1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020-2022 Loongson Technology Corporation Limited
4 *
5 * Derived from MIPS:
6 * Copyright (C) 1995 Linus Torvalds
7 * Copyright (C) 1995 Waldorf Electronics
8 * Copyright (C) 1994, 95, 96, 97, 98, 99, 2000, 01, 02, 03 Ralf Baechle
9 * Copyright (C) 1996 Stoned Elipot
10 * Copyright (C) 1999 Silicon Graphics, Inc.
11 * Copyright (C) 2000, 2001, 2002, 2007 Maciej W. Rozycki
12 */
13 #include <linux/init.h>
14 #include <linux/acpi.h>
15 #include <linux/cpu.h>
16 #include <linux/dmi.h>
17 #include <linux/efi.h>
18 #include <linux/export.h>
19 #include <linux/memblock.h>
20 #include <linux/initrd.h>
21 #include <linux/ioport.h>
22 #include <linux/kexec.h>
23 #include <linux/crash_dump.h>
24 #include <linux/root_dev.h>
25 #include <linux/console.h>
26 #include <linux/pfn.h>
27 #include <linux/platform_device.h>
28 #include <linux/sizes.h>
29 #include <linux/device.h>
30 #include <linux/dma-map-ops.h>
31 #include <linux/libfdt.h>
32 #include <linux/of_fdt.h>
33 #include <linux/of_address.h>
34 #include <linux/suspend.h>
35 #include <linux/swiotlb.h>
36
37 #include <asm/addrspace.h>
38 #include <asm/alternative.h>
39 #include <asm/bootinfo.h>
40 #include <asm/cache.h>
41 #include <asm/cpu.h>
42 #include <asm/dma.h>
43 #include <asm/efi.h>
44 #include <asm/loongson.h>
45 #include <asm/numa.h>
46 #include <asm/pgalloc.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/time.h>
50 #include <asm/unwind.h>
51
52 #define SMBIOS_BIOSSIZE_OFFSET 0x09
53 #define SMBIOS_BIOSEXTERN_OFFSET 0x13
54 #define SMBIOS_FREQLOW_OFFSET 0x16
55 #define SMBIOS_FREQHIGH_OFFSET 0x17
56 #define SMBIOS_FREQLOW_MASK 0xFF
57 #define SMBIOS_CORE_PACKAGE_OFFSET 0x23
58 #define SMBIOS_THREAD_PACKAGE_OFFSET 0x25
59 #define SMBIOS_THREAD_PACKAGE_2_OFFSET 0x2E
60 #define LOONGSON_EFI_ENABLE (1 << 3)
61
62 unsigned long fw_arg0, fw_arg1, fw_arg2;
63 DEFINE_PER_CPU(unsigned long, kernelsp);
64 struct cpuinfo_loongarch cpu_data[NR_CPUS] __read_mostly;
65
66 EXPORT_SYMBOL(cpu_data);
67
68 struct loongson_board_info b_info;
69 static const char dmi_empty_string[] = " ";
70
71 /*
72 * Setup information
73 *
74 * These are initialized so they are in the .data section
75 */
76 char init_command_line[COMMAND_LINE_SIZE] __initdata;
77
78 static int num_standard_resources;
79 static struct resource *standard_resources;
80
81 static struct resource code_resource = { .name = "Kernel code", };
82 static struct resource data_resource = { .name = "Kernel data", };
83 static struct resource bss_resource = { .name = "Kernel bss", };
84
get_system_type(void)85 const char *get_system_type(void)
86 {
87 return "generic-loongson-machine";
88 }
89
arch_cpu_finalize_init(void)90 void __init arch_cpu_finalize_init(void)
91 {
92 alternative_instructions();
93 }
94
dmi_string_parse(const struct dmi_header * dm,u8 s)95 static const char *dmi_string_parse(const struct dmi_header *dm, u8 s)
96 {
97 const u8 *bp = ((u8 *) dm) + dm->length;
98
99 if (s) {
100 s--;
101 while (s > 0 && *bp) {
102 bp += strlen(bp) + 1;
103 s--;
104 }
105
106 if (*bp != 0) {
107 size_t len = strlen(bp)+1;
108 size_t cmp_len = len > 8 ? 8 : len;
109
110 if (!memcmp(bp, dmi_empty_string, cmp_len))
111 return dmi_empty_string;
112
113 return bp;
114 }
115 }
116
117 return "";
118 }
119
parse_cpu_table(const struct dmi_header * dm)120 static void __init parse_cpu_table(const struct dmi_header *dm)
121 {
122 long freq_temp = 0;
123 char *dmi_data = (char *)dm;
124
125 freq_temp = ((*(dmi_data + SMBIOS_FREQHIGH_OFFSET) << 8) +
126 ((*(dmi_data + SMBIOS_FREQLOW_OFFSET)) & SMBIOS_FREQLOW_MASK));
127 cpu_clock_freq = freq_temp * 1000000;
128
129 loongson_sysconf.cpuname = (void *)dmi_string_parse(dm, dmi_data[16]);
130 loongson_sysconf.cores_per_package = *(u8 *)(dmi_data + SMBIOS_THREAD_PACKAGE_OFFSET);
131 if (dm->length >= 0x30 && loongson_sysconf.cores_per_package == 0xff) {
132 /* SMBIOS 3.0+ has ThreadCount2 for more than 255 threads */
133 loongson_sysconf.cores_per_package =
134 *(u16 *)(dmi_data + SMBIOS_THREAD_PACKAGE_2_OFFSET);
135 }
136
137 pr_info("CpuClock = %llu\n", cpu_clock_freq);
138 }
139
parse_bios_table(const struct dmi_header * dm)140 static void __init parse_bios_table(const struct dmi_header *dm)
141 {
142 char *dmi_data = (char *)dm;
143
144 b_info.bios_size = (*(dmi_data + SMBIOS_BIOSSIZE_OFFSET) + 1) << 6;
145 }
146
find_tokens(const struct dmi_header * dm,void * dummy)147 static void __init find_tokens(const struct dmi_header *dm, void *dummy)
148 {
149 switch (dm->type) {
150 case 0x0: /* Extern BIOS */
151 parse_bios_table(dm);
152 break;
153 case 0x4: /* Calling interface */
154 parse_cpu_table(dm);
155 break;
156 }
157 }
smbios_parse(void)158 static void __init smbios_parse(void)
159 {
160 b_info.bios_vendor = (void *)dmi_get_system_info(DMI_BIOS_VENDOR);
161 b_info.bios_version = (void *)dmi_get_system_info(DMI_BIOS_VERSION);
162 b_info.bios_release_date = (void *)dmi_get_system_info(DMI_BIOS_DATE);
163 b_info.board_vendor = (void *)dmi_get_system_info(DMI_BOARD_VENDOR);
164 b_info.board_name = (void *)dmi_get_system_info(DMI_BOARD_NAME);
165 dmi_walk(find_tokens, NULL);
166 }
167
168 #ifdef CONFIG_ARCH_WRITECOMBINE
169 bool wc_enabled = true;
170 #else
171 bool wc_enabled = false;
172 #endif
173
174 EXPORT_SYMBOL(wc_enabled);
175
setup_writecombine(char * p)176 static int __init setup_writecombine(char *p)
177 {
178 if (!strcmp(p, "on"))
179 wc_enabled = true;
180 else if (!strcmp(p, "off"))
181 wc_enabled = false;
182 else
183 pr_warn("Unknown writecombine setting \"%s\".\n", p);
184
185 return 0;
186 }
187 early_param("writecombine", setup_writecombine);
188
189 static int usermem __initdata;
190
early_parse_mem(char * p)191 static int __init early_parse_mem(char *p)
192 {
193 phys_addr_t start, size;
194
195 if (!p) {
196 pr_err("mem parameter is empty, do nothing\n");
197 return -EINVAL;
198 }
199
200 start = 0;
201 size = memparse(p, &p);
202 if (*p == '@') /* Every mem=... should contain '@' */
203 start = memparse(p + 1, &p);
204 else { /* Only one mem=... is allowed if no '@' */
205 usermem = 1;
206 memblock_enforce_memory_limit(size);
207 return 0;
208 }
209
210 /*
211 * If a user specifies memory size, we
212 * blow away any automatically generated
213 * size.
214 */
215 if (usermem == 0) {
216 usermem = 1;
217 memblock_remove(memblock_start_of_DRAM(),
218 memblock_end_of_DRAM() - memblock_start_of_DRAM());
219 }
220
221 if (!IS_ENABLED(CONFIG_NUMA))
222 memblock_add(start, size);
223 else
224 memblock_add_node(start, size, pa_to_nid(start), MEMBLOCK_NONE);
225
226 return 0;
227 }
228 early_param("mem", early_parse_mem);
229
arch_reserve_vmcore(void)230 static void __init arch_reserve_vmcore(void)
231 {
232 #ifdef CONFIG_PROC_VMCORE
233 u64 i;
234 phys_addr_t start, end;
235
236 if (!is_kdump_kernel())
237 return;
238
239 if (!elfcorehdr_size) {
240 for_each_mem_range(i, &start, &end) {
241 if (elfcorehdr_addr >= start && elfcorehdr_addr < end) {
242 /*
243 * Reserve from the elf core header to the end of
244 * the memory segment, that should all be kdump
245 * reserved memory.
246 */
247 elfcorehdr_size = end - elfcorehdr_addr;
248 break;
249 }
250 }
251 }
252
253 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
254 pr_warn("elfcorehdr is overlapped\n");
255 return;
256 }
257
258 memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
259
260 pr_info("Reserving %llu KiB of memory at 0x%llx for elfcorehdr\n",
261 elfcorehdr_size >> 10, elfcorehdr_addr);
262 #endif
263 }
264
arch_reserve_crashkernel(void)265 static void __init arch_reserve_crashkernel(void)
266 {
267 int ret;
268 unsigned long long low_size = 0;
269 unsigned long long crash_base, crash_size;
270 bool high = false;
271
272 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
273 return;
274
275 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
276 &crash_size, &crash_base, &low_size, NULL, &high);
277 if (ret)
278 return;
279
280 reserve_crashkernel_generic(crash_size, crash_base, low_size, high);
281 }
282
fdt_setup(void)283 static void __init fdt_setup(void)
284 {
285 #ifdef CONFIG_OF_EARLY_FLATTREE
286 void *fdt_pointer;
287
288 /* ACPI-based systems do not require parsing fdt */
289 if (acpi_os_get_root_pointer())
290 return;
291
292 /* Prefer to use built-in dtb, checking its legality first. */
293 if (IS_ENABLED(CONFIG_BUILTIN_DTB) && !fdt_check_header(__dtb_start))
294 fdt_pointer = __dtb_start;
295 else
296 fdt_pointer = efi_fdt_pointer(); /* Fallback to firmware dtb */
297
298 if (!fdt_pointer || fdt_check_header(fdt_pointer))
299 return;
300
301 early_init_dt_scan(fdt_pointer, __pa(fdt_pointer));
302 early_init_fdt_reserve_self();
303 #endif
304 }
305
bootcmdline_init(char ** cmdline_p)306 static void __init bootcmdline_init(char **cmdline_p)
307 {
308 /*
309 * If CONFIG_CMDLINE_FORCE is enabled then initializing the command line
310 * is trivial - we simply use the built-in command line unconditionally &
311 * unmodified.
312 */
313 if (IS_ENABLED(CONFIG_CMDLINE_FORCE)) {
314 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
315 goto out;
316 }
317
318 #ifdef CONFIG_OF_FLATTREE
319 /*
320 * If CONFIG_CMDLINE_BOOTLOADER is enabled and we are in FDT-based system,
321 * the boot_command_line will be overwritten by early_init_dt_scan_chosen().
322 * So we need to append init_command_line (the original copy of boot_command_line)
323 * to boot_command_line.
324 */
325 if (initial_boot_params) {
326 if (boot_command_line[0])
327 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
328
329 if (!strstr(boot_command_line, init_command_line))
330 strlcat(boot_command_line, init_command_line, COMMAND_LINE_SIZE);
331
332 goto out;
333 }
334 #endif
335
336 /*
337 * Append built-in command line to the bootloader command line if
338 * CONFIG_CMDLINE_EXTEND is enabled.
339 */
340 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) && CONFIG_CMDLINE[0]) {
341 strlcat(boot_command_line, " ", COMMAND_LINE_SIZE);
342 strlcat(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
343 }
344
345 /*
346 * Use built-in command line if the bootloader command line is empty.
347 */
348 if (IS_ENABLED(CONFIG_CMDLINE_BOOTLOADER) && !boot_command_line[0])
349 strscpy(boot_command_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
350
351 out:
352 *cmdline_p = boot_command_line;
353 }
354
platform_init(void)355 void __init platform_init(void)
356 {
357 arch_reserve_vmcore();
358 arch_reserve_crashkernel();
359
360 #ifdef CONFIG_ACPI
361 acpi_table_upgrade();
362 acpi_gbl_use_global_lock = false;
363 acpi_gbl_use_default_register_widths = false;
364 acpi_boot_table_init();
365 #endif
366
367 early_init_fdt_scan_reserved_mem();
368 unflatten_and_copy_device_tree();
369
370 #ifdef CONFIG_NUMA
371 init_numa_memory();
372 #endif
373 dmi_setup();
374 smbios_parse();
375 pr_info("The BIOS Version: %s\n", b_info.bios_version);
376
377 efi_runtime_init();
378 }
379
check_kernel_sections_mem(void)380 static void __init check_kernel_sections_mem(void)
381 {
382 phys_addr_t start = __pa_symbol(&_text);
383 phys_addr_t size = __pa_symbol(&_end) - start;
384
385 if (!memblock_is_region_memory(start, size)) {
386 pr_info("Kernel sections are not in the memory maps\n");
387 memblock_add(start, size);
388 }
389 }
390
391 /*
392 * arch_mem_init - initialize memory management subsystem
393 */
arch_mem_init(char ** cmdline_p)394 static void __init arch_mem_init(char **cmdline_p)
395 {
396 /* Recalculate max_low_pfn for "mem=xxx" */
397 max_pfn = PFN_DOWN(memblock_end_of_DRAM());
398 max_low_pfn = min(PFN_DOWN(HIGHMEM_START), max_pfn);
399
400 if (usermem)
401 pr_info("User-defined physical RAM map overwrite\n");
402
403 check_kernel_sections_mem();
404
405 /*
406 * In order to reduce the possibility of kernel panic when failed to
407 * get IO TLB memory under CONFIG_SWIOTLB, it is better to allocate
408 * low memory as small as possible before swiotlb_init(), so make
409 * sparse_init() using top-down allocation.
410 */
411 memblock_set_bottom_up(false);
412 sparse_init();
413 memblock_set_bottom_up(true);
414
415 swiotlb_init(true, SWIOTLB_VERBOSE);
416
417 dma_contiguous_reserve(PFN_PHYS(max_low_pfn));
418
419 /* Reserve for hibernation. */
420 register_nosave_region(PFN_DOWN(__pa_symbol(&__nosave_begin)),
421 PFN_UP(__pa_symbol(&__nosave_end)));
422
423 memblock_dump_all();
424
425 early_memtest(PFN_PHYS(ARCH_PFN_OFFSET), PFN_PHYS(max_low_pfn));
426 }
427
resource_init(void)428 static void __init resource_init(void)
429 {
430 long i = 0;
431 size_t res_size;
432 struct resource *res;
433 struct memblock_region *region;
434
435 code_resource.start = __pa_symbol(&_text);
436 code_resource.end = __pa_symbol(&_etext) - 1;
437 data_resource.start = __pa_symbol(&_etext);
438 data_resource.end = __pa_symbol(&_edata) - 1;
439 bss_resource.start = __pa_symbol(&__bss_start);
440 bss_resource.end = __pa_symbol(&__bss_stop) - 1;
441
442 num_standard_resources = memblock.memory.cnt;
443 res_size = num_standard_resources * sizeof(*standard_resources);
444 standard_resources = memblock_alloc_or_panic(res_size, SMP_CACHE_BYTES);
445
446 for_each_mem_region(region) {
447 res = &standard_resources[i++];
448 if (!memblock_is_nomap(region)) {
449 res->name = "System RAM";
450 res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
451 res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
452 res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
453 } else {
454 res->name = "Reserved";
455 res->flags = IORESOURCE_MEM;
456 res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
457 res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
458 }
459
460 request_resource(&iomem_resource, res);
461
462 /*
463 * We don't know which RAM region contains kernel data,
464 * so we try it repeatedly and let the resource manager
465 * test it.
466 */
467 request_resource(res, &code_resource);
468 request_resource(res, &data_resource);
469 request_resource(res, &bss_resource);
470 }
471 }
472
add_legacy_isa_io(struct fwnode_handle * fwnode,resource_size_t hw_start,resource_size_t size)473 static int __init add_legacy_isa_io(struct fwnode_handle *fwnode,
474 resource_size_t hw_start, resource_size_t size)
475 {
476 int ret = 0;
477 unsigned long vaddr;
478 struct logic_pio_hwaddr *range;
479
480 range = kzalloc(sizeof(*range), GFP_ATOMIC);
481 if (!range)
482 return -ENOMEM;
483
484 range->fwnode = fwnode;
485 range->size = size = round_up(size, PAGE_SIZE);
486 range->hw_start = hw_start;
487 range->flags = LOGIC_PIO_CPU_MMIO;
488
489 ret = logic_pio_register_range(range);
490 if (ret) {
491 kfree(range);
492 return ret;
493 }
494
495 /* Legacy ISA must placed at the start of PCI_IOBASE */
496 if (range->io_start != 0) {
497 logic_pio_unregister_range(range);
498 kfree(range);
499 return -EINVAL;
500 }
501
502 vaddr = (unsigned long)(PCI_IOBASE + range->io_start);
503 vmap_page_range(vaddr, vaddr + size, hw_start, pgprot_device(PAGE_KERNEL));
504
505 return 0;
506 }
507
arch_reserve_pio_range(void)508 static __init int arch_reserve_pio_range(void)
509 {
510 struct device_node *np;
511
512 for_each_node_by_name(np, "isa") {
513 struct of_range range;
514 struct of_range_parser parser;
515
516 pr_info("ISA Bridge: %pOF\n", np);
517
518 if (of_range_parser_init(&parser, np)) {
519 pr_info("Failed to parse resources.\n");
520 of_node_put(np);
521 break;
522 }
523
524 for_each_of_range(&parser, &range) {
525 switch (range.flags & IORESOURCE_TYPE_BITS) {
526 case IORESOURCE_IO:
527 pr_info(" IO 0x%016llx..0x%016llx -> 0x%016llx\n",
528 range.cpu_addr,
529 range.cpu_addr + range.size - 1,
530 range.bus_addr);
531 if (add_legacy_isa_io(&np->fwnode, range.cpu_addr, range.size))
532 pr_warn("Failed to reserve legacy IO in Logic PIO\n");
533 break;
534 case IORESOURCE_MEM:
535 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx\n",
536 range.cpu_addr,
537 range.cpu_addr + range.size - 1,
538 range.bus_addr);
539 break;
540 }
541 }
542 }
543
544 return 0;
545 }
546 arch_initcall(arch_reserve_pio_range);
547
reserve_memblock_reserved_regions(void)548 static int __init reserve_memblock_reserved_regions(void)
549 {
550 u64 i, j;
551
552 for (i = 0; i < num_standard_resources; ++i) {
553 struct resource *mem = &standard_resources[i];
554 phys_addr_t r_start, r_end, mem_size = resource_size(mem);
555
556 if (!memblock_is_region_reserved(mem->start, mem_size))
557 continue;
558
559 for_each_reserved_mem_range(j, &r_start, &r_end) {
560 resource_size_t start, end;
561
562 start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
563 end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
564
565 if (start > mem->end || end < mem->start)
566 continue;
567
568 reserve_region_with_split(mem, start, end, "Reserved");
569 }
570 }
571
572 return 0;
573 }
574 arch_initcall(reserve_memblock_reserved_regions);
575
576 #ifdef CONFIG_SMP
prefill_possible_map(void)577 static void __init prefill_possible_map(void)
578 {
579 int i, possible;
580
581 possible = num_processors + disabled_cpus;
582 if (possible > nr_cpu_ids)
583 possible = nr_cpu_ids;
584
585 pr_info("SMP: Allowing %d CPUs, %d hotplug CPUs\n",
586 possible, max((possible - num_processors), 0));
587
588 for (i = 0; i < possible; i++)
589 set_cpu_possible(i, true);
590 for (; i < NR_CPUS; i++) {
591 set_cpu_present(i, false);
592 set_cpu_possible(i, false);
593 }
594
595 set_nr_cpu_ids(possible);
596 }
597 #endif
598
setup_arch(char ** cmdline_p)599 void __init setup_arch(char **cmdline_p)
600 {
601 cpu_probe();
602 unwind_init();
603
604 init_environ();
605 efi_init();
606 fdt_setup();
607 memblock_init();
608 pagetable_init();
609 bootcmdline_init(cmdline_p);
610 parse_early_param();
611 reserve_initrd_mem();
612
613 platform_init();
614 arch_mem_init(cmdline_p);
615
616 resource_init();
617 jump_label_init(); /* Initialise the static keys for paravirtualization */
618
619 #ifdef CONFIG_SMP
620 plat_smp_setup();
621 prefill_possible_map();
622 #endif
623
624 paging_init();
625
626 #ifdef CONFIG_KASAN
627 kasan_init();
628 #endif
629 }
630