xref: /linux/arch/hexagon/include/asm/pgtable.h (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * Page table support for the Hexagon architecture
4  *
5  * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved.
6  */
7 
8 #ifndef _ASM_PGTABLE_H
9 #define _ASM_PGTABLE_H
10 
11 /*
12  * Page table definitions for Qualcomm Hexagon processor.
13  */
14 #include <asm/page.h>
15 #include <asm-generic/pgtable-nopmd.h>
16 
17 /* A handy thing to have if one has the RAM. Declared in head.S */
18 extern unsigned long empty_zero_page;
19 
20 /*
21  * The PTE model described here is that of the Hexagon Virtual Machine,
22  * which autonomously walks 2-level page tables.  At a lower level, we
23  * also describe the RISCish software-loaded TLB entry structure of
24  * the underlying Hexagon processor. A kernel built to run on the
25  * virtual machine has no need to know about the underlying hardware.
26  */
27 #include <asm/vm_mmu.h>
28 
29 /*
30  * To maximize the comfort level for the PTE manipulation macros,
31  * define the "well known" architecture-specific bits.
32  */
33 #define _PAGE_READ	__HVM_PTE_R
34 #define _PAGE_WRITE	__HVM_PTE_W
35 #define _PAGE_EXECUTE	__HVM_PTE_X
36 #define _PAGE_USER	__HVM_PTE_U
37 
38 /*
39  * We have a total of 4 "soft" bits available in the abstract PTE.
40  * The two mandatory software bits are Dirty and Accessed.
41  * To make nonlinear swap work according to the more recent
42  * model, we want a low order "Present" bit to indicate whether
43  * the PTE describes MMU programming or swap space.
44  */
45 #define _PAGE_PRESENT	(1<<0)
46 #define _PAGE_DIRTY	(1<<1)
47 #define _PAGE_ACCESSED	(1<<2)
48 
49 /*
50  * For now, let's say that Valid and Present are the same thing.
51  * Alternatively, we could say that it's the "or" of R, W, and X
52  * permissions.
53  */
54 #define _PAGE_VALID	_PAGE_PRESENT
55 
56 /*
57  * We're not defining _PAGE_GLOBAL here, since there's no concept
58  * of global pages or ASIDs exposed to the Hexagon Virtual Machine,
59  * and we want to use the same page table structures and macros in
60  * the native kernel as we do in the virtual machine kernel.
61  * So we'll put up with a bit of inefficiency for now...
62  */
63 
64 /* We borrow bit 6 to store the exclusive marker in swap PTEs. */
65 #define _PAGE_SWP_EXCLUSIVE	(1<<6)
66 
67 /*
68  * Top "FOURTH" level (pgd), which for the Hexagon VM is really
69  * only the second from the bottom, pgd and pud both being collapsed.
70  * Each entry represents 4MB of virtual address space, 4K of table
71  * thus maps the full 4GB.
72  */
73 #define PGDIR_SHIFT 22
74 #define PTRS_PER_PGD 1024
75 
76 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
77 #define PGDIR_MASK (~(PGDIR_SIZE-1))
78 
79 #ifdef CONFIG_PAGE_SIZE_4KB
80 #define PTRS_PER_PTE 1024
81 #endif
82 
83 #ifdef CONFIG_PAGE_SIZE_16KB
84 #define PTRS_PER_PTE 256
85 #endif
86 
87 #ifdef CONFIG_PAGE_SIZE_64KB
88 #define PTRS_PER_PTE 64
89 #endif
90 
91 #ifdef CONFIG_PAGE_SIZE_256KB
92 #define PTRS_PER_PTE 16
93 #endif
94 
95 #ifdef CONFIG_PAGE_SIZE_1MB
96 #define PTRS_PER_PTE 4
97 #endif
98 
99 /*  Any bigger and the PTE disappears.  */
100 #define pgd_ERROR(e) \
101 	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\
102 		pgd_val(e))
103 
104 /*
105  * Page Protection Constants. Includes (in this variant) cache attributes.
106  */
107 extern unsigned long _dflt_cache_att;
108 
109 #define PAGE_NONE	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
110 				_dflt_cache_att)
111 #define PAGE_READONLY	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
112 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
113 #define PAGE_COPY	PAGE_READONLY
114 #define PAGE_EXEC	__pgprot(_PAGE_PRESENT | _PAGE_USER | \
115 				_PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att)
116 #define PAGE_COPY_EXEC	PAGE_EXEC
117 #define PAGE_SHARED	__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \
118 				_PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att)
119 #define PAGE_KERNEL	__pgprot(_PAGE_PRESENT | _PAGE_READ | \
120 				_PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att)
121 
122 
123 /*
124  * Aliases for mapping mmap() protection bits to page protections.
125  * These get used for static initialization, so using the _dflt_cache_att
126  * variable for the default cache attribute isn't workable. If the
127  * default gets changed at boot time, the boot option code has to
128  * update data structures like the protaction_map[] array.
129  */
130 #define CACHEDEF	(CACHE_DEFAULT << 6)
131 
132 extern pgd_t swapper_pg_dir[PTRS_PER_PGD];  /* located in head.S */
133 
134 /*  HUGETLB not working currently  */
135 #ifdef CONFIG_HUGETLB_PAGE
136 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE)
137 #endif
138 
139 /*
140  * For now, assume that higher-level code will do TLB/MMU invalidations
141  * and don't insert that overhead into this low-level function.
142  */
143 extern void sync_icache_dcache(pte_t pte);
144 
145 #define pte_present_exec_user(pte) \
146 	((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \
147 	(_PAGE_EXECUTE | _PAGE_USER))
148 
149 static inline void set_pte(pte_t *ptep, pte_t pteval)
150 {
151 	/*  should really be using pte_exec, if it weren't declared later. */
152 	if (pte_present_exec_user(pteval))
153 		sync_icache_dcache(pteval);
154 
155 	*ptep = pteval;
156 }
157 
158 /*
159  * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid
160  * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE
161  * (Linux PTE), the key is to have bits 11..9 all zero.  We'd use 0x7
162  * as a universal null entry, but some of those least significant bits
163  * are interpreted by software.
164  */
165 #define _NULL_PMD	0x7
166 #define _NULL_PTE	0x0
167 
168 static inline void pmd_clear(pmd_t *pmd_entry_ptr)
169 {
170 	 pmd_val(*pmd_entry_ptr) = _NULL_PMD;
171 }
172 
173 /*
174  * Conveniently, a null PTE value is invalid.
175  */
176 static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
177 				pte_t *ptep)
178 {
179 	pte_val(*ptep) = _NULL_PTE;
180 }
181 
182 /**
183  * pmd_none - check if pmd_entry is mapped
184  * @pmd_entry:  pmd entry
185  *
186  * MIPS checks it against that "invalid pte table" thing.
187  */
188 static inline int pmd_none(pmd_t pmd)
189 {
190 	return pmd_val(pmd) == _NULL_PMD;
191 }
192 
193 /**
194  * pmd_present - is there a page table behind this?
195  * Essentially the inverse of pmd_none.  We maybe
196  * save an inline instruction by defining it this
197  * way, instead of simply "!pmd_none".
198  */
199 static inline int pmd_present(pmd_t pmd)
200 {
201 	return pmd_val(pmd) != (unsigned long)_NULL_PMD;
202 }
203 
204 /**
205  * pmd_bad - check if a PMD entry is "bad". That might mean swapped out.
206  * As we have no known cause of badness, it's null, as it is for many
207  * architectures.
208  */
209 static inline int pmd_bad(pmd_t pmd)
210 {
211 	return 0;
212 }
213 
214 /*
215  * pmd_pfn - converts a PMD entry to a page frame number
216  */
217 #define pmd_pfn(pmd)  (pmd_val(pmd) >> PAGE_SHIFT)
218 
219 /*
220  * pmd_page - converts a PMD entry to a page pointer
221  */
222 #define pmd_page(pmd)  (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
223 
224 /**
225  * pte_none - check if pte is mapped
226  * @pte: pte_t entry
227  */
228 static inline int pte_none(pte_t pte)
229 {
230 	return pte_val(pte) == _NULL_PTE;
231 };
232 
233 /*
234  * pte_present - check if page is present
235  */
236 static inline int pte_present(pte_t pte)
237 {
238 	return pte_val(pte) & _PAGE_PRESENT;
239 }
240 
241 /* mk_pte - make a PTE out of a page pointer and protection bits */
242 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
243 
244 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */
245 #define pte_page(x) pfn_to_page(pte_pfn(x))
246 
247 /* pte_mkold - mark PTE as not recently accessed */
248 static inline pte_t pte_mkold(pte_t pte)
249 {
250 	pte_val(pte) &= ~_PAGE_ACCESSED;
251 	return pte;
252 }
253 
254 /* pte_mkyoung - mark PTE as recently accessed */
255 static inline pte_t pte_mkyoung(pte_t pte)
256 {
257 	pte_val(pte) |= _PAGE_ACCESSED;
258 	return pte;
259 }
260 
261 /* pte_mkclean - mark page as in sync with backing store */
262 static inline pte_t pte_mkclean(pte_t pte)
263 {
264 	pte_val(pte) &= ~_PAGE_DIRTY;
265 	return pte;
266 }
267 
268 /* pte_mkdirty - mark page as modified */
269 static inline pte_t pte_mkdirty(pte_t pte)
270 {
271 	pte_val(pte) |= _PAGE_DIRTY;
272 	return pte;
273 }
274 
275 /* pte_young - "is PTE marked as accessed"? */
276 static inline int pte_young(pte_t pte)
277 {
278 	return pte_val(pte) & _PAGE_ACCESSED;
279 }
280 
281 /* pte_dirty - "is PTE dirty?" */
282 static inline int pte_dirty(pte_t pte)
283 {
284 	return pte_val(pte) & _PAGE_DIRTY;
285 }
286 
287 /* pte_modify - set protection bits on PTE */
288 static inline pte_t pte_modify(pte_t pte, pgprot_t prot)
289 {
290 	pte_val(pte) &= PAGE_MASK;
291 	pte_val(pte) |= pgprot_val(prot);
292 	return pte;
293 }
294 
295 /* pte_wrprotect - mark page as not writable */
296 static inline pte_t pte_wrprotect(pte_t pte)
297 {
298 	pte_val(pte) &= ~_PAGE_WRITE;
299 	return pte;
300 }
301 
302 /* pte_mkwrite - mark page as writable */
303 static inline pte_t pte_mkwrite_novma(pte_t pte)
304 {
305 	pte_val(pte) |= _PAGE_WRITE;
306 	return pte;
307 }
308 
309 /* pte_mkexec - mark PTE as executable */
310 static inline pte_t pte_mkexec(pte_t pte)
311 {
312 	pte_val(pte) |= _PAGE_EXECUTE;
313 	return pte;
314 }
315 
316 /* pte_read - "is PTE marked as readable?" */
317 static inline int pte_read(pte_t pte)
318 {
319 	return pte_val(pte) & _PAGE_READ;
320 }
321 
322 /* pte_write - "is PTE marked as writable?" */
323 static inline int pte_write(pte_t pte)
324 {
325 	return pte_val(pte) & _PAGE_WRITE;
326 }
327 
328 
329 /* pte_exec - "is PTE marked as executable?" */
330 static inline int pte_exec(pte_t pte)
331 {
332 	return pte_val(pte) & _PAGE_EXECUTE;
333 }
334 
335 /* __pte_to_swp_entry - extract swap entry from PTE */
336 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
337 
338 /* __swp_entry_to_pte - extract PTE from swap entry */
339 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
340 
341 #define PFN_PTE_SHIFT	PAGE_SHIFT
342 /* pfn_pte - convert page number and protection value to page table entry */
343 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot))
344 
345 /* pte_pfn - convert pte to page frame number */
346 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT)
347 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval))
348 
349 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
350 {
351 	return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK);
352 }
353 
354 /* ZERO_PAGE - returns the globally shared zero page */
355 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page))
356 
357 /*
358  * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
359  * are !pte_none() && !pte_present().
360  *
361  * Swap/file PTE definitions.  If _PAGE_PRESENT is zero, the rest of the PTE is
362  * interpreted as swap information.  The remaining free bits are interpreted as
363  * listed below.  Rather than have the TLB fill handler test
364  * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to
365  * all zeros for swap entries, which speeds up the miss handler at the cost of
366  * 3 bits of offset.  That trade-off can be revisited if necessary, but Hexagon
367  * processor architecture and target applications suggest a lot of TLB misses
368  * and not much swap space.
369  *
370  * Format of swap PTE:
371  *	bit	0:	Present (zero)
372  *	bits	1-5:	swap type (arch independent layer uses 5 bits max)
373  *	bit	6:	exclusive marker
374  *	bits	7-9:	bits 2:0 of offset
375  *	bits	10-12:	effectively _PAGE_PROTNONE (all zero)
376  *	bits	13-31:  bits 21:3 of swap offset
377  *
378  * The split offset makes some of the following macros a little gnarly,
379  * but there's plenty of precedent for this sort of thing.
380  */
381 
382 /* Used for swap PTEs */
383 #define __swp_type(swp_pte)		(((swp_pte).val >> 1) & 0x1f)
384 
385 #define __swp_offset(swp_pte) \
386 	((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x3ffff8))
387 
388 #define __swp_entry(type, offset) \
389 	((swp_entry_t)	{ \
390 		(((type & 0x1f) << 1) | \
391 		 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) })
392 
393 static inline int pte_swp_exclusive(pte_t pte)
394 {
395 	return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
396 }
397 
398 static inline pte_t pte_swp_mkexclusive(pte_t pte)
399 {
400 	pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
401 	return pte;
402 }
403 
404 static inline pte_t pte_swp_clear_exclusive(pte_t pte)
405 {
406 	pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
407 	return pte;
408 }
409 
410 #endif
411