xref: /linux/arch/loongarch/mm/fault.c (revision 4359a011e259a4608afc7fb3635370c9d4ba5943)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4  *
5  * Derived from MIPS:
6  * Copyright (C) 1995 - 2000 by Ralf Baechle
7  */
8 #include <linux/context_tracking.h>
9 #include <linux/signal.h>
10 #include <linux/sched.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/entry-common.h>
14 #include <linux/errno.h>
15 #include <linux/string.h>
16 #include <linux/types.h>
17 #include <linux/ptrace.h>
18 #include <linux/ratelimit.h>
19 #include <linux/mman.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/kdebug.h>
23 #include <linux/kprobes.h>
24 #include <linux/perf_event.h>
25 #include <linux/uaccess.h>
26 
27 #include <asm/branch.h>
28 #include <asm/mmu_context.h>
29 #include <asm/ptrace.h>
30 
31 int show_unhandled_signals = 1;
32 
33 static void __kprobes no_context(struct pt_regs *regs, unsigned long address)
34 {
35 	const int field = sizeof(unsigned long) * 2;
36 
37 	/* Are we prepared to handle this kernel fault?	 */
38 	if (fixup_exception(regs))
39 		return;
40 
41 	/*
42 	 * Oops. The kernel tried to access some bad page. We'll have to
43 	 * terminate things with extreme prejudice.
44 	 */
45 	bust_spinlocks(1);
46 
47 	pr_alert("CPU %d Unable to handle kernel paging request at "
48 	       "virtual address %0*lx, era == %0*lx, ra == %0*lx\n",
49 	       raw_smp_processor_id(), field, address, field, regs->csr_era,
50 	       field,  regs->regs[1]);
51 	die("Oops", regs);
52 }
53 
54 static void __kprobes do_out_of_memory(struct pt_regs *regs, unsigned long address)
55 {
56 	/*
57 	 * We ran out of memory, call the OOM killer, and return the userspace
58 	 * (which will retry the fault, or kill us if we got oom-killed).
59 	 */
60 	if (!user_mode(regs)) {
61 		no_context(regs, address);
62 		return;
63 	}
64 	pagefault_out_of_memory();
65 }
66 
67 static void __kprobes do_sigbus(struct pt_regs *regs,
68 		unsigned long write, unsigned long address, int si_code)
69 {
70 	/* Kernel mode? Handle exceptions or die */
71 	if (!user_mode(regs)) {
72 		no_context(regs, address);
73 		return;
74 	}
75 
76 	/*
77 	 * Send a sigbus, regardless of whether we were in kernel
78 	 * or user mode.
79 	 */
80 	current->thread.csr_badvaddr = address;
81 	current->thread.trap_nr = read_csr_excode();
82 	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
83 }
84 
85 static void __kprobes do_sigsegv(struct pt_regs *regs,
86 		unsigned long write, unsigned long address, int si_code)
87 {
88 	const int field = sizeof(unsigned long) * 2;
89 	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
90 
91 	/* Kernel mode? Handle exceptions or die */
92 	if (!user_mode(regs)) {
93 		no_context(regs, address);
94 		return;
95 	}
96 
97 	/* User mode accesses just cause a SIGSEGV */
98 	current->thread.csr_badvaddr = address;
99 	if (!write)
100 		current->thread.error_code = 1;
101 	else
102 		current->thread.error_code = 2;
103 	current->thread.trap_nr = read_csr_excode();
104 
105 	if (show_unhandled_signals &&
106 	    unhandled_signal(current, SIGSEGV) && __ratelimit(&ratelimit_state)) {
107 		pr_info("do_page_fault(): sending SIGSEGV to %s for invalid %s %0*lx\n",
108 			current->comm,
109 			write ? "write access to" : "read access from",
110 			field, address);
111 		pr_info("era = %0*lx in", field,
112 			(unsigned long) regs->csr_era);
113 		print_vma_addr(KERN_CONT " ", regs->csr_era);
114 		pr_cont("\n");
115 		pr_info("ra  = %0*lx in", field,
116 			(unsigned long) regs->regs[1]);
117 		print_vma_addr(KERN_CONT " ", regs->regs[1]);
118 		pr_cont("\n");
119 	}
120 	force_sig_fault(SIGSEGV, si_code, (void __user *)address);
121 }
122 
123 /*
124  * This routine handles page faults.  It determines the address,
125  * and the problem, and then passes it off to one of the appropriate
126  * routines.
127  */
128 static void __kprobes __do_page_fault(struct pt_regs *regs,
129 			unsigned long write, unsigned long address)
130 {
131 	int si_code = SEGV_MAPERR;
132 	unsigned int flags = FAULT_FLAG_DEFAULT;
133 	struct task_struct *tsk = current;
134 	struct mm_struct *mm = tsk->mm;
135 	struct vm_area_struct *vma = NULL;
136 	vm_fault_t fault;
137 
138 	/*
139 	 * We fault-in kernel-space virtual memory on-demand. The
140 	 * 'reference' page table is init_mm.pgd.
141 	 *
142 	 * NOTE! We MUST NOT take any locks for this case. We may
143 	 * be in an interrupt or a critical region, and should
144 	 * only copy the information from the master page table,
145 	 * nothing more.
146 	 */
147 	if (address & __UA_LIMIT) {
148 		if (!user_mode(regs))
149 			no_context(regs, address);
150 		else
151 			do_sigsegv(regs, write, address, si_code);
152 		return;
153 	}
154 
155 	/*
156 	 * If we're in an interrupt or have no user
157 	 * context, we must not take the fault..
158 	 */
159 	if (faulthandler_disabled() || !mm) {
160 		do_sigsegv(regs, write, address, si_code);
161 		return;
162 	}
163 
164 	if (user_mode(regs))
165 		flags |= FAULT_FLAG_USER;
166 
167 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
168 retry:
169 	mmap_read_lock(mm);
170 	vma = find_vma(mm, address);
171 	if (!vma)
172 		goto bad_area;
173 	if (vma->vm_start <= address)
174 		goto good_area;
175 	if (!(vma->vm_flags & VM_GROWSDOWN))
176 		goto bad_area;
177 	if (!expand_stack(vma, address))
178 		goto good_area;
179 /*
180  * Something tried to access memory that isn't in our memory map..
181  * Fix it, but check if it's kernel or user first..
182  */
183 bad_area:
184 	mmap_read_unlock(mm);
185 	do_sigsegv(regs, write, address, si_code);
186 	return;
187 
188 /*
189  * Ok, we have a good vm_area for this memory access, so
190  * we can handle it..
191  */
192 good_area:
193 	si_code = SEGV_ACCERR;
194 
195 	if (write) {
196 		flags |= FAULT_FLAG_WRITE;
197 		if (!(vma->vm_flags & VM_WRITE))
198 			goto bad_area;
199 	} else {
200 		if (!(vma->vm_flags & VM_READ) && address != exception_era(regs))
201 			goto bad_area;
202 		if (!(vma->vm_flags & VM_EXEC) && address == exception_era(regs))
203 			goto bad_area;
204 	}
205 
206 	/*
207 	 * If for any reason at all we couldn't handle the fault,
208 	 * make sure we exit gracefully rather than endlessly redo
209 	 * the fault.
210 	 */
211 	fault = handle_mm_fault(vma, address, flags, regs);
212 
213 	if (fault_signal_pending(fault, regs)) {
214 		if (!user_mode(regs))
215 			no_context(regs, address);
216 		return;
217 	}
218 
219 	/* The fault is fully completed (including releasing mmap lock) */
220 	if (fault & VM_FAULT_COMPLETED)
221 		return;
222 
223 	if (unlikely(fault & VM_FAULT_RETRY)) {
224 		flags |= FAULT_FLAG_TRIED;
225 
226 		/*
227 		 * No need to mmap_read_unlock(mm) as we would
228 		 * have already released it in __lock_page_or_retry
229 		 * in mm/filemap.c.
230 		 */
231 		goto retry;
232 	}
233 	if (unlikely(fault & VM_FAULT_ERROR)) {
234 		mmap_read_unlock(mm);
235 		if (fault & VM_FAULT_OOM) {
236 			do_out_of_memory(regs, address);
237 			return;
238 		} else if (fault & VM_FAULT_SIGSEGV) {
239 			do_sigsegv(regs, write, address, si_code);
240 			return;
241 		} else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
242 			do_sigbus(regs, write, address, si_code);
243 			return;
244 		}
245 		BUG();
246 	}
247 
248 	mmap_read_unlock(mm);
249 }
250 
251 asmlinkage void __kprobes do_page_fault(struct pt_regs *regs,
252 			unsigned long write, unsigned long address)
253 {
254 	irqentry_state_t state = irqentry_enter(regs);
255 
256 	/* Enable interrupt if enabled in parent context */
257 	if (likely(regs->csr_prmd & CSR_PRMD_PIE))
258 		local_irq_enable();
259 
260 	__do_page_fault(regs, write, address);
261 
262 	local_irq_disable();
263 
264 	irqentry_exit(regs, state);
265 }
266