xref: /linux/arch/loongarch/kvm/vcpu.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2020-2023 Loongson Technology Corporation Limited
4  */
5 
6 #include <linux/kvm_host.h>
7 #include <linux/entry-kvm.h>
8 #include <asm/fpu.h>
9 #include <asm/loongarch.h>
10 #include <asm/setup.h>
11 #include <asm/time.h>
12 
13 #define CREATE_TRACE_POINTS
14 #include "trace.h"
15 
16 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
17 	KVM_GENERIC_VCPU_STATS(),
18 	STATS_DESC_COUNTER(VCPU, int_exits),
19 	STATS_DESC_COUNTER(VCPU, idle_exits),
20 	STATS_DESC_COUNTER(VCPU, cpucfg_exits),
21 	STATS_DESC_COUNTER(VCPU, signal_exits),
22 };
23 
24 const struct kvm_stats_header kvm_vcpu_stats_header = {
25 	.name_size = KVM_STATS_NAME_SIZE,
26 	.num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
27 	.id_offset = sizeof(struct kvm_stats_header),
28 	.desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
29 	.data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
30 		       sizeof(kvm_vcpu_stats_desc),
31 };
32 
33 /*
34  * kvm_check_requests - check and handle pending vCPU requests
35  *
36  * Return: RESUME_GUEST if we should enter the guest
37  *         RESUME_HOST  if we should exit to userspace
38  */
39 static int kvm_check_requests(struct kvm_vcpu *vcpu)
40 {
41 	if (!kvm_request_pending(vcpu))
42 		return RESUME_GUEST;
43 
44 	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
45 		vcpu->arch.vpid = 0;  /* Drop vpid for this vCPU */
46 
47 	if (kvm_dirty_ring_check_request(vcpu))
48 		return RESUME_HOST;
49 
50 	return RESUME_GUEST;
51 }
52 
53 /*
54  * Check and handle pending signal and vCPU requests etc
55  * Run with irq enabled and preempt enabled
56  *
57  * Return: RESUME_GUEST if we should enter the guest
58  *         RESUME_HOST  if we should exit to userspace
59  *         < 0 if we should exit to userspace, where the return value
60  *         indicates an error
61  */
62 static int kvm_enter_guest_check(struct kvm_vcpu *vcpu)
63 {
64 	int ret;
65 
66 	/*
67 	 * Check conditions before entering the guest
68 	 */
69 	ret = xfer_to_guest_mode_handle_work(vcpu);
70 	if (ret < 0)
71 		return ret;
72 
73 	ret = kvm_check_requests(vcpu);
74 
75 	return ret;
76 }
77 
78 /*
79  * Called with irq enabled
80  *
81  * Return: RESUME_GUEST if we should enter the guest, and irq disabled
82  *         Others if we should exit to userspace
83  */
84 static int kvm_pre_enter_guest(struct kvm_vcpu *vcpu)
85 {
86 	int ret;
87 
88 	do {
89 		ret = kvm_enter_guest_check(vcpu);
90 		if (ret != RESUME_GUEST)
91 			break;
92 
93 		/*
94 		 * Handle vcpu timer, interrupts, check requests and
95 		 * check vmid before vcpu enter guest
96 		 */
97 		local_irq_disable();
98 		kvm_deliver_intr(vcpu);
99 		kvm_deliver_exception(vcpu);
100 		/* Make sure the vcpu mode has been written */
101 		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
102 		kvm_check_vpid(vcpu);
103 		vcpu->arch.host_eentry = csr_read64(LOONGARCH_CSR_EENTRY);
104 		/* Clear KVM_LARCH_SWCSR_LATEST as CSR will change when enter guest */
105 		vcpu->arch.aux_inuse &= ~KVM_LARCH_SWCSR_LATEST;
106 
107 		if (kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending()) {
108 			/* make sure the vcpu mode has been written */
109 			smp_store_mb(vcpu->mode, OUTSIDE_GUEST_MODE);
110 			local_irq_enable();
111 			ret = -EAGAIN;
112 		}
113 	} while (ret != RESUME_GUEST);
114 
115 	return ret;
116 }
117 
118 /*
119  * Return 1 for resume guest and "<= 0" for resume host.
120  */
121 static int kvm_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
122 {
123 	int ret = RESUME_GUEST;
124 	unsigned long estat = vcpu->arch.host_estat;
125 	u32 intr = estat & 0x1fff; /* Ignore NMI */
126 	u32 ecode = (estat & CSR_ESTAT_EXC) >> CSR_ESTAT_EXC_SHIFT;
127 
128 	vcpu->mode = OUTSIDE_GUEST_MODE;
129 
130 	/* Set a default exit reason */
131 	run->exit_reason = KVM_EXIT_UNKNOWN;
132 
133 	guest_timing_exit_irqoff();
134 	guest_state_exit_irqoff();
135 	local_irq_enable();
136 
137 	trace_kvm_exit(vcpu, ecode);
138 	if (ecode) {
139 		ret = kvm_handle_fault(vcpu, ecode);
140 	} else {
141 		WARN(!intr, "vm exiting with suspicious irq\n");
142 		++vcpu->stat.int_exits;
143 	}
144 
145 	if (ret == RESUME_GUEST)
146 		ret = kvm_pre_enter_guest(vcpu);
147 
148 	if (ret != RESUME_GUEST) {
149 		local_irq_disable();
150 		return ret;
151 	}
152 
153 	guest_timing_enter_irqoff();
154 	guest_state_enter_irqoff();
155 	trace_kvm_reenter(vcpu);
156 
157 	return RESUME_GUEST;
158 }
159 
160 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
161 {
162 	return !!(vcpu->arch.irq_pending) &&
163 		vcpu->arch.mp_state.mp_state == KVM_MP_STATE_RUNNABLE;
164 }
165 
166 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
167 {
168 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
169 }
170 
171 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
172 {
173 	return false;
174 }
175 
176 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
177 {
178 	return VM_FAULT_SIGBUS;
179 }
180 
181 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
182 				  struct kvm_translation *tr)
183 {
184 	return -EINVAL;
185 }
186 
187 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
188 {
189 	int ret;
190 
191 	/* Protect from TOD sync and vcpu_load/put() */
192 	preempt_disable();
193 	ret = kvm_pending_timer(vcpu) ||
194 		kvm_read_hw_gcsr(LOONGARCH_CSR_ESTAT) & (1 << INT_TI);
195 	preempt_enable();
196 
197 	return ret;
198 }
199 
200 int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
201 {
202 	int i;
203 
204 	kvm_debug("vCPU Register Dump:\n");
205 	kvm_debug("\tPC = 0x%08lx\n", vcpu->arch.pc);
206 	kvm_debug("\tExceptions: %08lx\n", vcpu->arch.irq_pending);
207 
208 	for (i = 0; i < 32; i += 4) {
209 		kvm_debug("\tGPR%02d: %08lx %08lx %08lx %08lx\n", i,
210 		       vcpu->arch.gprs[i], vcpu->arch.gprs[i + 1],
211 		       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
212 	}
213 
214 	kvm_debug("\tCRMD: 0x%08lx, ESTAT: 0x%08lx\n",
215 		  kvm_read_hw_gcsr(LOONGARCH_CSR_CRMD),
216 		  kvm_read_hw_gcsr(LOONGARCH_CSR_ESTAT));
217 
218 	kvm_debug("\tERA: 0x%08lx\n", kvm_read_hw_gcsr(LOONGARCH_CSR_ERA));
219 
220 	return 0;
221 }
222 
223 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
224 				struct kvm_mp_state *mp_state)
225 {
226 	*mp_state = vcpu->arch.mp_state;
227 
228 	return 0;
229 }
230 
231 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
232 				struct kvm_mp_state *mp_state)
233 {
234 	int ret = 0;
235 
236 	switch (mp_state->mp_state) {
237 	case KVM_MP_STATE_RUNNABLE:
238 		vcpu->arch.mp_state = *mp_state;
239 		break;
240 	default:
241 		ret = -EINVAL;
242 	}
243 
244 	return ret;
245 }
246 
247 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
248 					struct kvm_guest_debug *dbg)
249 {
250 	return -EINVAL;
251 }
252 
253 static int _kvm_getcsr(struct kvm_vcpu *vcpu, unsigned int id, u64 *val)
254 {
255 	unsigned long gintc;
256 	struct loongarch_csrs *csr = vcpu->arch.csr;
257 
258 	if (get_gcsr_flag(id) & INVALID_GCSR)
259 		return -EINVAL;
260 
261 	if (id == LOONGARCH_CSR_ESTAT) {
262 		/* ESTAT IP0~IP7 get from GINTC */
263 		gintc = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_GINTC) & 0xff;
264 		*val = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_ESTAT) | (gintc << 2);
265 		return 0;
266 	}
267 
268 	/*
269 	 * Get software CSR state since software state is consistent
270 	 * with hardware for synchronous ioctl
271 	 */
272 	*val = kvm_read_sw_gcsr(csr, id);
273 
274 	return 0;
275 }
276 
277 static int _kvm_setcsr(struct kvm_vcpu *vcpu, unsigned int id, u64 val)
278 {
279 	int ret = 0, gintc;
280 	struct loongarch_csrs *csr = vcpu->arch.csr;
281 
282 	if (get_gcsr_flag(id) & INVALID_GCSR)
283 		return -EINVAL;
284 
285 	if (id == LOONGARCH_CSR_ESTAT) {
286 		/* ESTAT IP0~IP7 inject through GINTC */
287 		gintc = (val >> 2) & 0xff;
288 		kvm_set_sw_gcsr(csr, LOONGARCH_CSR_GINTC, gintc);
289 
290 		gintc = val & ~(0xffUL << 2);
291 		kvm_set_sw_gcsr(csr, LOONGARCH_CSR_ESTAT, gintc);
292 
293 		return ret;
294 	}
295 
296 	kvm_write_sw_gcsr(csr, id, val);
297 
298 	return ret;
299 }
300 
301 static int _kvm_get_cpucfg_mask(int id, u64 *v)
302 {
303 	if (id < 0 || id >= KVM_MAX_CPUCFG_REGS)
304 		return -EINVAL;
305 
306 	switch (id) {
307 	case LOONGARCH_CPUCFG0:
308 		*v = GENMASK(31, 0);
309 		return 0;
310 	case LOONGARCH_CPUCFG1:
311 		/* CPUCFG1_MSGINT is not supported by KVM */
312 		*v = GENMASK(25, 0);
313 		return 0;
314 	case LOONGARCH_CPUCFG2:
315 		/* CPUCFG2 features unconditionally supported by KVM */
316 		*v = CPUCFG2_FP     | CPUCFG2_FPSP  | CPUCFG2_FPDP     |
317 		     CPUCFG2_FPVERS | CPUCFG2_LLFTP | CPUCFG2_LLFTPREV |
318 		     CPUCFG2_LSPW | CPUCFG2_LAM;
319 		/*
320 		 * For the ISA extensions listed below, if one is supported
321 		 * by the host, then it is also supported by KVM.
322 		 */
323 		if (cpu_has_lsx)
324 			*v |= CPUCFG2_LSX;
325 		if (cpu_has_lasx)
326 			*v |= CPUCFG2_LASX;
327 
328 		return 0;
329 	case LOONGARCH_CPUCFG3:
330 		*v = GENMASK(16, 0);
331 		return 0;
332 	case LOONGARCH_CPUCFG4:
333 	case LOONGARCH_CPUCFG5:
334 		*v = GENMASK(31, 0);
335 		return 0;
336 	case LOONGARCH_CPUCFG16:
337 		*v = GENMASK(16, 0);
338 		return 0;
339 	case LOONGARCH_CPUCFG17 ... LOONGARCH_CPUCFG20:
340 		*v = GENMASK(30, 0);
341 		return 0;
342 	default:
343 		/*
344 		 * CPUCFG bits should be zero if reserved by HW or not
345 		 * supported by KVM.
346 		 */
347 		*v = 0;
348 		return 0;
349 	}
350 }
351 
352 static int kvm_check_cpucfg(int id, u64 val)
353 {
354 	int ret;
355 	u64 mask = 0;
356 
357 	ret = _kvm_get_cpucfg_mask(id, &mask);
358 	if (ret)
359 		return ret;
360 
361 	if (val & ~mask)
362 		/* Unsupported features and/or the higher 32 bits should not be set */
363 		return -EINVAL;
364 
365 	switch (id) {
366 	case LOONGARCH_CPUCFG2:
367 		if (!(val & CPUCFG2_LLFTP))
368 			/* Guests must have a constant timer */
369 			return -EINVAL;
370 		if ((val & CPUCFG2_FP) && (!(val & CPUCFG2_FPSP) || !(val & CPUCFG2_FPDP)))
371 			/* Single and double float point must both be set when FP is enabled */
372 			return -EINVAL;
373 		if ((val & CPUCFG2_LSX) && !(val & CPUCFG2_FP))
374 			/* LSX architecturally implies FP but val does not satisfy that */
375 			return -EINVAL;
376 		if ((val & CPUCFG2_LASX) && !(val & CPUCFG2_LSX))
377 			/* LASX architecturally implies LSX and FP but val does not satisfy that */
378 			return -EINVAL;
379 		return 0;
380 	default:
381 		/*
382 		 * Values for the other CPUCFG IDs are not being further validated
383 		 * besides the mask check above.
384 		 */
385 		return 0;
386 	}
387 }
388 
389 static int kvm_get_one_reg(struct kvm_vcpu *vcpu,
390 		const struct kvm_one_reg *reg, u64 *v)
391 {
392 	int id, ret = 0;
393 	u64 type = reg->id & KVM_REG_LOONGARCH_MASK;
394 
395 	switch (type) {
396 	case KVM_REG_LOONGARCH_CSR:
397 		id = KVM_GET_IOC_CSR_IDX(reg->id);
398 		ret = _kvm_getcsr(vcpu, id, v);
399 		break;
400 	case KVM_REG_LOONGARCH_CPUCFG:
401 		id = KVM_GET_IOC_CPUCFG_IDX(reg->id);
402 		if (id >= 0 && id < KVM_MAX_CPUCFG_REGS)
403 			*v = vcpu->arch.cpucfg[id];
404 		else
405 			ret = -EINVAL;
406 		break;
407 	case KVM_REG_LOONGARCH_KVM:
408 		switch (reg->id) {
409 		case KVM_REG_LOONGARCH_COUNTER:
410 			*v = drdtime() + vcpu->kvm->arch.time_offset;
411 			break;
412 		default:
413 			ret = -EINVAL;
414 			break;
415 		}
416 		break;
417 	default:
418 		ret = -EINVAL;
419 		break;
420 	}
421 
422 	return ret;
423 }
424 
425 static int kvm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
426 {
427 	int ret = 0;
428 	u64 v, size = reg->id & KVM_REG_SIZE_MASK;
429 
430 	switch (size) {
431 	case KVM_REG_SIZE_U64:
432 		ret = kvm_get_one_reg(vcpu, reg, &v);
433 		if (ret)
434 			return ret;
435 		ret = put_user(v, (u64 __user *)(long)reg->addr);
436 		break;
437 	default:
438 		ret = -EINVAL;
439 		break;
440 	}
441 
442 	return ret;
443 }
444 
445 static int kvm_set_one_reg(struct kvm_vcpu *vcpu,
446 			const struct kvm_one_reg *reg, u64 v)
447 {
448 	int id, ret = 0;
449 	u64 type = reg->id & KVM_REG_LOONGARCH_MASK;
450 
451 	switch (type) {
452 	case KVM_REG_LOONGARCH_CSR:
453 		id = KVM_GET_IOC_CSR_IDX(reg->id);
454 		ret = _kvm_setcsr(vcpu, id, v);
455 		break;
456 	case KVM_REG_LOONGARCH_CPUCFG:
457 		id = KVM_GET_IOC_CPUCFG_IDX(reg->id);
458 		ret = kvm_check_cpucfg(id, v);
459 		if (ret)
460 			break;
461 		vcpu->arch.cpucfg[id] = (u32)v;
462 		break;
463 	case KVM_REG_LOONGARCH_KVM:
464 		switch (reg->id) {
465 		case KVM_REG_LOONGARCH_COUNTER:
466 			/*
467 			 * gftoffset is relative with board, not vcpu
468 			 * only set for the first time for smp system
469 			 */
470 			if (vcpu->vcpu_id == 0)
471 				vcpu->kvm->arch.time_offset = (signed long)(v - drdtime());
472 			break;
473 		case KVM_REG_LOONGARCH_VCPU_RESET:
474 			kvm_reset_timer(vcpu);
475 			memset(&vcpu->arch.irq_pending, 0, sizeof(vcpu->arch.irq_pending));
476 			memset(&vcpu->arch.irq_clear, 0, sizeof(vcpu->arch.irq_clear));
477 			break;
478 		default:
479 			ret = -EINVAL;
480 			break;
481 		}
482 		break;
483 	default:
484 		ret = -EINVAL;
485 		break;
486 	}
487 
488 	return ret;
489 }
490 
491 static int kvm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
492 {
493 	int ret = 0;
494 	u64 v, size = reg->id & KVM_REG_SIZE_MASK;
495 
496 	switch (size) {
497 	case KVM_REG_SIZE_U64:
498 		ret = get_user(v, (u64 __user *)(long)reg->addr);
499 		if (ret)
500 			return ret;
501 		break;
502 	default:
503 		return -EINVAL;
504 	}
505 
506 	return kvm_set_one_reg(vcpu, reg, v);
507 }
508 
509 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
510 {
511 	return -ENOIOCTLCMD;
512 }
513 
514 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
515 {
516 	return -ENOIOCTLCMD;
517 }
518 
519 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
520 {
521 	int i;
522 
523 	for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
524 		regs->gpr[i] = vcpu->arch.gprs[i];
525 
526 	regs->pc = vcpu->arch.pc;
527 
528 	return 0;
529 }
530 
531 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
532 {
533 	int i;
534 
535 	for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
536 		vcpu->arch.gprs[i] = regs->gpr[i];
537 
538 	vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
539 	vcpu->arch.pc = regs->pc;
540 
541 	return 0;
542 }
543 
544 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
545 				     struct kvm_enable_cap *cap)
546 {
547 	/* FPU is enabled by default, will support LSX/LASX later. */
548 	return -EINVAL;
549 }
550 
551 static int kvm_loongarch_cpucfg_has_attr(struct kvm_vcpu *vcpu,
552 					 struct kvm_device_attr *attr)
553 {
554 	switch (attr->attr) {
555 	case 2:
556 		return 0;
557 	default:
558 		return -ENXIO;
559 	}
560 
561 	return -ENXIO;
562 }
563 
564 static int kvm_loongarch_vcpu_has_attr(struct kvm_vcpu *vcpu,
565 				       struct kvm_device_attr *attr)
566 {
567 	int ret = -ENXIO;
568 
569 	switch (attr->group) {
570 	case KVM_LOONGARCH_VCPU_CPUCFG:
571 		ret = kvm_loongarch_cpucfg_has_attr(vcpu, attr);
572 		break;
573 	default:
574 		break;
575 	}
576 
577 	return ret;
578 }
579 
580 static int kvm_loongarch_get_cpucfg_attr(struct kvm_vcpu *vcpu,
581 					 struct kvm_device_attr *attr)
582 {
583 	int ret = 0;
584 	uint64_t val;
585 	uint64_t __user *uaddr = (uint64_t __user *)attr->addr;
586 
587 	ret = _kvm_get_cpucfg_mask(attr->attr, &val);
588 	if (ret)
589 		return ret;
590 
591 	put_user(val, uaddr);
592 
593 	return ret;
594 }
595 
596 static int kvm_loongarch_vcpu_get_attr(struct kvm_vcpu *vcpu,
597 				       struct kvm_device_attr *attr)
598 {
599 	int ret = -ENXIO;
600 
601 	switch (attr->group) {
602 	case KVM_LOONGARCH_VCPU_CPUCFG:
603 		ret = kvm_loongarch_get_cpucfg_attr(vcpu, attr);
604 		break;
605 	default:
606 		break;
607 	}
608 
609 	return ret;
610 }
611 
612 static int kvm_loongarch_cpucfg_set_attr(struct kvm_vcpu *vcpu,
613 					 struct kvm_device_attr *attr)
614 {
615 	return -ENXIO;
616 }
617 
618 static int kvm_loongarch_vcpu_set_attr(struct kvm_vcpu *vcpu,
619 				       struct kvm_device_attr *attr)
620 {
621 	int ret = -ENXIO;
622 
623 	switch (attr->group) {
624 	case KVM_LOONGARCH_VCPU_CPUCFG:
625 		ret = kvm_loongarch_cpucfg_set_attr(vcpu, attr);
626 		break;
627 	default:
628 		break;
629 	}
630 
631 	return ret;
632 }
633 
634 long kvm_arch_vcpu_ioctl(struct file *filp,
635 			 unsigned int ioctl, unsigned long arg)
636 {
637 	long r;
638 	struct kvm_device_attr attr;
639 	void __user *argp = (void __user *)arg;
640 	struct kvm_vcpu *vcpu = filp->private_data;
641 
642 	/*
643 	 * Only software CSR should be modified
644 	 *
645 	 * If any hardware CSR register is modified, vcpu_load/vcpu_put pair
646 	 * should be used. Since CSR registers owns by this vcpu, if switch
647 	 * to other vcpus, other vcpus need reload CSR registers.
648 	 *
649 	 * If software CSR is modified, bit KVM_LARCH_HWCSR_USABLE should
650 	 * be clear in vcpu->arch.aux_inuse, and vcpu_load will check
651 	 * aux_inuse flag and reload CSR registers form software.
652 	 */
653 
654 	switch (ioctl) {
655 	case KVM_SET_ONE_REG:
656 	case KVM_GET_ONE_REG: {
657 		struct kvm_one_reg reg;
658 
659 		r = -EFAULT;
660 		if (copy_from_user(&reg, argp, sizeof(reg)))
661 			break;
662 		if (ioctl == KVM_SET_ONE_REG) {
663 			r = kvm_set_reg(vcpu, &reg);
664 			vcpu->arch.aux_inuse &= ~KVM_LARCH_HWCSR_USABLE;
665 		} else
666 			r = kvm_get_reg(vcpu, &reg);
667 		break;
668 	}
669 	case KVM_ENABLE_CAP: {
670 		struct kvm_enable_cap cap;
671 
672 		r = -EFAULT;
673 		if (copy_from_user(&cap, argp, sizeof(cap)))
674 			break;
675 		r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
676 		break;
677 	}
678 	case KVM_HAS_DEVICE_ATTR: {
679 		r = -EFAULT;
680 		if (copy_from_user(&attr, argp, sizeof(attr)))
681 			break;
682 		r = kvm_loongarch_vcpu_has_attr(vcpu, &attr);
683 		break;
684 	}
685 	case KVM_GET_DEVICE_ATTR: {
686 		r = -EFAULT;
687 		if (copy_from_user(&attr, argp, sizeof(attr)))
688 			break;
689 		r = kvm_loongarch_vcpu_get_attr(vcpu, &attr);
690 		break;
691 	}
692 	case KVM_SET_DEVICE_ATTR: {
693 		r = -EFAULT;
694 		if (copy_from_user(&attr, argp, sizeof(attr)))
695 			break;
696 		r = kvm_loongarch_vcpu_set_attr(vcpu, &attr);
697 		break;
698 	}
699 	default:
700 		r = -ENOIOCTLCMD;
701 		break;
702 	}
703 
704 	return r;
705 }
706 
707 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
708 {
709 	int i = 0;
710 
711 	fpu->fcc = vcpu->arch.fpu.fcc;
712 	fpu->fcsr = vcpu->arch.fpu.fcsr;
713 	for (i = 0; i < NUM_FPU_REGS; i++)
714 		memcpy(&fpu->fpr[i], &vcpu->arch.fpu.fpr[i], FPU_REG_WIDTH / 64);
715 
716 	return 0;
717 }
718 
719 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
720 {
721 	int i = 0;
722 
723 	vcpu->arch.fpu.fcc = fpu->fcc;
724 	vcpu->arch.fpu.fcsr = fpu->fcsr;
725 	for (i = 0; i < NUM_FPU_REGS; i++)
726 		memcpy(&vcpu->arch.fpu.fpr[i], &fpu->fpr[i], FPU_REG_WIDTH / 64);
727 
728 	return 0;
729 }
730 
731 /* Enable FPU and restore context */
732 void kvm_own_fpu(struct kvm_vcpu *vcpu)
733 {
734 	preempt_disable();
735 
736 	/* Enable FPU */
737 	set_csr_euen(CSR_EUEN_FPEN);
738 
739 	kvm_restore_fpu(&vcpu->arch.fpu);
740 	vcpu->arch.aux_inuse |= KVM_LARCH_FPU;
741 	trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
742 
743 	preempt_enable();
744 }
745 
746 #ifdef CONFIG_CPU_HAS_LSX
747 /* Enable LSX and restore context */
748 int kvm_own_lsx(struct kvm_vcpu *vcpu)
749 {
750 	if (!kvm_guest_has_fpu(&vcpu->arch) || !kvm_guest_has_lsx(&vcpu->arch))
751 		return -EINVAL;
752 
753 	preempt_disable();
754 
755 	/* Enable LSX for guest */
756 	set_csr_euen(CSR_EUEN_LSXEN | CSR_EUEN_FPEN);
757 	switch (vcpu->arch.aux_inuse & KVM_LARCH_FPU) {
758 	case KVM_LARCH_FPU:
759 		/*
760 		 * Guest FPU state already loaded,
761 		 * only restore upper LSX state
762 		 */
763 		_restore_lsx_upper(&vcpu->arch.fpu);
764 		break;
765 	default:
766 		/* Neither FP or LSX already active,
767 		 * restore full LSX state
768 		 */
769 		kvm_restore_lsx(&vcpu->arch.fpu);
770 		break;
771 	}
772 
773 	trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_LSX);
774 	vcpu->arch.aux_inuse |= KVM_LARCH_LSX | KVM_LARCH_FPU;
775 	preempt_enable();
776 
777 	return 0;
778 }
779 #endif
780 
781 #ifdef CONFIG_CPU_HAS_LASX
782 /* Enable LASX and restore context */
783 int kvm_own_lasx(struct kvm_vcpu *vcpu)
784 {
785 	if (!kvm_guest_has_fpu(&vcpu->arch) || !kvm_guest_has_lsx(&vcpu->arch) || !kvm_guest_has_lasx(&vcpu->arch))
786 		return -EINVAL;
787 
788 	preempt_disable();
789 
790 	set_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN | CSR_EUEN_LASXEN);
791 	switch (vcpu->arch.aux_inuse & (KVM_LARCH_FPU | KVM_LARCH_LSX)) {
792 	case KVM_LARCH_LSX:
793 	case KVM_LARCH_LSX | KVM_LARCH_FPU:
794 		/* Guest LSX state already loaded, only restore upper LASX state */
795 		_restore_lasx_upper(&vcpu->arch.fpu);
796 		break;
797 	case KVM_LARCH_FPU:
798 		/* Guest FP state already loaded, only restore upper LSX & LASX state */
799 		_restore_lsx_upper(&vcpu->arch.fpu);
800 		_restore_lasx_upper(&vcpu->arch.fpu);
801 		break;
802 	default:
803 		/* Neither FP or LSX already active, restore full LASX state */
804 		kvm_restore_lasx(&vcpu->arch.fpu);
805 		break;
806 	}
807 
808 	trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_LASX);
809 	vcpu->arch.aux_inuse |= KVM_LARCH_LASX | KVM_LARCH_LSX | KVM_LARCH_FPU;
810 	preempt_enable();
811 
812 	return 0;
813 }
814 #endif
815 
816 /* Save context and disable FPU */
817 void kvm_lose_fpu(struct kvm_vcpu *vcpu)
818 {
819 	preempt_disable();
820 
821 	if (vcpu->arch.aux_inuse & KVM_LARCH_LASX) {
822 		kvm_save_lasx(&vcpu->arch.fpu);
823 		vcpu->arch.aux_inuse &= ~(KVM_LARCH_LSX | KVM_LARCH_FPU | KVM_LARCH_LASX);
824 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_LASX);
825 
826 		/* Disable LASX & LSX & FPU */
827 		clear_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN | CSR_EUEN_LASXEN);
828 	} else if (vcpu->arch.aux_inuse & KVM_LARCH_LSX) {
829 		kvm_save_lsx(&vcpu->arch.fpu);
830 		vcpu->arch.aux_inuse &= ~(KVM_LARCH_LSX | KVM_LARCH_FPU);
831 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_LSX);
832 
833 		/* Disable LSX & FPU */
834 		clear_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN);
835 	} else if (vcpu->arch.aux_inuse & KVM_LARCH_FPU) {
836 		kvm_save_fpu(&vcpu->arch.fpu);
837 		vcpu->arch.aux_inuse &= ~KVM_LARCH_FPU;
838 		trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
839 
840 		/* Disable FPU */
841 		clear_csr_euen(CSR_EUEN_FPEN);
842 	}
843 
844 	preempt_enable();
845 }
846 
847 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
848 {
849 	int intr = (int)irq->irq;
850 
851 	if (intr > 0)
852 		kvm_queue_irq(vcpu, intr);
853 	else if (intr < 0)
854 		kvm_dequeue_irq(vcpu, -intr);
855 	else {
856 		kvm_err("%s: invalid interrupt ioctl %d\n", __func__, irq->irq);
857 		return -EINVAL;
858 	}
859 
860 	kvm_vcpu_kick(vcpu);
861 
862 	return 0;
863 }
864 
865 long kvm_arch_vcpu_async_ioctl(struct file *filp,
866 			       unsigned int ioctl, unsigned long arg)
867 {
868 	void __user *argp = (void __user *)arg;
869 	struct kvm_vcpu *vcpu = filp->private_data;
870 
871 	if (ioctl == KVM_INTERRUPT) {
872 		struct kvm_interrupt irq;
873 
874 		if (copy_from_user(&irq, argp, sizeof(irq)))
875 			return -EFAULT;
876 
877 		kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, irq.irq);
878 
879 		return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
880 	}
881 
882 	return -ENOIOCTLCMD;
883 }
884 
885 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
886 {
887 	return 0;
888 }
889 
890 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
891 {
892 	unsigned long timer_hz;
893 	struct loongarch_csrs *csr;
894 
895 	vcpu->arch.vpid = 0;
896 
897 	hrtimer_init(&vcpu->arch.swtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
898 	vcpu->arch.swtimer.function = kvm_swtimer_wakeup;
899 
900 	vcpu->arch.handle_exit = kvm_handle_exit;
901 	vcpu->arch.guest_eentry = (unsigned long)kvm_loongarch_ops->exc_entry;
902 	vcpu->arch.csr = kzalloc(sizeof(struct loongarch_csrs), GFP_KERNEL);
903 	if (!vcpu->arch.csr)
904 		return -ENOMEM;
905 
906 	/*
907 	 * All kvm exceptions share one exception entry, and host <-> guest
908 	 * switch also switch ECFG.VS field, keep host ECFG.VS info here.
909 	 */
910 	vcpu->arch.host_ecfg = (read_csr_ecfg() & CSR_ECFG_VS);
911 
912 	/* Init */
913 	vcpu->arch.last_sched_cpu = -1;
914 
915 	/*
916 	 * Initialize guest register state to valid architectural reset state.
917 	 */
918 	timer_hz = calc_const_freq();
919 	kvm_init_timer(vcpu, timer_hz);
920 
921 	/* Set Initialize mode for guest */
922 	csr = vcpu->arch.csr;
923 	kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CRMD, CSR_CRMD_DA);
924 
925 	/* Set cpuid */
926 	kvm_write_sw_gcsr(csr, LOONGARCH_CSR_TMID, vcpu->vcpu_id);
927 
928 	/* Start with no pending virtual guest interrupts */
929 	csr->csrs[LOONGARCH_CSR_GINTC] = 0;
930 
931 	return 0;
932 }
933 
934 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
935 {
936 }
937 
938 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
939 {
940 	int cpu;
941 	struct kvm_context *context;
942 
943 	hrtimer_cancel(&vcpu->arch.swtimer);
944 	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
945 	kfree(vcpu->arch.csr);
946 
947 	/*
948 	 * If the vCPU is freed and reused as another vCPU, we don't want the
949 	 * matching pointer wrongly hanging around in last_vcpu.
950 	 */
951 	for_each_possible_cpu(cpu) {
952 		context = per_cpu_ptr(vcpu->kvm->arch.vmcs, cpu);
953 		if (context->last_vcpu == vcpu)
954 			context->last_vcpu = NULL;
955 	}
956 }
957 
958 static int _kvm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
959 {
960 	bool migrated;
961 	struct kvm_context *context;
962 	struct loongarch_csrs *csr = vcpu->arch.csr;
963 
964 	/*
965 	 * Have we migrated to a different CPU?
966 	 * If so, any old guest TLB state may be stale.
967 	 */
968 	migrated = (vcpu->arch.last_sched_cpu != cpu);
969 
970 	/*
971 	 * Was this the last vCPU to run on this CPU?
972 	 * If not, any old guest state from this vCPU will have been clobbered.
973 	 */
974 	context = per_cpu_ptr(vcpu->kvm->arch.vmcs, cpu);
975 	if (migrated || (context->last_vcpu != vcpu))
976 		vcpu->arch.aux_inuse &= ~KVM_LARCH_HWCSR_USABLE;
977 	context->last_vcpu = vcpu;
978 
979 	/* Restore timer state regardless */
980 	kvm_restore_timer(vcpu);
981 
982 	/* Control guest page CCA attribute */
983 	change_csr_gcfg(CSR_GCFG_MATC_MASK, CSR_GCFG_MATC_ROOT);
984 
985 	/* Don't bother restoring registers multiple times unless necessary */
986 	if (vcpu->arch.aux_inuse & KVM_LARCH_HWCSR_USABLE)
987 		return 0;
988 
989 	write_csr_gcntc((ulong)vcpu->kvm->arch.time_offset);
990 
991 	/* Restore guest CSR registers */
992 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CRMD);
993 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PRMD);
994 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_EUEN);
995 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_MISC);
996 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ECFG);
997 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ERA);
998 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_BADV);
999 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_BADI);
1000 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_EENTRY);
1001 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBIDX);
1002 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBEHI);
1003 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBELO0);
1004 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBELO1);
1005 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ASID);
1006 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PGDL);
1007 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PGDH);
1008 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PWCTL0);
1009 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PWCTL1);
1010 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_STLBPGSIZE);
1011 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_RVACFG);
1012 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CPUID);
1013 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS0);
1014 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS1);
1015 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS2);
1016 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS3);
1017 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS4);
1018 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS5);
1019 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS6);
1020 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS7);
1021 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TMID);
1022 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CNTC);
1023 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRENTRY);
1024 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRBADV);
1025 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRERA);
1026 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRSAVE);
1027 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO0);
1028 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO1);
1029 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBREHI);
1030 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRPRMD);
1031 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN0);
1032 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN1);
1033 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN2);
1034 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN3);
1035 	kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_LLBCTL);
1036 
1037 	/* Restore Root.GINTC from unused Guest.GINTC register */
1038 	write_csr_gintc(csr->csrs[LOONGARCH_CSR_GINTC]);
1039 
1040 	/*
1041 	 * We should clear linked load bit to break interrupted atomics. This
1042 	 * prevents a SC on the next vCPU from succeeding by matching a LL on
1043 	 * the previous vCPU.
1044 	 */
1045 	if (vcpu->kvm->created_vcpus > 1)
1046 		set_gcsr_llbctl(CSR_LLBCTL_WCLLB);
1047 
1048 	vcpu->arch.aux_inuse |= KVM_LARCH_HWCSR_USABLE;
1049 
1050 	return 0;
1051 }
1052 
1053 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1054 {
1055 	unsigned long flags;
1056 
1057 	local_irq_save(flags);
1058 	/* Restore guest state to registers */
1059 	_kvm_vcpu_load(vcpu, cpu);
1060 	local_irq_restore(flags);
1061 }
1062 
1063 static int _kvm_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
1064 {
1065 	struct loongarch_csrs *csr = vcpu->arch.csr;
1066 
1067 	kvm_lose_fpu(vcpu);
1068 
1069 	/*
1070 	 * Update CSR state from hardware if software CSR state is stale,
1071 	 * most CSR registers are kept unchanged during process context
1072 	 * switch except CSR registers like remaining timer tick value and
1073 	 * injected interrupt state.
1074 	 */
1075 	if (vcpu->arch.aux_inuse & KVM_LARCH_SWCSR_LATEST)
1076 		goto out;
1077 
1078 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CRMD);
1079 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRMD);
1080 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_EUEN);
1081 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_MISC);
1082 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ECFG);
1083 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ERA);
1084 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_BADV);
1085 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_BADI);
1086 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_EENTRY);
1087 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBIDX);
1088 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBEHI);
1089 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBELO0);
1090 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBELO1);
1091 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ASID);
1092 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PGDL);
1093 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PGDH);
1094 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PWCTL0);
1095 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PWCTL1);
1096 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_STLBPGSIZE);
1097 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_RVACFG);
1098 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CPUID);
1099 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG1);
1100 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG2);
1101 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG3);
1102 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS0);
1103 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS1);
1104 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS2);
1105 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS3);
1106 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS4);
1107 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS5);
1108 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS6);
1109 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS7);
1110 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TMID);
1111 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CNTC);
1112 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_LLBCTL);
1113 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRENTRY);
1114 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRBADV);
1115 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRERA);
1116 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRSAVE);
1117 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO0);
1118 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO1);
1119 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBREHI);
1120 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRPRMD);
1121 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN0);
1122 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN1);
1123 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN2);
1124 	kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN3);
1125 
1126 	vcpu->arch.aux_inuse |= KVM_LARCH_SWCSR_LATEST;
1127 
1128 out:
1129 	kvm_save_timer(vcpu);
1130 	/* Save Root.GINTC into unused Guest.GINTC register */
1131 	csr->csrs[LOONGARCH_CSR_GINTC] = read_csr_gintc();
1132 
1133 	return 0;
1134 }
1135 
1136 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1137 {
1138 	int cpu;
1139 	unsigned long flags;
1140 
1141 	local_irq_save(flags);
1142 	cpu = smp_processor_id();
1143 	vcpu->arch.last_sched_cpu = cpu;
1144 
1145 	/* Save guest state in registers */
1146 	_kvm_vcpu_put(vcpu, cpu);
1147 	local_irq_restore(flags);
1148 }
1149 
1150 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
1151 {
1152 	int r = -EINTR;
1153 	struct kvm_run *run = vcpu->run;
1154 
1155 	if (vcpu->mmio_needed) {
1156 		if (!vcpu->mmio_is_write)
1157 			kvm_complete_mmio_read(vcpu, run);
1158 		vcpu->mmio_needed = 0;
1159 	}
1160 
1161 	if (run->exit_reason == KVM_EXIT_LOONGARCH_IOCSR) {
1162 		if (!run->iocsr_io.is_write)
1163 			kvm_complete_iocsr_read(vcpu, run);
1164 	}
1165 
1166 	if (run->immediate_exit)
1167 		return r;
1168 
1169 	/* Clear exit_reason */
1170 	run->exit_reason = KVM_EXIT_UNKNOWN;
1171 	lose_fpu(1);
1172 	vcpu_load(vcpu);
1173 	kvm_sigset_activate(vcpu);
1174 	r = kvm_pre_enter_guest(vcpu);
1175 	if (r != RESUME_GUEST)
1176 		goto out;
1177 
1178 	guest_timing_enter_irqoff();
1179 	guest_state_enter_irqoff();
1180 	trace_kvm_enter(vcpu);
1181 	r = kvm_loongarch_ops->enter_guest(run, vcpu);
1182 
1183 	trace_kvm_out(vcpu);
1184 	/*
1185 	 * Guest exit is already recorded at kvm_handle_exit()
1186 	 * return value must not be RESUME_GUEST
1187 	 */
1188 	local_irq_enable();
1189 out:
1190 	kvm_sigset_deactivate(vcpu);
1191 	vcpu_put(vcpu);
1192 
1193 	return r;
1194 }
1195