1 /* 2 * Page table support for the Hexagon architecture 3 * 4 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 and 8 * only version 2 as published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 18 * 02110-1301, USA. 19 */ 20 21 #ifndef _ASM_PGTABLE_H 22 #define _ASM_PGTABLE_H 23 24 /* 25 * Page table definitions for Qualcomm Hexagon processor. 26 */ 27 #include <linux/swap.h> 28 #include <asm/page.h> 29 #include <asm-generic/pgtable-nopmd.h> 30 31 /* A handy thing to have if one has the RAM. Declared in head.S */ 32 extern unsigned long empty_zero_page; 33 extern unsigned long zero_page_mask; 34 35 /* 36 * The PTE model described here is that of the Hexagon Virtual Machine, 37 * which autonomously walks 2-level page tables. At a lower level, we 38 * also describe the RISCish software-loaded TLB entry structure of 39 * the underlying Hexagon processor. A kernel built to run on the 40 * virtual machine has no need to know about the underlying hardware. 41 */ 42 #include <asm/vm_mmu.h> 43 44 /* 45 * To maximize the comfort level for the PTE manipulation macros, 46 * define the "well known" architecture-specific bits. 47 */ 48 #define _PAGE_READ __HVM_PTE_R 49 #define _PAGE_WRITE __HVM_PTE_W 50 #define _PAGE_EXECUTE __HVM_PTE_X 51 #define _PAGE_USER __HVM_PTE_U 52 53 /* 54 * We have a total of 4 "soft" bits available in the abstract PTE. 55 * The two mandatory software bits are Dirty and Accessed. 56 * To make nonlinear swap work according to the more recent 57 * model, we want a low order "Present" bit to indicate whether 58 * the PTE describes MMU programming or swap space. 59 */ 60 #define _PAGE_PRESENT (1<<0) 61 #define _PAGE_DIRTY (1<<1) 62 #define _PAGE_ACCESSED (1<<2) 63 64 /* 65 * _PAGE_FILE is only meaningful if _PAGE_PRESENT is false, while 66 * _PAGE_DIRTY is only meaningful if _PAGE_PRESENT is true. 67 * So we can overload the bit... 68 */ 69 #define _PAGE_FILE _PAGE_DIRTY /* set: pagecache, unset = swap */ 70 71 /* 72 * For now, let's say that Valid and Present are the same thing. 73 * Alternatively, we could say that it's the "or" of R, W, and X 74 * permissions. 75 */ 76 #define _PAGE_VALID _PAGE_PRESENT 77 78 /* 79 * We're not defining _PAGE_GLOBAL here, since there's no concept 80 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 81 * and we want to use the same page table structures and macros in 82 * the native kernel as we do in the virtual machine kernel. 83 * So we'll put up with a bit of inefficiency for now... 84 */ 85 86 /* 87 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 88 * only the second from the bottom, pgd and pud both being collapsed. 89 * Each entry represents 4MB of virtual address space, 4K of table 90 * thus maps the full 4GB. 91 */ 92 #define PGDIR_SHIFT 22 93 #define PTRS_PER_PGD 1024 94 95 #define PGDIR_SIZE (1UL << PGDIR_SHIFT) 96 #define PGDIR_MASK (~(PGDIR_SIZE-1)) 97 98 #ifdef CONFIG_PAGE_SIZE_4KB 99 #define PTRS_PER_PTE 1024 100 #endif 101 102 #ifdef CONFIG_PAGE_SIZE_16KB 103 #define PTRS_PER_PTE 256 104 #endif 105 106 #ifdef CONFIG_PAGE_SIZE_64KB 107 #define PTRS_PER_PTE 64 108 #endif 109 110 #ifdef CONFIG_PAGE_SIZE_256KB 111 #define PTRS_PER_PTE 16 112 #endif 113 114 #ifdef CONFIG_PAGE_SIZE_1MB 115 #define PTRS_PER_PTE 4 116 #endif 117 118 /* Any bigger and the PTE disappears. */ 119 #define pgd_ERROR(e) \ 120 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 121 pgd_val(e)) 122 123 /* 124 * Page Protection Constants. Includes (in this variant) cache attributes. 125 */ 126 extern unsigned long _dflt_cache_att; 127 128 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 129 _dflt_cache_att) 130 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 131 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 132 #define PAGE_COPY PAGE_READONLY 133 #define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 134 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 135 #define PAGE_COPY_EXEC PAGE_EXEC 136 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 137 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 138 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 139 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 140 141 142 /* 143 * Aliases for mapping mmap() protection bits to page protections. 144 * These get used for static initialization, so using the _dflt_cache_att 145 * variable for the default cache attribute isn't workable. If the 146 * default gets changed at boot time, the boot option code has to 147 * update data structures like the protaction_map[] array. 148 */ 149 #define CACHEDEF (CACHE_DEFAULT << 6) 150 151 /* Private (copy-on-write) page protections. */ 152 #define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 153 #define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 154 #define __P010 __P000 /* Write-only copy-on-write */ 155 #define __P011 __P001 /* Read/Write copy-on-write */ 156 #define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 157 _PAGE_EXECUTE | CACHEDEF) 158 #define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 159 _PAGE_READ | CACHEDEF) 160 #define __P110 __P100 /* Write/execute copy-on-write */ 161 #define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 162 163 /* Shared page protections. */ 164 #define __S000 __P000 165 #define __S001 __P001 166 #define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 167 _PAGE_WRITE | CACHEDEF) 168 #define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 169 _PAGE_WRITE | CACHEDEF) 170 #define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 171 _PAGE_EXECUTE | CACHEDEF) 172 #define __S101 __P101 173 #define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 174 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 175 #define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 176 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 177 178 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 179 180 /* Seems to be zero even in architectures where the zero page is firewalled? */ 181 #define FIRST_USER_ADDRESS 0 182 #define pte_special(pte) 0 183 #define pte_mkspecial(pte) (pte) 184 185 /* HUGETLB not working currently */ 186 #ifdef CONFIG_HUGETLB_PAGE 187 #define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 188 #endif 189 190 /* 191 * For now, assume that higher-level code will do TLB/MMU invalidations 192 * and don't insert that overhead into this low-level function. 193 */ 194 extern void sync_icache_dcache(pte_t pte); 195 196 #define pte_present_exec_user(pte) \ 197 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 198 (_PAGE_EXECUTE | _PAGE_USER)) 199 200 static inline void set_pte(pte_t *ptep, pte_t pteval) 201 { 202 /* should really be using pte_exec, if it weren't declared later. */ 203 if (pte_present_exec_user(pteval)) 204 sync_icache_dcache(pteval); 205 206 *ptep = pteval; 207 } 208 209 /* 210 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 211 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 212 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 213 * as a universal null entry, but some of those least significant bits 214 * are interpreted by software. 215 */ 216 #define _NULL_PMD 0x7 217 #define _NULL_PTE 0x0 218 219 static inline void pmd_clear(pmd_t *pmd_entry_ptr) 220 { 221 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 222 } 223 224 /* 225 * Conveniently, a null PTE value is invalid. 226 */ 227 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 228 pte_t *ptep) 229 { 230 pte_val(*ptep) = _NULL_PTE; 231 } 232 233 #ifdef NEED_PMD_INDEX_DESPITE_BEING_2_LEVEL 234 /** 235 * pmd_index - returns the index of the entry in the PMD page 236 * which would control the given virtual address 237 */ 238 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 239 240 #endif 241 242 /** 243 * pgd_index - returns the index of the entry in the PGD page 244 * which would control the given virtual address 245 * 246 * This returns the *index* for the address in the pgd_t 247 */ 248 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 249 250 /* 251 * pgd_offset - find an offset in a page-table-directory 252 */ 253 #define pgd_offset(mm, addr) ((mm)->pgd + pgd_index(addr)) 254 255 /* 256 * pgd_offset_k - get kernel (init_mm) pgd entry pointer for addr 257 */ 258 #define pgd_offset_k(address) pgd_offset(&init_mm, address) 259 260 /** 261 * pmd_none - check if pmd_entry is mapped 262 * @pmd_entry: pmd entry 263 * 264 * MIPS checks it against that "invalid pte table" thing. 265 */ 266 static inline int pmd_none(pmd_t pmd) 267 { 268 return pmd_val(pmd) == _NULL_PMD; 269 } 270 271 /** 272 * pmd_present - is there a page table behind this? 273 * Essentially the inverse of pmd_none. We maybe 274 * save an inline instruction by defining it this 275 * way, instead of simply "!pmd_none". 276 */ 277 static inline int pmd_present(pmd_t pmd) 278 { 279 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 280 } 281 282 /** 283 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 284 * As we have no known cause of badness, it's null, as it is for many 285 * architectures. 286 */ 287 static inline int pmd_bad(pmd_t pmd) 288 { 289 return 0; 290 } 291 292 /* 293 * pmd_page - converts a PMD entry to a page pointer 294 */ 295 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 296 #define pmd_pgtable(pmd) pmd_page(pmd) 297 298 /** 299 * pte_none - check if pte is mapped 300 * @pte: pte_t entry 301 */ 302 static inline int pte_none(pte_t pte) 303 { 304 return pte_val(pte) == _NULL_PTE; 305 }; 306 307 /* 308 * pte_present - check if page is present 309 */ 310 static inline int pte_present(pte_t pte) 311 { 312 return pte_val(pte) & _PAGE_PRESENT; 313 } 314 315 /* mk_pte - make a PTE out of a page pointer and protection bits */ 316 #define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 317 318 /* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 319 #define pte_page(x) pfn_to_page(pte_pfn(x)) 320 321 /* pte_mkold - mark PTE as not recently accessed */ 322 static inline pte_t pte_mkold(pte_t pte) 323 { 324 pte_val(pte) &= ~_PAGE_ACCESSED; 325 return pte; 326 } 327 328 /* pte_mkyoung - mark PTE as recently accessed */ 329 static inline pte_t pte_mkyoung(pte_t pte) 330 { 331 pte_val(pte) |= _PAGE_ACCESSED; 332 return pte; 333 } 334 335 /* pte_mkclean - mark page as in sync with backing store */ 336 static inline pte_t pte_mkclean(pte_t pte) 337 { 338 pte_val(pte) &= ~_PAGE_DIRTY; 339 return pte; 340 } 341 342 /* pte_mkdirty - mark page as modified */ 343 static inline pte_t pte_mkdirty(pte_t pte) 344 { 345 pte_val(pte) |= _PAGE_DIRTY; 346 return pte; 347 } 348 349 /* pte_young - "is PTE marked as accessed"? */ 350 static inline int pte_young(pte_t pte) 351 { 352 return pte_val(pte) & _PAGE_ACCESSED; 353 } 354 355 /* pte_dirty - "is PTE dirty?" */ 356 static inline int pte_dirty(pte_t pte) 357 { 358 return pte_val(pte) & _PAGE_DIRTY; 359 } 360 361 /* pte_modify - set protection bits on PTE */ 362 static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 363 { 364 pte_val(pte) &= PAGE_MASK; 365 pte_val(pte) |= pgprot_val(prot); 366 return pte; 367 } 368 369 /* pte_wrprotect - mark page as not writable */ 370 static inline pte_t pte_wrprotect(pte_t pte) 371 { 372 pte_val(pte) &= ~_PAGE_WRITE; 373 return pte; 374 } 375 376 /* pte_mkwrite - mark page as writable */ 377 static inline pte_t pte_mkwrite(pte_t pte) 378 { 379 pte_val(pte) |= _PAGE_WRITE; 380 return pte; 381 } 382 383 /* pte_mkexec - mark PTE as executable */ 384 static inline pte_t pte_mkexec(pte_t pte) 385 { 386 pte_val(pte) |= _PAGE_EXECUTE; 387 return pte; 388 } 389 390 /* pte_read - "is PTE marked as readable?" */ 391 static inline int pte_read(pte_t pte) 392 { 393 return pte_val(pte) & _PAGE_READ; 394 } 395 396 /* pte_write - "is PTE marked as writable?" */ 397 static inline int pte_write(pte_t pte) 398 { 399 return pte_val(pte) & _PAGE_WRITE; 400 } 401 402 403 /* pte_exec - "is PTE marked as executable?" */ 404 static inline int pte_exec(pte_t pte) 405 { 406 return pte_val(pte) & _PAGE_EXECUTE; 407 } 408 409 /* __pte_to_swp_entry - extract swap entry from PTE */ 410 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 411 412 /* __swp_entry_to_pte - extract PTE from swap entry */ 413 #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 414 415 /* pfn_pte - convert page number and protection value to page table entry */ 416 #define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 417 418 /* pte_pfn - convert pte to page frame number */ 419 #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 420 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 421 422 /* 423 * set_pte_at - update page table and do whatever magic may be 424 * necessary to make the underlying hardware/firmware take note. 425 * 426 * VM may require a virtual instruction to alert the MMU. 427 */ 428 #define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 429 430 /* 431 * May need to invoke the virtual machine as well... 432 */ 433 #define pte_unmap(pte) do { } while (0) 434 #define pte_unmap_nested(pte) do { } while (0) 435 436 /* 437 * pte_offset_map - returns the linear address of the page table entry 438 * corresponding to an address 439 */ 440 #define pte_offset_map(dir, address) \ 441 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address)) 442 443 #define pte_offset_map_nested(pmd, addr) pte_offset_map(pmd, addr) 444 445 /* pte_offset_kernel - kernel version of pte_offset */ 446 #define pte_offset_kernel(dir, address) \ 447 ((pte_t *) (unsigned long) __va(pmd_val(*dir) & PAGE_MASK) \ 448 + __pte_offset(address)) 449 450 /* ZERO_PAGE - returns the globally shared zero page */ 451 #define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 452 453 #define __pte_offset(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) 454 455 /* Nothing special about IO remapping at this point */ 456 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ 457 remap_pfn_range(vma, vaddr, pfn, size, prot) 458 459 /* I think this is in case we have page table caches; needed by init/main.c */ 460 #define pgtable_cache_init() do { } while (0) 461 462 /* 463 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the 464 * PTE is interpreted as swap information. Depending on the _PAGE_FILE 465 * bit, the remaining free bits are eitehr interpreted as a file offset 466 * or a swap type/offset tuple. Rather than have the TLB fill handler 467 * test _PAGE_PRESENT, we're going to reserve the permissions bits 468 * and set them to all zeros for swap entries, which speeds up the 469 * miss handler at the cost of 3 bits of offset. That trade-off can 470 * be revisited if necessary, but Hexagon processor architecture and 471 * target applications suggest a lot of TLB misses and not much swap space. 472 * 473 * Format of swap PTE: 474 * bit 0: Present (zero) 475 * bit 1: _PAGE_FILE (zero) 476 * bits 2-6: swap type (arch independent layer uses 5 bits max) 477 * bits 7-9: bits 2:0 of offset 478 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 479 * bits 13-31: bits 21:3 of swap offset 480 * 481 * Format of file PTE: 482 * bit 0: Present (zero) 483 * bit 1: _PAGE_FILE (zero) 484 * bits 2-9: bits 7:0 of offset 485 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 486 * bits 13-31: bits 26:8 of swap offset 487 * 488 * The split offset makes some of the following macros a little gnarly, 489 * but there's plenty of precedent for this sort of thing. 490 */ 491 #define PTE_FILE_MAX_BITS 27 492 493 /* Used for swap PTEs */ 494 #define __swp_type(swp_pte) (((swp_pte).val >> 2) & 0x1f) 495 496 #define __swp_offset(swp_pte) \ 497 ((((swp_pte).val >> 7) & 0x7) | (((swp_pte).val >> 10) & 0x003ffff8)) 498 499 #define __swp_entry(type, offset) \ 500 ((swp_entry_t) { \ 501 ((type << 2) | \ 502 ((offset & 0x3ffff8) << 10) | ((offset & 0x7) << 7)) }) 503 504 /* Used for file PTEs */ 505 #define pte_file(pte) \ 506 ((pte_val(pte) & (_PAGE_FILE | _PAGE_PRESENT)) == _PAGE_FILE) 507 508 #define pte_to_pgoff(pte) \ 509 (((pte_val(pte) >> 2) & 0xff) | ((pte_val(pte) >> 5) & 0x07ffff00)) 510 511 #define pgoff_to_pte(off) \ 512 ((pte_t) { ((((off) & 0x7ffff00) << 5) | (((off) & 0xff) << 2)\ 513 | _PAGE_FILE) }) 514 515 /* Oh boy. There are a lot of possible arch overrides found in this file. */ 516 #include <asm-generic/pgtable.h> 517 518 #endif 519