1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited 4 * 5 * Derived from MIPS: 6 * Copyright (C) 1995 - 2000 by Ralf Baechle 7 */ 8 #include <linux/context_tracking.h> 9 #include <linux/signal.h> 10 #include <linux/sched.h> 11 #include <linux/interrupt.h> 12 #include <linux/kernel.h> 13 #include <linux/entry-common.h> 14 #include <linux/errno.h> 15 #include <linux/string.h> 16 #include <linux/types.h> 17 #include <linux/ptrace.h> 18 #include <linux/ratelimit.h> 19 #include <linux/mman.h> 20 #include <linux/mm.h> 21 #include <linux/smp.h> 22 #include <linux/kdebug.h> 23 #include <linux/kprobes.h> 24 #include <linux/perf_event.h> 25 #include <linux/uaccess.h> 26 27 #include <asm/branch.h> 28 #include <asm/mmu_context.h> 29 #include <asm/ptrace.h> 30 31 int show_unhandled_signals = 1; 32 33 static void __kprobes no_context(struct pt_regs *regs, unsigned long address) 34 { 35 const int field = sizeof(unsigned long) * 2; 36 37 /* Are we prepared to handle this kernel fault? */ 38 if (fixup_exception(regs)) 39 return; 40 41 /* 42 * Oops. The kernel tried to access some bad page. We'll have to 43 * terminate things with extreme prejudice. 44 */ 45 bust_spinlocks(1); 46 47 pr_alert("CPU %d Unable to handle kernel paging request at " 48 "virtual address %0*lx, era == %0*lx, ra == %0*lx\n", 49 raw_smp_processor_id(), field, address, field, regs->csr_era, 50 field, regs->regs[1]); 51 die("Oops", regs); 52 } 53 54 static void __kprobes do_out_of_memory(struct pt_regs *regs, unsigned long address) 55 { 56 /* 57 * We ran out of memory, call the OOM killer, and return the userspace 58 * (which will retry the fault, or kill us if we got oom-killed). 59 */ 60 if (!user_mode(regs)) { 61 no_context(regs, address); 62 return; 63 } 64 pagefault_out_of_memory(); 65 } 66 67 static void __kprobes do_sigbus(struct pt_regs *regs, 68 unsigned long write, unsigned long address, int si_code) 69 { 70 /* Kernel mode? Handle exceptions or die */ 71 if (!user_mode(regs)) { 72 no_context(regs, address); 73 return; 74 } 75 76 /* 77 * Send a sigbus, regardless of whether we were in kernel 78 * or user mode. 79 */ 80 current->thread.csr_badvaddr = address; 81 current->thread.trap_nr = read_csr_excode(); 82 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 83 } 84 85 static void __kprobes do_sigsegv(struct pt_regs *regs, 86 unsigned long write, unsigned long address, int si_code) 87 { 88 const int field = sizeof(unsigned long) * 2; 89 static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10); 90 91 /* Kernel mode? Handle exceptions or die */ 92 if (!user_mode(regs)) { 93 no_context(regs, address); 94 return; 95 } 96 97 /* User mode accesses just cause a SIGSEGV */ 98 current->thread.csr_badvaddr = address; 99 if (!write) 100 current->thread.error_code = 1; 101 else 102 current->thread.error_code = 2; 103 current->thread.trap_nr = read_csr_excode(); 104 105 if (show_unhandled_signals && 106 unhandled_signal(current, SIGSEGV) && __ratelimit(&ratelimit_state)) { 107 pr_info("do_page_fault(): sending SIGSEGV to %s for invalid %s %0*lx\n", 108 current->comm, 109 write ? "write access to" : "read access from", 110 field, address); 111 pr_info("era = %0*lx in", field, 112 (unsigned long) regs->csr_era); 113 print_vma_addr(KERN_CONT " ", regs->csr_era); 114 pr_cont("\n"); 115 pr_info("ra = %0*lx in", field, 116 (unsigned long) regs->regs[1]); 117 print_vma_addr(KERN_CONT " ", regs->regs[1]); 118 pr_cont("\n"); 119 } 120 force_sig_fault(SIGSEGV, si_code, (void __user *)address); 121 } 122 123 /* 124 * This routine handles page faults. It determines the address, 125 * and the problem, and then passes it off to one of the appropriate 126 * routines. 127 */ 128 static void __kprobes __do_page_fault(struct pt_regs *regs, 129 unsigned long write, unsigned long address) 130 { 131 int si_code = SEGV_MAPERR; 132 unsigned int flags = FAULT_FLAG_DEFAULT; 133 struct task_struct *tsk = current; 134 struct mm_struct *mm = tsk->mm; 135 struct vm_area_struct *vma = NULL; 136 vm_fault_t fault; 137 138 /* 139 * We fault-in kernel-space virtual memory on-demand. The 140 * 'reference' page table is init_mm.pgd. 141 * 142 * NOTE! We MUST NOT take any locks for this case. We may 143 * be in an interrupt or a critical region, and should 144 * only copy the information from the master page table, 145 * nothing more. 146 */ 147 if (address & __UA_LIMIT) { 148 if (!user_mode(regs)) 149 no_context(regs, address); 150 else 151 do_sigsegv(regs, write, address, si_code); 152 return; 153 } 154 155 /* 156 * If we're in an interrupt or have no user 157 * context, we must not take the fault.. 158 */ 159 if (faulthandler_disabled() || !mm) { 160 do_sigsegv(regs, write, address, si_code); 161 return; 162 } 163 164 if (user_mode(regs)) 165 flags |= FAULT_FLAG_USER; 166 167 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 168 retry: 169 mmap_read_lock(mm); 170 vma = find_vma(mm, address); 171 if (!vma) 172 goto bad_area; 173 if (vma->vm_start <= address) 174 goto good_area; 175 if (!(vma->vm_flags & VM_GROWSDOWN)) 176 goto bad_area; 177 if (!expand_stack(vma, address)) 178 goto good_area; 179 /* 180 * Something tried to access memory that isn't in our memory map.. 181 * Fix it, but check if it's kernel or user first.. 182 */ 183 bad_area: 184 mmap_read_unlock(mm); 185 do_sigsegv(regs, write, address, si_code); 186 return; 187 188 /* 189 * Ok, we have a good vm_area for this memory access, so 190 * we can handle it.. 191 */ 192 good_area: 193 si_code = SEGV_ACCERR; 194 195 if (write) { 196 flags |= FAULT_FLAG_WRITE; 197 if (!(vma->vm_flags & VM_WRITE)) 198 goto bad_area; 199 } else { 200 if (!(vma->vm_flags & VM_READ) && address != exception_era(regs)) 201 goto bad_area; 202 if (!(vma->vm_flags & VM_EXEC) && address == exception_era(regs)) 203 goto bad_area; 204 } 205 206 /* 207 * If for any reason at all we couldn't handle the fault, 208 * make sure we exit gracefully rather than endlessly redo 209 * the fault. 210 */ 211 fault = handle_mm_fault(vma, address, flags, regs); 212 213 if (fault_signal_pending(fault, regs)) { 214 if (!user_mode(regs)) 215 no_context(regs, address); 216 return; 217 } 218 219 if (unlikely(fault & VM_FAULT_RETRY)) { 220 flags |= FAULT_FLAG_TRIED; 221 222 /* 223 * No need to mmap_read_unlock(mm) as we would 224 * have already released it in __lock_page_or_retry 225 * in mm/filemap.c. 226 */ 227 goto retry; 228 } 229 if (unlikely(fault & VM_FAULT_ERROR)) { 230 mmap_read_unlock(mm); 231 if (fault & VM_FAULT_OOM) { 232 do_out_of_memory(regs, address); 233 return; 234 } else if (fault & VM_FAULT_SIGSEGV) { 235 do_sigsegv(regs, write, address, si_code); 236 return; 237 } else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 238 do_sigbus(regs, write, address, si_code); 239 return; 240 } 241 BUG(); 242 } 243 244 mmap_read_unlock(mm); 245 } 246 247 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs, 248 unsigned long write, unsigned long address) 249 { 250 irqentry_state_t state = irqentry_enter(regs); 251 252 /* Enable interrupt if enabled in parent context */ 253 if (likely(regs->csr_prmd & CSR_PRMD_PIE)) 254 local_irq_enable(); 255 256 __do_page_fault(regs, write, address); 257 258 local_irq_disable(); 259 260 irqentry_exit(regs, state); 261 } 262