xref: /linux/arch/csky/kernel/probes/kprobes.c (revision 9009b455811b0fa1f6b0adfa94db136984db5a38)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 #include <linux/kprobes.h>
4 #include <linux/extable.h>
5 #include <linux/slab.h>
6 #include <linux/stop_machine.h>
7 #include <asm/ptrace.h>
8 #include <linux/uaccess.h>
9 #include <asm/sections.h>
10 #include <asm/cacheflush.h>
11 
12 #include "decode-insn.h"
13 
14 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
15 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
16 
17 static void __kprobes
18 post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
19 
20 struct csky_insn_patch {
21 	kprobe_opcode_t	*addr;
22 	u32		opcode;
23 	atomic_t	cpu_count;
24 };
25 
26 static int __kprobes patch_text_cb(void *priv)
27 {
28 	struct csky_insn_patch *param = priv;
29 	unsigned int addr = (unsigned int)param->addr;
30 
31 	if (atomic_inc_return(&param->cpu_count) == 1) {
32 		*(u16 *) addr = cpu_to_le16(param->opcode);
33 		dcache_wb_range(addr, addr + 2);
34 		atomic_inc(&param->cpu_count);
35 	} else {
36 		while (atomic_read(&param->cpu_count) <= num_online_cpus())
37 			cpu_relax();
38 	}
39 
40 	icache_inv_range(addr, addr + 2);
41 
42 	return 0;
43 }
44 
45 static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
46 {
47 	struct csky_insn_patch param = { addr, opcode, ATOMIC_INIT(0) };
48 
49 	return stop_machine_cpuslocked(patch_text_cb, &param, cpu_online_mask);
50 }
51 
52 static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
53 {
54 	unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
55 
56 	p->ainsn.api.restore = (unsigned long)p->addr + offset;
57 
58 	patch_text(p->ainsn.api.insn, p->opcode);
59 }
60 
61 static void __kprobes arch_prepare_simulate(struct kprobe *p)
62 {
63 	p->ainsn.api.restore = 0;
64 }
65 
66 static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
67 {
68 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
69 
70 	if (p->ainsn.api.handler)
71 		p->ainsn.api.handler((u32)p->opcode, (long)p->addr, regs);
72 
73 	post_kprobe_handler(kcb, regs);
74 }
75 
76 int __kprobes arch_prepare_kprobe(struct kprobe *p)
77 {
78 	unsigned long probe_addr = (unsigned long)p->addr;
79 
80 	if (probe_addr & 0x1) {
81 		pr_warn("Address not aligned.\n");
82 		return -EINVAL;
83 	}
84 
85 	/* copy instruction */
86 	p->opcode = le32_to_cpu(*p->addr);
87 
88 	/* decode instruction */
89 	switch (csky_probe_decode_insn(p->addr, &p->ainsn.api)) {
90 	case INSN_REJECTED:	/* insn not supported */
91 		return -EINVAL;
92 
93 	case INSN_GOOD_NO_SLOT:	/* insn need simulation */
94 		p->ainsn.api.insn = NULL;
95 		break;
96 
97 	case INSN_GOOD:	/* instruction uses slot */
98 		p->ainsn.api.insn = get_insn_slot();
99 		if (!p->ainsn.api.insn)
100 			return -ENOMEM;
101 		break;
102 	}
103 
104 	/* prepare the instruction */
105 	if (p->ainsn.api.insn)
106 		arch_prepare_ss_slot(p);
107 	else
108 		arch_prepare_simulate(p);
109 
110 	return 0;
111 }
112 
113 /* install breakpoint in text */
114 void __kprobes arch_arm_kprobe(struct kprobe *p)
115 {
116 	patch_text(p->addr, USR_BKPT);
117 }
118 
119 /* remove breakpoint from text */
120 void __kprobes arch_disarm_kprobe(struct kprobe *p)
121 {
122 	patch_text(p->addr, p->opcode);
123 }
124 
125 void __kprobes arch_remove_kprobe(struct kprobe *p)
126 {
127 }
128 
129 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
130 {
131 	kcb->prev_kprobe.kp = kprobe_running();
132 	kcb->prev_kprobe.status = kcb->kprobe_status;
133 }
134 
135 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
136 {
137 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
138 	kcb->kprobe_status = kcb->prev_kprobe.status;
139 }
140 
141 static void __kprobes set_current_kprobe(struct kprobe *p)
142 {
143 	__this_cpu_write(current_kprobe, p);
144 }
145 
146 /*
147  * Interrupts need to be disabled before single-step mode is set, and not
148  * reenabled until after single-step mode ends.
149  * Without disabling interrupt on local CPU, there is a chance of
150  * interrupt occurrence in the period of exception return and  start of
151  * out-of-line single-step, that result in wrongly single stepping
152  * into the interrupt handler.
153  */
154 static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
155 						struct pt_regs *regs)
156 {
157 	kcb->saved_sr = regs->sr;
158 	regs->sr &= ~BIT(6);
159 }
160 
161 static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
162 						struct pt_regs *regs)
163 {
164 	regs->sr = kcb->saved_sr;
165 }
166 
167 static void __kprobes
168 set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr, struct kprobe *p)
169 {
170 	unsigned long offset = is_insn32(p->opcode) ? 4 : 2;
171 
172 	kcb->ss_ctx.ss_pending = true;
173 	kcb->ss_ctx.match_addr = addr + offset;
174 }
175 
176 static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
177 {
178 	kcb->ss_ctx.ss_pending = false;
179 	kcb->ss_ctx.match_addr = 0;
180 }
181 
182 #define TRACE_MODE_SI		BIT(14)
183 #define TRACE_MODE_MASK		~(0x3 << 14)
184 #define TRACE_MODE_RUN		0
185 
186 static void __kprobes setup_singlestep(struct kprobe *p,
187 				       struct pt_regs *regs,
188 				       struct kprobe_ctlblk *kcb, int reenter)
189 {
190 	unsigned long slot;
191 
192 	if (reenter) {
193 		save_previous_kprobe(kcb);
194 		set_current_kprobe(p);
195 		kcb->kprobe_status = KPROBE_REENTER;
196 	} else {
197 		kcb->kprobe_status = KPROBE_HIT_SS;
198 	}
199 
200 	if (p->ainsn.api.insn) {
201 		/* prepare for single stepping */
202 		slot = (unsigned long)p->ainsn.api.insn;
203 
204 		set_ss_context(kcb, slot, p);	/* mark pending ss */
205 
206 		/* IRQs and single stepping do not mix well. */
207 		kprobes_save_local_irqflag(kcb, regs);
208 		regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_SI;
209 		instruction_pointer_set(regs, slot);
210 	} else {
211 		/* insn simulation */
212 		arch_simulate_insn(p, regs);
213 	}
214 }
215 
216 static int __kprobes reenter_kprobe(struct kprobe *p,
217 				    struct pt_regs *regs,
218 				    struct kprobe_ctlblk *kcb)
219 {
220 	switch (kcb->kprobe_status) {
221 	case KPROBE_HIT_SSDONE:
222 	case KPROBE_HIT_ACTIVE:
223 		kprobes_inc_nmissed_count(p);
224 		setup_singlestep(p, regs, kcb, 1);
225 		break;
226 	case KPROBE_HIT_SS:
227 	case KPROBE_REENTER:
228 		pr_warn("Unrecoverable kprobe detected.\n");
229 		dump_kprobe(p);
230 		BUG();
231 		break;
232 	default:
233 		WARN_ON(1);
234 		return 0;
235 	}
236 
237 	return 1;
238 }
239 
240 static void __kprobes
241 post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
242 {
243 	struct kprobe *cur = kprobe_running();
244 
245 	if (!cur)
246 		return;
247 
248 	/* return addr restore if non-branching insn */
249 	if (cur->ainsn.api.restore != 0)
250 		regs->pc = cur->ainsn.api.restore;
251 
252 	/* restore back original saved kprobe variables and continue */
253 	if (kcb->kprobe_status == KPROBE_REENTER) {
254 		restore_previous_kprobe(kcb);
255 		return;
256 	}
257 
258 	/* call post handler */
259 	kcb->kprobe_status = KPROBE_HIT_SSDONE;
260 	if (cur->post_handler)	{
261 		/* post_handler can hit breakpoint and single step
262 		 * again, so we enable D-flag for recursive exception.
263 		 */
264 		cur->post_handler(cur, regs, 0);
265 	}
266 
267 	reset_current_kprobe();
268 }
269 
270 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int trapnr)
271 {
272 	struct kprobe *cur = kprobe_running();
273 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
274 
275 	switch (kcb->kprobe_status) {
276 	case KPROBE_HIT_SS:
277 	case KPROBE_REENTER:
278 		/*
279 		 * We are here because the instruction being single
280 		 * stepped caused a page fault. We reset the current
281 		 * kprobe and the ip points back to the probe address
282 		 * and allow the page fault handler to continue as a
283 		 * normal page fault.
284 		 */
285 		regs->pc = (unsigned long) cur->addr;
286 		if (!instruction_pointer(regs))
287 			BUG();
288 
289 		if (kcb->kprobe_status == KPROBE_REENTER)
290 			restore_previous_kprobe(kcb);
291 		else
292 			reset_current_kprobe();
293 
294 		break;
295 	case KPROBE_HIT_ACTIVE:
296 	case KPROBE_HIT_SSDONE:
297 		/*
298 		 * We increment the nmissed count for accounting,
299 		 * we can also use npre/npostfault count for accounting
300 		 * these specific fault cases.
301 		 */
302 		kprobes_inc_nmissed_count(cur);
303 
304 		/*
305 		 * We come here because instructions in the pre/post
306 		 * handler caused the page_fault, this could happen
307 		 * if handler tries to access user space by
308 		 * copy_from_user(), get_user() etc. Let the
309 		 * user-specified handler try to fix it first.
310 		 */
311 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
312 			return 1;
313 
314 		/*
315 		 * In case the user-specified fault handler returned
316 		 * zero, try to fix up.
317 		 */
318 		if (fixup_exception(regs))
319 			return 1;
320 	}
321 	return 0;
322 }
323 
324 int __kprobes
325 kprobe_breakpoint_handler(struct pt_regs *regs)
326 {
327 	struct kprobe *p, *cur_kprobe;
328 	struct kprobe_ctlblk *kcb;
329 	unsigned long addr = instruction_pointer(regs);
330 
331 	kcb = get_kprobe_ctlblk();
332 	cur_kprobe = kprobe_running();
333 
334 	p = get_kprobe((kprobe_opcode_t *) addr);
335 
336 	if (p) {
337 		if (cur_kprobe) {
338 			if (reenter_kprobe(p, regs, kcb))
339 				return 1;
340 		} else {
341 			/* Probe hit */
342 			set_current_kprobe(p);
343 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
344 
345 			/*
346 			 * If we have no pre-handler or it returned 0, we
347 			 * continue with normal processing.  If we have a
348 			 * pre-handler and it returned non-zero, it will
349 			 * modify the execution path and no need to single
350 			 * stepping. Let's just reset current kprobe and exit.
351 			 *
352 			 * pre_handler can hit a breakpoint and can step thru
353 			 * before return.
354 			 */
355 			if (!p->pre_handler || !p->pre_handler(p, regs))
356 				setup_singlestep(p, regs, kcb, 0);
357 			else
358 				reset_current_kprobe();
359 		}
360 		return 1;
361 	}
362 
363 	/*
364 	 * The breakpoint instruction was removed right
365 	 * after we hit it.  Another cpu has removed
366 	 * either a probepoint or a debugger breakpoint
367 	 * at this address.  In either case, no further
368 	 * handling of this interrupt is appropriate.
369 	 * Return back to original instruction, and continue.
370 	 */
371 	return 0;
372 }
373 
374 int __kprobes
375 kprobe_single_step_handler(struct pt_regs *regs)
376 {
377 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
378 
379 	if ((kcb->ss_ctx.ss_pending)
380 	    && (kcb->ss_ctx.match_addr == instruction_pointer(regs))) {
381 		clear_ss_context(kcb);	/* clear pending ss */
382 
383 		kprobes_restore_local_irqflag(kcb, regs);
384 		regs->sr = (regs->sr & TRACE_MODE_MASK) | TRACE_MODE_RUN;
385 
386 		post_kprobe_handler(kcb, regs);
387 		return 1;
388 	}
389 	return 0;
390 }
391 
392 /*
393  * Provide a blacklist of symbols identifying ranges which cannot be kprobed.
394  * This blacklist is exposed to userspace via debugfs (kprobes/blacklist).
395  */
396 int __init arch_populate_kprobe_blacklist(void)
397 {
398 	int ret;
399 
400 	ret = kprobe_add_area_blacklist((unsigned long)__irqentry_text_start,
401 					(unsigned long)__irqentry_text_end);
402 	return ret;
403 }
404 
405 void __kprobes __used *trampoline_probe_handler(struct pt_regs *regs)
406 {
407 	return (void *)kretprobe_trampoline_handler(regs, &kretprobe_trampoline, NULL);
408 }
409 
410 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
411 				      struct pt_regs *regs)
412 {
413 	ri->ret_addr = (kprobe_opcode_t *)regs->lr;
414 	ri->fp = NULL;
415 	regs->lr = (unsigned long) &kretprobe_trampoline;
416 }
417 
418 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
419 {
420 	return 0;
421 }
422 
423 int __init arch_init_kprobes(void)
424 {
425 	return 0;
426 }
427