tm_year - atari_rtc_year_offset;
220         wday = t->tm_wday + (t->tm_wday >= 0);
221 
222         if (!(ctrl & RTC_24H)) {
223 	    if (hour > 11) {
224 		pm = 0x80;
225 		if (hour != 12)
226 		    hour -= 12;
227 	    }
228 	    else if (hour == 0)
229 		hour = 12;
230         }
231 
232         if (!(ctrl & RTC_DM_BINARY)) {
233 	    sec = bin2bcd(sec);
234 	    min = bin2bcd(min);
235 	    hour = bin2bcd(hour);
236 	    day = bin2bcd(day);
237 	    mon = bin2bcd(mon);
238 	    year = bin2bcd(year);
239 	    if (wday >= 0)
240 		wday = bin2bcd(wday);
241         }
242     }
243 
244     /* Reading/writing the clock registers is a bit critical due to
245      * the regular update cycle of the RTC. While an update is in
246      * progress, registers 0..9 shouldn't be touched.
247      * The problem is solved like that: If an update is currently in
248      * progress (the UIP bit is set), the process sleeps for a while
249      * (50ms). This really should be enough, since the update cycle
250      * normally needs 2 ms.
251      * If the UIP bit reads as 0, we have at least 244 usecs until the
252      * update starts. This should be enough... But to be sure,
253      * additionally the RTC_SET bit is set to prevent an update cycle.
254      */
255 
256     while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
257 	if (in_atomic() || irqs_disabled())
258 	    mdelay(1);
259 	else
260 	    schedule_timeout_interruptible(HWCLK_POLL_INTERVAL);
261     }
262 
263     local_irq_save(flags);
264     RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
265     if (!op) {
266         sec  = RTC_READ( RTC_SECONDS );
267         min  = RTC_READ( RTC_MINUTES );
268         hour = RTC_READ( RTC_HOURS );
269         day  = RTC_READ( RTC_DAY_OF_MONTH );
270         mon  = RTC_READ( RTC_MONTH );
271         year = RTC_READ( RTC_YEAR );
272         wday = RTC_READ( RTC_DAY_OF_WEEK );
273     }
274     else {
275         RTC_WRITE( RTC_SECONDS, sec );
276         RTC_WRITE( RTC_MINUTES, min );
277         RTC_WRITE( RTC_HOURS, hour + pm);
278         RTC_WRITE( RTC_DAY_OF_MONTH, day );
279         RTC_WRITE( RTC_MONTH, mon );
280         RTC_WRITE( RTC_YEAR, year );
281         if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
282     }
283     RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
284     local_irq_restore(flags);
285 
286     if (!op) {
287         /* read: adjust values */
288 
289         if (hour & 0x80) {
290 	    hour &= ~0x80;
291 	    pm = 1;
292 	}
293 
294 	if (!(ctrl & RTC_DM_BINARY)) {
295 	    sec = bcd2bin(sec);
296 	    min = bcd2bin(min);
297 	    hour = bcd2bin(hour);
298 	    day = bcd2bin(day);
299 	    mon = bcd2bin(mon);
300 	    year = bcd2bin(year);
301 	    wday = bcd2bin(wday);
302         }
303 
304         if (!(ctrl & RTC_24H)) {
305 	    if (!pm && hour == 12)
306 		hour = 0;
307 	    else if (pm && hour != 12)
308 		hour += 12;
309         }
310 
311         t->tm_sec  = sec;
312         t->tm_min  = min;
313         t->tm_hour = hour;
314         t->tm_mday = day;
315         t->tm_mon  = mon - 1;
316         t->tm_year = year + atari_rtc_year_offset;
317         t->tm_wday = wday - 1;
318     }
319 
320     return( 0 );
321 }
322