xref: /linux/arch/hexagon/kernel/process.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Process creation support for Hexagon
4  *
5  * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved.
6  */
7 
8 #include <linux/cpu.h>
9 #include <linux/sched.h>
10 #include <linux/sched/debug.h>
11 #include <linux/sched/task.h>
12 #include <linux/sched/task_stack.h>
13 #include <linux/types.h>
14 #include <linux/module.h>
15 #include <linux/tick.h>
16 #include <linux/uaccess.h>
17 #include <linux/slab.h>
18 #include <linux/resume_user_mode.h>
19 
20 /*
21  * Program thread launch.  Often defined as a macro in processor.h,
22  * but we're shooting for a small footprint and it's not an inner-loop
23  * performance-critical operation.
24  *
25  * The Hexagon ABI specifies that R28 is zero'ed before program launch,
26  * so that gets automatically done here.  If we ever stop doing that here,
27  * we'll probably want to define the ELF_PLAT_INIT macro.
28  */
29 void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
30 {
31 	/* We want to zero all data-containing registers. Is this overkill? */
32 	memset(regs, 0, sizeof(*regs));
33 	/* We might want to also zero all Processor registers here */
34 	pt_set_usermode(regs);
35 	pt_set_elr(regs, pc);
36 	pt_set_rte_sp(regs, sp);
37 }
38 
39 /*
40  *  Spin, or better still, do a hardware or VM wait instruction
41  *  If hardware or VM offer wait termination even though interrupts
42  *  are disabled.
43  */
44 void arch_cpu_idle(void)
45 {
46 	__vmwait();
47 	/*  interrupts wake us up, but irqs are still disabled */
48 }
49 
50 /*
51  * Copy architecture-specific thread state
52  */
53 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
54 {
55 	unsigned long clone_flags = args->flags;
56 	unsigned long usp = args->stack;
57 	unsigned long tls = args->tls;
58 	struct thread_info *ti = task_thread_info(p);
59 	struct hexagon_switch_stack *ss;
60 	struct pt_regs *childregs;
61 	asmlinkage void ret_from_fork(void);
62 
63 	childregs = (struct pt_regs *) (((unsigned long) ti + THREAD_SIZE) -
64 					sizeof(*childregs));
65 
66 	ti->regs = childregs;
67 
68 	/*
69 	 * Establish kernel stack pointer and initial PC for new thread
70 	 * Note that unlike the usual situation, we do not copy the
71 	 * parent's callee-saved here; those are in pt_regs and whatever
72 	 * we leave here will be overridden on return to userland.
73 	 */
74 	ss = (struct hexagon_switch_stack *) ((unsigned long) childregs -
75 						    sizeof(*ss));
76 	ss->lr = (unsigned long)ret_from_fork;
77 	p->thread.switch_sp = ss;
78 	if (unlikely(args->fn)) {
79 		memset(childregs, 0, sizeof(struct pt_regs));
80 		/* r24 <- fn, r25 <- arg */
81 		ss->r24 = (unsigned long)args->fn;
82 		ss->r25 = (unsigned long)args->fn_arg;
83 		pt_set_kmode(childregs);
84 		return 0;
85 	}
86 	memcpy(childregs, current_pt_regs(), sizeof(*childregs));
87 	ss->r2524 = 0;
88 
89 	if (usp)
90 		pt_set_rte_sp(childregs, usp);
91 
92 	/* Child sees zero return value */
93 	childregs->r00 = 0;
94 
95 	/*
96 	 * The clone syscall has the C signature:
97 	 * int [r0] clone(int flags [r0],
98 	 *           void *child_frame [r1],
99 	 *           void *parent_tid [r2],
100 	 *           void *child_tid [r3],
101 	 *           void *thread_control_block [r4]);
102 	 * ugp is used to provide TLS support.
103 	 */
104 	if (clone_flags & CLONE_SETTLS)
105 		childregs->ugp = tls;
106 
107 	/*
108 	 * Parent sees new pid -- not necessary, not even possible at
109 	 * this point in the fork process
110 	 */
111 
112 	return 0;
113 }
114 
115 /*
116  * Some archs flush debug and FPU info here
117  */
118 void flush_thread(void)
119 {
120 }
121 
122 /*
123  * The "wait channel" terminology is archaic, but what we want
124  * is an identification of the point at which the scheduler
125  * was invoked by a blocked thread.
126  */
127 unsigned long __get_wchan(struct task_struct *p)
128 {
129 	unsigned long fp, pc;
130 	unsigned long stack_page;
131 	int count = 0;
132 
133 	stack_page = (unsigned long)task_stack_page(p);
134 	fp = ((struct hexagon_switch_stack *)p->thread.switch_sp)->fp;
135 	do {
136 		if (fp < (stack_page + sizeof(struct thread_info)) ||
137 			fp >= (THREAD_SIZE - 8 + stack_page))
138 			return 0;
139 		pc = ((unsigned long *)fp)[1];
140 		if (!in_sched_functions(pc))
141 			return pc;
142 		fp = *(unsigned long *) fp;
143 	} while (count++ < 16);
144 
145 	return 0;
146 }
147 
148 /*
149  * Called on the exit path of event entry; see vm_entry.S
150  *
151  * Interrupts will already be disabled.
152  *
153  * Returns 0 if there's no need to re-check for more work.
154  */
155 
156 int do_work_pending(struct pt_regs *regs, u32 thread_info_flags);
157 int do_work_pending(struct pt_regs *regs, u32 thread_info_flags)
158 {
159 	if (!(thread_info_flags & _TIF_WORK_MASK)) {
160 		return 0;
161 	}  /* shortcut -- no work to be done */
162 
163 	local_irq_enable();
164 
165 	if (thread_info_flags & _TIF_NEED_RESCHED) {
166 		schedule();
167 		return 1;
168 	}
169 
170 	if (thread_info_flags & (_TIF_SIGPENDING | _TIF_NOTIFY_SIGNAL)) {
171 		do_signal(regs);
172 		return 1;
173 	}
174 
175 	if (thread_info_flags & _TIF_NOTIFY_RESUME) {
176 		resume_user_mode_work(regs);
177 		return 1;
178 	}
179 
180 	/* Should not even reach here */
181 	panic("%s: bad thread_info flags 0x%08x\n", __func__,
182 		thread_info_flags);
183 }
184