xref: /linux/arch/hexagon/kernel/time.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * Time related functions for Hexagon architecture
3  *
4  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 and
8  * only version 2 as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
18  * 02110-1301, USA.
19  */
20 
21 #include <linux/init.h>
22 #include <linux/clockchips.h>
23 #include <linux/clocksource.h>
24 #include <linux/interrupt.h>
25 #include <linux/err.h>
26 #include <linux/platform_device.h>
27 #include <linux/ioport.h>
28 #include <linux/of.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/module.h>
32 
33 #include <asm/timer-regs.h>
34 #include <asm/hexagon_vm.h>
35 
36 /*
37  * For the clocksource we need:
38  *	pcycle frequency (600MHz)
39  * For the loops_per_jiffy we need:
40  *	thread/cpu frequency (100MHz)
41  * And for the timer, we need:
42  *	sleep clock rate
43  */
44 
45 cycles_t	pcycle_freq_mhz;
46 cycles_t	thread_freq_mhz;
47 cycles_t	sleep_clk_freq;
48 
49 static struct resource rtos_timer_resources[] = {
50 	{
51 		.start	= RTOS_TIMER_REGS_ADDR,
52 		.end	= RTOS_TIMER_REGS_ADDR+PAGE_SIZE-1,
53 		.flags	= IORESOURCE_MEM,
54 	},
55 };
56 
57 static struct platform_device rtos_timer_device = {
58 	.name		= "rtos_timer",
59 	.id		= -1,
60 	.num_resources	= ARRAY_SIZE(rtos_timer_resources),
61 	.resource	= rtos_timer_resources,
62 };
63 
64 /*  A lot of this stuff should move into a platform specific section.  */
65 struct adsp_hw_timer_struct {
66 	u32 match;   /*  Match value  */
67 	u32 count;
68 	u32 enable;  /*  [1] - CLR_ON_MATCH_EN, [0] - EN  */
69 	u32 clear;   /*  one-shot register that clears the count  */
70 };
71 
72 /*  Look for "TCX0" for related constants.  */
73 static __iomem struct adsp_hw_timer_struct *rtos_timer;
74 
75 static u64 timer_get_cycles(struct clocksource *cs)
76 {
77 	return (u64) __vmgettime();
78 }
79 
80 static struct clocksource hexagon_clocksource = {
81 	.name		= "pcycles",
82 	.rating		= 250,
83 	.read		= timer_get_cycles,
84 	.mask		= CLOCKSOURCE_MASK(64),
85 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
86 };
87 
88 static int set_next_event(unsigned long delta, struct clock_event_device *evt)
89 {
90 	/*  Assuming the timer will be disabled when we enter here.  */
91 
92 	iowrite32(1, &rtos_timer->clear);
93 	iowrite32(0, &rtos_timer->clear);
94 
95 	iowrite32(delta, &rtos_timer->match);
96 	iowrite32(1 << TIMER_ENABLE, &rtos_timer->enable);
97 	return 0;
98 }
99 
100 #ifdef CONFIG_SMP
101 /*  Broadcast mechanism  */
102 static void broadcast(const struct cpumask *mask)
103 {
104 	send_ipi(mask, IPI_TIMER);
105 }
106 #endif
107 
108 /* XXX Implement set_state_shutdown() */
109 static struct clock_event_device hexagon_clockevent_dev = {
110 	.name		= "clockevent",
111 	.features	= CLOCK_EVT_FEAT_ONESHOT,
112 	.rating		= 400,
113 	.irq		= RTOS_TIMER_INT,
114 	.set_next_event = set_next_event,
115 #ifdef CONFIG_SMP
116 	.broadcast	= broadcast,
117 #endif
118 };
119 
120 #ifdef CONFIG_SMP
121 static DEFINE_PER_CPU(struct clock_event_device, clock_events);
122 
123 void setup_percpu_clockdev(void)
124 {
125 	int cpu = smp_processor_id();
126 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
127 	struct clock_event_device *dummy_clock_dev =
128 		&per_cpu(clock_events, cpu);
129 
130 	memcpy(dummy_clock_dev, ce_dev, sizeof(*dummy_clock_dev));
131 	INIT_LIST_HEAD(&dummy_clock_dev->list);
132 
133 	dummy_clock_dev->features = CLOCK_EVT_FEAT_DUMMY;
134 	dummy_clock_dev->cpumask = cpumask_of(cpu);
135 
136 	clockevents_register_device(dummy_clock_dev);
137 }
138 
139 /*  Called from smp.c for each CPU's timer ipi call  */
140 void ipi_timer(void)
141 {
142 	int cpu = smp_processor_id();
143 	struct clock_event_device *ce_dev = &per_cpu(clock_events, cpu);
144 
145 	ce_dev->event_handler(ce_dev);
146 }
147 #endif /* CONFIG_SMP */
148 
149 static irqreturn_t timer_interrupt(int irq, void *devid)
150 {
151 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
152 
153 	iowrite32(0, &rtos_timer->enable);
154 	ce_dev->event_handler(ce_dev);
155 
156 	return IRQ_HANDLED;
157 }
158 
159 /*  This should also be pulled from devtree  */
160 static struct irqaction rtos_timer_intdesc = {
161 	.handler = timer_interrupt,
162 	.flags = IRQF_TIMER | IRQF_TRIGGER_RISING,
163 	.name = "rtos_timer"
164 };
165 
166 /*
167  * time_init_deferred - called by start_kernel to set up timer/clock source
168  *
169  * Install the IRQ handler for the clock, setup timers.
170  * This is done late, as that way, we can use ioremap().
171  *
172  * This runs just before the delay loop is calibrated, and
173  * is used for delay calibration.
174  */
175 void __init time_init_deferred(void)
176 {
177 	struct resource *resource = NULL;
178 	struct clock_event_device *ce_dev = &hexagon_clockevent_dev;
179 
180 	ce_dev->cpumask = cpu_all_mask;
181 
182 	if (!resource)
183 		resource = rtos_timer_device.resource;
184 
185 	/*  ioremap here means this has to run later, after paging init  */
186 	rtos_timer = ioremap(resource->start, resource_size(resource));
187 
188 	if (!rtos_timer) {
189 		release_mem_region(resource->start, resource_size(resource));
190 	}
191 	clocksource_register_khz(&hexagon_clocksource, pcycle_freq_mhz * 1000);
192 
193 	/*  Note: the sim generic RTOS clock is apparently really 18750Hz  */
194 
195 	/*
196 	 * Last arg is some guaranteed seconds for which the conversion will
197 	 * work without overflow.
198 	 */
199 	clockevents_calc_mult_shift(ce_dev, sleep_clk_freq, 4);
200 
201 	ce_dev->max_delta_ns = clockevent_delta2ns(0x7fffffff, ce_dev);
202 	ce_dev->min_delta_ns = clockevent_delta2ns(0xf, ce_dev);
203 
204 #ifdef CONFIG_SMP
205 	setup_percpu_clockdev();
206 #endif
207 
208 	clockevents_register_device(ce_dev);
209 	setup_irq(ce_dev->irq, &rtos_timer_intdesc);
210 }
211 
212 void __init time_init(void)
213 {
214 	late_time_init = time_init_deferred;
215 }
216 
217 void __delay(unsigned long cycles)
218 {
219 	unsigned long long start = __vmgettime();
220 
221 	while ((__vmgettime() - start) < cycles)
222 		cpu_relax();
223 }
224 EXPORT_SYMBOL(__delay);
225 
226 /*
227  * This could become parametric or perhaps even computed at run-time,
228  * but for now we take the observed simulator jitter.
229  */
230 static long long fudgefactor = 350;  /* Maybe lower if kernel optimized. */
231 
232 void __udelay(unsigned long usecs)
233 {
234 	unsigned long long start = __vmgettime();
235 	unsigned long long finish = (pcycle_freq_mhz * usecs) - fudgefactor;
236 
237 	while ((__vmgettime() - start) < finish)
238 		cpu_relax(); /*  not sure how this improves readability  */
239 }
240 EXPORT_SYMBOL(__udelay);
241