1 /* 2 * Page table support for the Hexagon architecture 3 * 4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 and 8 * only version 2 as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 18 * 02110-1301, USA. 19 */ 20 21 #ifndef _ASM_PGTABLE_H 22 #define _ASM_PGTABLE_H 23 24 /* 25 * Page table definitions for Qualcomm Hexagon processor. 26 */ 27 #include <linux/swap.h> 28 #include <asm/page.h> 29 #define __ARCH_USE_5LEVEL_HACK 30 #include <asm-generic/pgtable-nopmd.h> 31 32 /* A handy thing to have if one has the RAM. Declared in head.S */ 33 extern unsigned long empty_zero_page; 34 extern unsigned long zero_page_mask; 35 36 /* 37 * The PTE model described here is that of the Hexagon Virtual Machine, 38 * which autonomously walks 2-level page tables. At a lower level, we 39 * also describe the RISCish software-loaded TLB entry structure of 40 * the underlying Hexagon processor. A kernel built to run on the 41 * virtual machine has no need to know about the underlying hardware. 42 */ 43 #include <asm/vm_mmu.h> 44 45 /* 46 * To maximize the comfort level for the PTE manipulation macros, 47 * define the "well known" architecture-specific bits. 48 */ 49 #define _PAGE_READ __HVM_PTE_R 50 #define _PAGE_WRITE __HVM_PTE_W 51 #define _PAGE_EXECUTE __HVM_PTE_X 52 #define _PAGE_USER __HVM_PTE_U 53 54 /* 55 * We have a total of 4 "soft" bits available in the abstract PTE. 56 * The two mandatory software bits are Dirty and Accessed. 57 * To make nonlinear swap work according to the more recent 58 * model, we want a low order "Present" bit to indicate whether 59 * the PTE describes MMU programming or swap space. 60 */ 61 #define _PAGE_PRESENT (1<<0) 62 #define _PAGE_DIRTY (1<<1) 63 #define _PAGE_ACCESSED (1<<2) 64 65 /* 66 * For now, let's say that Valid and Present are the same thing. 67 * Alternatively, we could say that it's the "or" of R, W, and X 68 * permissions. 69 */ 70 #define _PAGE_VALID _PAGE_PRESENT 71 72 /* 73 * We're not defining _PAGE_GLOBAL here, since there's no concept 74 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 75 * and we want to use the same page table structures and macros in 76 * the native kernel as we do in the virtual machine kernel. 77 * So we'll put up with a bit of inefficiency for now... 78 */ 79 80 /* 81 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 82 * only the second from the bottom, pgd and pud both being collapsed. 83 * Each entry represents 4MB of virtual address space, 4K of table 84 * thus maps the full 4GB. 85 */ 86 #define PGDIR_SHIFT 22 87 #define PTRS_PER_PGD 1024 88 89 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 90 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 91 92 #ifdef CONFIG_PAGE_SIZE_4KB 93 #define PTRS_PER_PTE 1024 94 #endif 95 96 #ifdef CONFIG_PAGE_SIZE_16KB 97 #define PTRS_PER_PTE 256 98 #endif 99 100 #ifdef CONFIG_PAGE_SIZE_64KB 101 #define PTRS_PER_PTE 64 102 #endif 103 104 #ifdef CONFIG_PAGE_SIZE_256KB 105 #define PTRS_PER_PTE 16 106 #endif 107 108 #ifdef CONFIG_PAGE_SIZE_1MB 109 #define PTRS_PER_PTE 4 110 #endif 111 112 /* Any bigger and the PTE disappears. */ 113 #define pgd_ERROR(e) \ 114 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 115 pgd_val(e)) 116 117 /* 118 * Page Protection Constants. Includes (in this variant) cache attributes. 119 */ 120 extern unsigned long _dflt_cache_att; 121 122 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 123 _dflt_cache_att) 124 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 125 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 126 #define PAGE_COPY PAGE_READONLY 127 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 128 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 129 #define PAGE_COPY_EXEC PAGE_EXEC 130 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 131 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 132 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 133 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 134 135 136 /* 137 * Aliases for mapping mmap() protection bits to page protections. 138 * These get used for static initialization, so using the _dflt_cache_att 139 * variable for the default cache attribute isn't workable. If the 140 * default gets changed at boot time, the boot option code has to 141 * update data structures like the protaction_map[] array. 142 */ 143 #define CACHEDEF (CACHE_DEFAULT << 6) 144 145 /* Private (copy-on-write) page protections. */ 146 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 147 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 148 #define __P010 __P000 /* Write-only copy-on-write */ 149 #define __P011 __P001 /* Read/Write copy-on-write */ 150 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 151 _PAGE_EXECUTE | CACHEDEF) 152 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 153 _PAGE_READ | CACHEDEF) 154 #define __P110 __P100 /* Write/execute copy-on-write */ 155 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 156 157 /* Shared page protections. */ 158 #define __S000 __P000 159 #define __S001 __P001 160 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 161 _PAGE_WRITE | CACHEDEF) 162 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 163 _PAGE_WRITE | CACHEDEF) 164 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 165 _PAGE_EXECUTE | CACHEDEF) 166 #define __S101 __P101 167 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 168 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 169 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 170 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 171 172 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 173 174 /* Seems to be zero even in architectures where the zero page is firewalled? */ 175 #define FIRST_USER_ADDRESS 0UL 176 #define pte_special(pte) 0 177 #define pte_mkspecial(pte) (pte) 178 179 /* HUGETLB not working currently */ 180 #ifdef CONFIG_HUGETLB_PAGE 181 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 182 #endif 183 184 /* 185 * For now, assume that higher-level code will do TLB/MMU invalidations 186 * and don't insert that overhead into this low-level function. 187 */ 188 extern void sync_icache_dcache(pte_t pte); 189 190 #define pte_present_exec_user(pte) \ 191 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 192 (_PAGE_EXECUTE | _PAGE_USER)) 193 194 static inline void set_pte(pte_t *ptep, pte_t pteval) 195 { 196 /* should really be using pte_exec, if it weren't declared later. */ 197 if (pte_present_exec_user(pteval)) 198 sync_icache_dcache(pteval); 199 200 *ptep = pteval; 201 } 202 203 /* 204 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 205 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 206 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 207 * as a universal null entry, but some of those least significant bits 208 * are interpreted by software. 209 */ 210 #define _NULL_PMD 0x7 211 #define _NULL_PTE 0x0 212 213 static inline void pmd_clear(pmd_t *pmd_entry_ptr) 214 { 215 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 216 } 217 218 /* 219 * Conveniently, a null PTE value is invalid. 220 */ 221 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 222 pte_t *ptep) 223 { 224 pte_val(*ptep) = _NULL_PTE; 225 } 226 227 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL 228 /** 229 * pmd_index - returns the index of the entry in the PMD page 230 * which would control the given virtual address 231 */ 232 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 233 234 #endif 235 236 /** 237 * pgd_index - returns the index of the entry in the PGD page 238 * which would control the given virtual address 239 * 240 * This returns the *index* for the address in the pgd_t 241 */ 242 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 243 244 /* 245 * pgd_offset - find an offset in a page-table-directory 246 */ 247 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) 248 249 /* 250 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr 251 */ 252 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 253 254 /** 255 * pmd_none - check if pmd_entry is mapped 256 * @pmd_entry: pmd entry 257 * 258 * MIPS checks it against that "invalid pte table" thing. 259 */ 260 static inline int pmd_none(pmd_t pmd) 261 { 262 return pmd_val(pmd) == _NULL_PMD; 263 } 264 265 /** 266 * pmd_present - is there a page table behind this? 267 * Essentially the inverse of pmd_none. We maybe 268 * save an inline instruction by defining it this 269 * way, instead of simply "!pmd_none". 270 */ 271 static inline int pmd_present(pmd_t pmd) 272 { 273 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 274 } 275 276 /** 277 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 278 * As we have no known cause of badness, it's null, as it is for many 279 * architectures. 280 */ 281 static inline int pmd_bad(pmd_t pmd) 282 { 283 return 0; 284 } 285 286 /* 287 * pmd_page - converts a PMD entry to a page pointer 288 */ 289 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 290 #define pmd_pgtable(pmd) pmd_page(pmd) 291 292 /** 293 * pte_none - check if pte is mapped 294 * @pte: pte_t entry 295 */ 296 static inline int pte_none(pte_t pte) 297 { 298 return pte_val(pte) == _NULL_PTE; 299 }; 300 301 /* 302 * pte_present - check if page is present 303 */ 304 static inline int pte_present(pte_t pte) 305 { 306 return pte_val(pte) & _PAGE_PRESENT; 307 } 308 309 /* mk_pte - make a PTE out of a page pointer and protection bits */ 310 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 311 312 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 313 #define pte_page(x) pfn_to_page(pte_pfn(x)) 314 315 /* pte_mkold - mark PTE as not recently accessed */ 316 static inline pte_t pte_mkold(pte_t pte) 317 { 318 pte_val(pte) &= ~_PAGE_ACCESSED; 319 return pte; 320 } 321 322 /* pte_mkyoung - mark PTE as recently accessed */ 323 static inline pte_t pte_mkyoung(pte_t pte) 324 { 325 pte_val(pte) |= _PAGE_ACCESSED; 326 return pte; 327 } 328 329 /* pte_mkclean - mark page as in sync with backing store */ 330 static inline pte_t pte_mkclean(pte_t pte) 331 { 332 pte_val(pte) &= ~_PAGE_DIRTY; 333 return pte; 334 } 335 336 /* pte_mkdirty - mark page as modified */ 337 static inline pte_t pte_mkdirty(pte_t pte) 338 { 339 pte_val(pte) |= _PAGE_DIRTY; 340 return pte; 341 } 342 343 /* pte_young - "is PTE marked as accessed"? */ 344 static inline int pte_young(pte_t pte) 345 { 346 return pte_val(pte) & _PAGE_ACCESSED; 347 } 348 349 /* pte_dirty - "is PTE dirty?" */ 350 static inline int pte_dirty(pte_t pte) 351 { 352 return pte_val(pte) & _PAGE_DIRTY; 353 } 354 355 /* pte_modify - set protection bits on PTE */ 356 static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 357 { 358 pte_val(pte) &= PAGE_MASK; 359 pte_val(pte) |= pgprot_val(prot); 360 return pte; 361 } 362 363 /* pte_wrprotect - mark page as not writable */ 364 static inline pte_t pte_wrprotect(pte_t pte) 365 { 366 pte_val(pte) &= ~_PAGE_WRITE; 367 return pte; 368 } 369 370 /* pte_mkwrite - mark page as writable */ 371 static inline pte_t pte_mkwrite(pte_t pte) 372 { 373 pte_val(pte) |= _PAGE_WRITE; 374 return pte; 375 } 376 377 /* pte_mkexec - mark PTE as executable */ 378 static inline pte_t pte_mkexec(pte_t pte) 379 { 380 pte_val(pte) |= _PAGE_EXECUTE; 381 return pte; 382 } 383 384 /* pte_read - "is PTE marked as readable?" */ 385 static inline int pte_read(pte_t pte) 386 { 387 return pte_val(pte) & _PAGE_READ; 388 } 389 390 /* pte_write - "is PTE marked as writable?" */ 391 static inline int pte_write(pte_t pte) 392 { 393 return pte_val(pte) & _PAGE_WRITE; 394 } 395 396 397 /* pte_exec - "is PTE marked as executable?" */ 398 static inline int pte_exec(pte_t pte) 399 { 400 return pte_val(pte) & _PAGE_EXECUTE; 401 } 402 403 /* __pte_to_swp_entry - extract swap entry from PTE */ 404 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 405 406 /* __swp_entry_to_pte - extract PTE from swap entry */ 407 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 408 409 /* pfn_pte - convert page number and protection value to page table entry */ 410 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 411 412 /* pte_pfn - convert pte to page frame number */ 413 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 414 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 415 416 /* 417 * set_pte_at - update page table and do whatever magic may be 418 * necessary to make the underlying hardware/firmware take note. 419 * 420 * VM may require a virtual instruction to alert the MMU. 421 */ 422 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 423 424 /* 425 * May need to invoke the virtual machine as well... 426 */ 427 #define pte_unmap(pte) do { } while (0) 428 #define pte_unmap_nested(pte) do { } while (0) 429 430 /* 431 * pte_offset_map - returns the linear address of the page table entry 432 * corresponding to an address 433 */ 434 #define pte_offset_map(dir, address) \ 435 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 436 437 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr) 438 439 /* pte_offset_kernel - kernel version of pte_offset */ 440 #define pte_offset_kernel(dir, address) \ 441 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \ 442 + __pte_offset(address)) 443 444 /* ZERO_PAGE - returns the globally shared zero page */ 445 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 446 447 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 448 449 /* I think this is in case we have page table caches; needed by init/main.c */ 450 #define pgtable_cache_init() do { } while (0) 451 452 /* 453 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 454 * interpreted as swap information. The remaining free bits are interpreted as 455 * swap type/offset tuple. Rather than have the TLB fill handler test 456 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 457 * all zeros for swap entries, which speeds up the miss handler at the cost of 458 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 459 * processor architecture and target applications suggest a lot of TLB misses 460 * and not much swap space. 461 * 462 * Format of swap PTE: 463 * bit 0: Present (zero) 464 * bits 1-5: swap type (arch independent layer uses 5 bits max) 465 * bits 6-9: bits 3:0 of offset 466 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 467 * bits 13-31: bits 22:4 of swap offset 468 * 469 * The split offset makes some of the following macros a little gnarly, 470 * but there's plenty of precedent for this sort of thing. 471 */ 472 473 /* Used for swap PTEs */ 474 #define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 475 476 #define __swp_offset(swp_pte) \ 477 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) 478 479 #define __swp_entry(type, offset) \ 480 ((swp_entry_t) { \ 481 ((type << 1) | \ 482 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) 483 484 /* Oh boy. There are a lot of possible arch overrides found in this file. */ 485 #include <asm-generic/pgtable.h> 486 487 #endif 488