xref: /linux/arch/hexagon/mm/init.c (revision c02ce1735b150cf7c3b43790b48e23dcd17c0d46)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory subsystem initialization for Hexagon
4  *
5  * Copyright (c) 2010-2013, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/memblock.h>
11 #include <asm/atomic.h>
12 #include <linux/highmem.h>
13 #include <asm/tlb.h>
14 #include <asm/sections.h>
15 #include <asm/setup.h>
16 #include <asm/vm_mmu.h>
17 
18 /*
19  * Define a startpg just past the end of the kernel image and a lastpg
20  * that corresponds to the end of real or simulated platform memory.
21  */
22 #define bootmem_startpg (PFN_UP(((unsigned long) _end) - PAGE_OFFSET + PHYS_OFFSET))
23 
24 unsigned long bootmem_lastpg;	/*  Should be set by platform code  */
25 unsigned long __phys_offset;	/*  physical kernel offset >> 12  */
26 
27 /*  Set as variable to limit PMD copies  */
28 int max_kernel_seg = 0x303;
29 
30 /*  indicate pfn's of high memory  */
31 unsigned long highstart_pfn, highend_pfn;
32 
33 /* Default cache attribute for newly created page tables */
34 unsigned long _dflt_cache_att = CACHEDEF;
35 
36 /*
37  * The current "generation" of kernel map, which should not roll
38  * over until Hell freezes over.  Actual bound in years needs to be
39  * calculated to confirm.
40  */
41 DEFINE_SPINLOCK(kmap_gen_lock);
42 
43 /*  checkpatch says don't init this to 0.  */
44 unsigned long long kmap_generation;
45 
46 /*
47  * mem_init - initializes memory
48  *
49  * Frees up bootmem
50  * Fixes up more stuff for HIGHMEM
51  * Calculates and displays memory available/used
52  */
53 void __init mem_init(void)
54 {
55 	/*  No idea where this is actually declared.  Seems to evade LXR.  */
56 	memblock_free_all();
57 
58 	/*
59 	 *  To-Do:  someone somewhere should wipe out the bootmem map
60 	 *  after we're done?
61 	 */
62 
63 	/*
64 	 * This can be moved to some more virtual-memory-specific
65 	 * initialization hook at some point.  Set the init_mm
66 	 * descriptors "context" value to point to the initial
67 	 * kernel segment table's physical address.
68 	 */
69 	init_mm.context.ptbase = __pa(init_mm.pgd);
70 }
71 
72 void sync_icache_dcache(pte_t pte)
73 {
74 	unsigned long addr;
75 	struct page *page;
76 
77 	page = pte_page(pte);
78 	addr = (unsigned long) page_address(page);
79 
80 	__vmcache_idsync(addr, PAGE_SIZE);
81 }
82 
83 /*
84  * In order to set up page allocator "nodes",
85  * somebody has to call free_area_init() for UMA.
86  *
87  * In this mode, we only have one pg_data_t
88  * structure: contig_mem_data.
89  */
90 static void __init paging_init(void)
91 {
92 	unsigned long max_zone_pfn[MAX_NR_ZONES] = {0, };
93 
94 	/*
95 	 *  This is not particularly well documented anywhere, but
96 	 *  give ZONE_NORMAL all the memory, including the big holes
97 	 *  left by the kernel+bootmem_map which are already left as reserved
98 	 *  in the bootmem_map; free_area_init should see those bits and
99 	 *  adjust accordingly.
100 	 */
101 
102 	max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
103 
104 	free_area_init(max_zone_pfn);  /*  sets up the zonelists and mem_map  */
105 
106 	/*
107 	 * Start of high memory area.  Will probably need something more
108 	 * fancy if we...  get more fancy.
109 	 */
110 	high_memory = (void *)((bootmem_lastpg + 1) << PAGE_SHIFT);
111 }
112 
113 #ifndef DMA_RESERVE
114 #define DMA_RESERVE		(4)
115 #endif
116 
117 #define DMA_CHUNKSIZE		(1<<22)
118 #define DMA_RESERVED_BYTES	(DMA_RESERVE * DMA_CHUNKSIZE)
119 
120 /*
121  * Pick out the memory size.  We look for mem=size,
122  * where size is "size[KkMm]"
123  */
124 static int __init early_mem(char *p)
125 {
126 	unsigned long size;
127 	char *endp;
128 
129 	size = memparse(p, &endp);
130 
131 	bootmem_lastpg = PFN_DOWN(size);
132 
133 	return 0;
134 }
135 early_param("mem", early_mem);
136 
137 size_t hexagon_coherent_pool_size = (size_t) (DMA_RESERVE << 22);
138 
139 void __init setup_arch_memory(void)
140 {
141 	/*  XXX Todo: this probably should be cleaned up  */
142 	u32 *segtable = (u32 *) &swapper_pg_dir[0];
143 	u32 *segtable_end;
144 
145 	/*
146 	 * Set up boot memory allocator
147 	 *
148 	 * The Gorman book also talks about these functions.
149 	 * This needs to change for highmem setups.
150 	 */
151 
152 	/*  Prior to this, bootmem_lastpg is actually mem size  */
153 	bootmem_lastpg += ARCH_PFN_OFFSET;
154 
155 	/* Memory size needs to be a multiple of 16M */
156 	bootmem_lastpg = PFN_DOWN((bootmem_lastpg << PAGE_SHIFT) &
157 		~((BIG_KERNEL_PAGE_SIZE) - 1));
158 
159 	memblock_add(PHYS_OFFSET,
160 		     (bootmem_lastpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
161 
162 	/* Reserve kernel text/data/bss */
163 	memblock_reserve(PHYS_OFFSET,
164 			 (bootmem_startpg - ARCH_PFN_OFFSET) << PAGE_SHIFT);
165 	/*
166 	 * Reserve the top DMA_RESERVE bytes of RAM for DMA (uncached)
167 	 * memory allocation
168 	 */
169 	max_low_pfn = bootmem_lastpg - PFN_DOWN(DMA_RESERVED_BYTES);
170 	min_low_pfn = ARCH_PFN_OFFSET;
171 	memblock_reserve(PFN_PHYS(max_low_pfn), DMA_RESERVED_BYTES);
172 
173 	printk(KERN_INFO "bootmem_startpg:  0x%08lx\n", bootmem_startpg);
174 	printk(KERN_INFO "bootmem_lastpg:  0x%08lx\n", bootmem_lastpg);
175 	printk(KERN_INFO "min_low_pfn:  0x%08lx\n", min_low_pfn);
176 	printk(KERN_INFO "max_low_pfn:  0x%08lx\n", max_low_pfn);
177 
178 	/*
179 	 * The default VM page tables (will be) populated with
180 	 * VA=PA+PAGE_OFFSET mapping.  We go in and invalidate entries
181 	 * higher than what we have memory for.
182 	 */
183 
184 	/*  this is pointer arithmetic; each entry covers 4MB  */
185 	segtable = segtable + (PAGE_OFFSET >> 22);
186 
187 	/*  this actually only goes to the end of the first gig  */
188 	segtable_end = segtable + (1<<(30-22));
189 
190 	/*
191 	 * Move forward to the start of empty pages; take into account
192 	 * phys_offset shift.
193 	 */
194 
195 	segtable += (bootmem_lastpg-ARCH_PFN_OFFSET)>>(22-PAGE_SHIFT);
196 	{
197 		int i;
198 
199 		for (i = 1 ; i <= DMA_RESERVE ; i++)
200 			segtable[-i] = ((segtable[-i] & __HVM_PTE_PGMASK_4MB)
201 				| __HVM_PTE_R | __HVM_PTE_W | __HVM_PTE_X
202 				| __HEXAGON_C_UNC << 6
203 				| __HVM_PDE_S_4MB);
204 	}
205 
206 	printk(KERN_INFO "clearing segtable from %p to %p\n", segtable,
207 		segtable_end);
208 	while (segtable < (segtable_end-8))
209 		*(segtable++) = __HVM_PDE_S_INVALID;
210 	/* stop the pointer at the device I/O 4MB page  */
211 
212 	printk(KERN_INFO "segtable = %p (should be equal to _K_io_map)\n",
213 		segtable);
214 
215 #if 0
216 	/*  Other half of the early device table from vm_init_segtable. */
217 	printk(KERN_INFO "&_K_init_devicetable = 0x%08x\n",
218 		(unsigned long) _K_init_devicetable-PAGE_OFFSET);
219 	*segtable = ((u32) (unsigned long) _K_init_devicetable-PAGE_OFFSET) |
220 		__HVM_PDE_S_4KB;
221 	printk(KERN_INFO "*segtable = 0x%08x\n", *segtable);
222 #endif
223 
224 	/*
225 	 *  The bootmem allocator seemingly just lives to feed memory
226 	 *  to the paging system
227 	 */
228 	printk(KERN_INFO "PAGE_SIZE=%lu\n", PAGE_SIZE);
229 	paging_init();  /*  See Gorman Book, 2.3  */
230 
231 	/*
232 	 *  At this point, the page allocator is kind of initialized, but
233 	 *  apparently no pages are available (just like with the bootmem
234 	 *  allocator), and need to be freed themselves via mem_init(),
235 	 *  which is called by start_kernel() later on in the process
236 	 */
237 }
238 
239 static const pgprot_t protection_map[16] = {
240 	[VM_NONE]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
241 								   CACHEDEF),
242 	[VM_READ]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
243 								   _PAGE_READ | CACHEDEF),
244 	[VM_WRITE]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
245 								   CACHEDEF),
246 	[VM_WRITE | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
247 								   _PAGE_READ | CACHEDEF),
248 	[VM_EXEC]					= __pgprot(_PAGE_PRESENT | _PAGE_USER |
249 								   _PAGE_EXECUTE | CACHEDEF),
250 	[VM_EXEC | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
251 								   _PAGE_EXECUTE | _PAGE_READ |
252 								   CACHEDEF),
253 	[VM_EXEC | VM_WRITE]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
254 								   _PAGE_EXECUTE | CACHEDEF),
255 	[VM_EXEC | VM_WRITE | VM_READ]			= __pgprot(_PAGE_PRESENT | _PAGE_USER |
256 								   _PAGE_EXECUTE | _PAGE_READ |
257 								   CACHEDEF),
258 	[VM_SHARED]                                     = __pgprot(_PAGE_PRESENT | _PAGE_USER |
259 								   CACHEDEF),
260 	[VM_SHARED | VM_READ]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
261 								   _PAGE_READ | CACHEDEF),
262 	[VM_SHARED | VM_WRITE]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
263 								   _PAGE_WRITE | CACHEDEF),
264 	[VM_SHARED | VM_WRITE | VM_READ]		= __pgprot(_PAGE_PRESENT | _PAGE_USER |
265 								   _PAGE_READ | _PAGE_WRITE |
266 								   CACHEDEF),
267 	[VM_SHARED | VM_EXEC]				= __pgprot(_PAGE_PRESENT | _PAGE_USER |
268 								   _PAGE_EXECUTE | CACHEDEF),
269 	[VM_SHARED | VM_EXEC | VM_READ]			= __pgprot(_PAGE_PRESENT | _PAGE_USER |
270 								   _PAGE_EXECUTE | _PAGE_READ |
271 								   CACHEDEF),
272 	[VM_SHARED | VM_EXEC | VM_WRITE]		= __pgprot(_PAGE_PRESENT | _PAGE_USER |
273 								   _PAGE_EXECUTE | _PAGE_WRITE |
274 								   CACHEDEF),
275 	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= __pgprot(_PAGE_PRESENT | _PAGE_USER |
276 								   _PAGE_READ | _PAGE_EXECUTE |
277 								   _PAGE_WRITE | CACHEDEF)
278 };
279 DECLARE_VM_GET_PAGE_PROT
280