1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler for ARM64 4 * 5 * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "bpf_jit: " fmt 9 10 #include <linux/bitfield.h> 11 #include <linux/bpf.h> 12 #include <linux/filter.h> 13 #include <linux/memory.h> 14 #include <linux/printk.h> 15 #include <linux/slab.h> 16 17 #include <asm/asm-extable.h> 18 #include <asm/byteorder.h> 19 #include <asm/cacheflush.h> 20 #include <asm/debug-monitors.h> 21 #include <asm/insn.h> 22 #include <asm/patching.h> 23 #include <asm/set_memory.h> 24 25 #include "bpf_jit.h" 26 27 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) 28 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) 29 #define TCCNT_PTR (MAX_BPF_JIT_REG + 2) 30 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3) 31 #define ARENA_VM_START (MAX_BPF_JIT_REG + 5) 32 33 #define check_imm(bits, imm) do { \ 34 if ((((imm) > 0) && ((imm) >> (bits))) || \ 35 (((imm) < 0) && (~(imm) >> (bits)))) { \ 36 pr_info("[%2d] imm=%d(0x%x) out of range\n", \ 37 i, imm, imm); \ 38 return -EINVAL; \ 39 } \ 40 } while (0) 41 #define check_imm19(imm) check_imm(19, imm) 42 #define check_imm26(imm) check_imm(26, imm) 43 44 /* Map BPF registers to A64 registers */ 45 static const int bpf2a64[] = { 46 /* return value from in-kernel function, and exit value from eBPF */ 47 [BPF_REG_0] = A64_R(7), 48 /* arguments from eBPF program to in-kernel function */ 49 [BPF_REG_1] = A64_R(0), 50 [BPF_REG_2] = A64_R(1), 51 [BPF_REG_3] = A64_R(2), 52 [BPF_REG_4] = A64_R(3), 53 [BPF_REG_5] = A64_R(4), 54 /* callee saved registers that in-kernel function will preserve */ 55 [BPF_REG_6] = A64_R(19), 56 [BPF_REG_7] = A64_R(20), 57 [BPF_REG_8] = A64_R(21), 58 [BPF_REG_9] = A64_R(22), 59 /* read-only frame pointer to access stack */ 60 [BPF_REG_FP] = A64_R(25), 61 /* temporary registers for BPF JIT */ 62 [TMP_REG_1] = A64_R(10), 63 [TMP_REG_2] = A64_R(11), 64 [TMP_REG_3] = A64_R(12), 65 /* tail_call_cnt_ptr */ 66 [TCCNT_PTR] = A64_R(26), 67 /* temporary register for blinding constants */ 68 [BPF_REG_AX] = A64_R(9), 69 /* callee saved register for kern_vm_start address */ 70 [ARENA_VM_START] = A64_R(28), 71 }; 72 73 struct jit_ctx { 74 const struct bpf_prog *prog; 75 int idx; 76 int epilogue_offset; 77 int *offset; 78 int exentry_idx; 79 int nr_used_callee_reg; 80 u8 used_callee_reg[8]; /* r6~r9, fp, arena_vm_start */ 81 __le32 *image; 82 __le32 *ro_image; 83 u32 stack_size; 84 u64 user_vm_start; 85 u64 arena_vm_start; 86 bool fp_used; 87 bool write; 88 }; 89 90 struct bpf_plt { 91 u32 insn_ldr; /* load target */ 92 u32 insn_br; /* branch to target */ 93 u64 target; /* target value */ 94 }; 95 96 #define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target) 97 #define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target) 98 99 static inline void emit(const u32 insn, struct jit_ctx *ctx) 100 { 101 if (ctx->image != NULL && ctx->write) 102 ctx->image[ctx->idx] = cpu_to_le32(insn); 103 104 ctx->idx++; 105 } 106 107 static inline void emit_a64_mov_i(const int is64, const int reg, 108 const s32 val, struct jit_ctx *ctx) 109 { 110 u16 hi = val >> 16; 111 u16 lo = val & 0xffff; 112 113 if (hi & 0x8000) { 114 if (hi == 0xffff) { 115 emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); 116 } else { 117 emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); 118 if (lo != 0xffff) 119 emit(A64_MOVK(is64, reg, lo, 0), ctx); 120 } 121 } else { 122 emit(A64_MOVZ(is64, reg, lo, 0), ctx); 123 if (hi) 124 emit(A64_MOVK(is64, reg, hi, 16), ctx); 125 } 126 } 127 128 static int i64_i16_blocks(const u64 val, bool inverse) 129 { 130 return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 131 (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 132 (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 133 (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000)); 134 } 135 136 static inline void emit_a64_mov_i64(const int reg, const u64 val, 137 struct jit_ctx *ctx) 138 { 139 u64 nrm_tmp = val, rev_tmp = ~val; 140 bool inverse; 141 int shift; 142 143 if (!(nrm_tmp >> 32)) 144 return emit_a64_mov_i(0, reg, (u32)val, ctx); 145 146 inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false); 147 shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) : 148 (fls64(nrm_tmp) - 1)), 16), 0); 149 if (inverse) 150 emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx); 151 else 152 emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 153 shift -= 16; 154 while (shift >= 0) { 155 if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000)) 156 emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 157 shift -= 16; 158 } 159 } 160 161 static inline void emit_bti(u32 insn, struct jit_ctx *ctx) 162 { 163 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)) 164 emit(insn, ctx); 165 } 166 167 /* 168 * Kernel addresses in the vmalloc space use at most 48 bits, and the 169 * remaining bits are guaranteed to be 0x1. So we can compose the address 170 * with a fixed length movn/movk/movk sequence. 171 */ 172 static inline void emit_addr_mov_i64(const int reg, const u64 val, 173 struct jit_ctx *ctx) 174 { 175 u64 tmp = val; 176 int shift = 0; 177 178 emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx); 179 while (shift < 32) { 180 tmp >>= 16; 181 shift += 16; 182 emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); 183 } 184 } 185 186 static bool should_emit_indirect_call(long target, const struct jit_ctx *ctx) 187 { 188 long offset; 189 190 /* when ctx->ro_image is not allocated or the target is unknown, 191 * emit indirect call 192 */ 193 if (!ctx->ro_image || !target) 194 return true; 195 196 offset = target - (long)&ctx->ro_image[ctx->idx]; 197 return offset < -SZ_128M || offset >= SZ_128M; 198 } 199 200 static void emit_direct_call(u64 target, struct jit_ctx *ctx) 201 { 202 u32 insn; 203 unsigned long pc; 204 205 pc = (unsigned long)&ctx->ro_image[ctx->idx]; 206 insn = aarch64_insn_gen_branch_imm(pc, target, AARCH64_INSN_BRANCH_LINK); 207 emit(insn, ctx); 208 } 209 210 static void emit_indirect_call(u64 target, struct jit_ctx *ctx) 211 { 212 u8 tmp; 213 214 tmp = bpf2a64[TMP_REG_1]; 215 emit_addr_mov_i64(tmp, target, ctx); 216 emit(A64_BLR(tmp), ctx); 217 } 218 219 static void emit_call(u64 target, struct jit_ctx *ctx) 220 { 221 if (should_emit_indirect_call((long)target, ctx)) 222 emit_indirect_call(target, ctx); 223 else 224 emit_direct_call(target, ctx); 225 } 226 227 static inline int bpf2a64_offset(int bpf_insn, int off, 228 const struct jit_ctx *ctx) 229 { 230 /* BPF JMP offset is relative to the next instruction */ 231 bpf_insn++; 232 /* 233 * Whereas arm64 branch instructions encode the offset 234 * from the branch itself, so we must subtract 1 from the 235 * instruction offset. 236 */ 237 return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1); 238 } 239 240 static void jit_fill_hole(void *area, unsigned int size) 241 { 242 __le32 *ptr; 243 /* We are guaranteed to have aligned memory. */ 244 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 245 *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); 246 } 247 248 int bpf_arch_text_invalidate(void *dst, size_t len) 249 { 250 if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len)) 251 return -EINVAL; 252 253 return 0; 254 } 255 256 static inline int epilogue_offset(const struct jit_ctx *ctx) 257 { 258 int to = ctx->epilogue_offset; 259 int from = ctx->idx; 260 261 return to - from; 262 } 263 264 static bool is_addsub_imm(u32 imm) 265 { 266 /* Either imm12 or shifted imm12. */ 267 return !(imm & ~0xfff) || !(imm & ~0xfff000); 268 } 269 270 /* 271 * There are 3 types of AArch64 LDR/STR (immediate) instruction: 272 * Post-index, Pre-index, Unsigned offset. 273 * 274 * For BPF ldr/str, the "unsigned offset" type is sufficient. 275 * 276 * "Unsigned offset" type LDR(immediate) format: 277 * 278 * 3 2 1 0 279 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 280 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 281 * |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt | 282 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 283 * scale 284 * 285 * "Unsigned offset" type STR(immediate) format: 286 * 3 2 1 0 287 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 288 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 289 * |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt | 290 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 291 * scale 292 * 293 * The offset is calculated from imm12 and scale in the following way: 294 * 295 * offset = (u64)imm12 << scale 296 */ 297 static bool is_lsi_offset(int offset, int scale) 298 { 299 if (offset < 0) 300 return false; 301 302 if (offset > (0xFFF << scale)) 303 return false; 304 305 if (offset & ((1 << scale) - 1)) 306 return false; 307 308 return true; 309 } 310 311 /* generated main prog prologue: 312 * bti c // if CONFIG_ARM64_BTI_KERNEL 313 * mov x9, lr 314 * nop // POKE_OFFSET 315 * paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL 316 * stp x29, lr, [sp, #-16]! 317 * mov x29, sp 318 * stp xzr, x26, [sp, #-16]! 319 * mov x26, sp 320 * // PROLOGUE_OFFSET 321 * // save callee-saved registers 322 */ 323 static void prepare_bpf_tail_call_cnt(struct jit_ctx *ctx) 324 { 325 const bool is_main_prog = !bpf_is_subprog(ctx->prog); 326 const u8 ptr = bpf2a64[TCCNT_PTR]; 327 328 if (is_main_prog) { 329 /* Initialize tail_call_cnt. */ 330 emit(A64_PUSH(A64_ZR, ptr, A64_SP), ctx); 331 emit(A64_MOV(1, ptr, A64_SP), ctx); 332 } else 333 emit(A64_PUSH(ptr, ptr, A64_SP), ctx); 334 } 335 336 static void find_used_callee_regs(struct jit_ctx *ctx) 337 { 338 int i; 339 const struct bpf_prog *prog = ctx->prog; 340 const struct bpf_insn *insn = &prog->insnsi[0]; 341 int reg_used = 0; 342 343 for (i = 0; i < prog->len; i++, insn++) { 344 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 345 reg_used |= 1; 346 347 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 348 reg_used |= 2; 349 350 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 351 reg_used |= 4; 352 353 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 354 reg_used |= 8; 355 356 if (insn->dst_reg == BPF_REG_FP || insn->src_reg == BPF_REG_FP) { 357 ctx->fp_used = true; 358 reg_used |= 16; 359 } 360 } 361 362 i = 0; 363 if (reg_used & 1) 364 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_6]; 365 366 if (reg_used & 2) 367 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_7]; 368 369 if (reg_used & 4) 370 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_8]; 371 372 if (reg_used & 8) 373 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_9]; 374 375 if (reg_used & 16) 376 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_FP]; 377 378 if (ctx->arena_vm_start) 379 ctx->used_callee_reg[i++] = bpf2a64[ARENA_VM_START]; 380 381 ctx->nr_used_callee_reg = i; 382 } 383 384 /* Save callee-saved registers */ 385 static void push_callee_regs(struct jit_ctx *ctx) 386 { 387 int reg1, reg2, i; 388 389 /* 390 * Program acting as exception boundary should save all ARM64 391 * Callee-saved registers as the exception callback needs to recover 392 * all ARM64 Callee-saved registers in its epilogue. 393 */ 394 if (ctx->prog->aux->exception_boundary) { 395 emit(A64_PUSH(A64_R(19), A64_R(20), A64_SP), ctx); 396 emit(A64_PUSH(A64_R(21), A64_R(22), A64_SP), ctx); 397 emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx); 398 emit(A64_PUSH(A64_R(25), A64_R(26), A64_SP), ctx); 399 emit(A64_PUSH(A64_R(27), A64_R(28), A64_SP), ctx); 400 } else { 401 find_used_callee_regs(ctx); 402 for (i = 0; i + 1 < ctx->nr_used_callee_reg; i += 2) { 403 reg1 = ctx->used_callee_reg[i]; 404 reg2 = ctx->used_callee_reg[i + 1]; 405 emit(A64_PUSH(reg1, reg2, A64_SP), ctx); 406 } 407 if (i < ctx->nr_used_callee_reg) { 408 reg1 = ctx->used_callee_reg[i]; 409 /* keep SP 16-byte aligned */ 410 emit(A64_PUSH(reg1, A64_ZR, A64_SP), ctx); 411 } 412 } 413 } 414 415 /* Restore callee-saved registers */ 416 static void pop_callee_regs(struct jit_ctx *ctx) 417 { 418 struct bpf_prog_aux *aux = ctx->prog->aux; 419 int reg1, reg2, i; 420 421 /* 422 * Program acting as exception boundary pushes R23 and R24 in addition 423 * to BPF callee-saved registers. Exception callback uses the boundary 424 * program's stack frame, so recover these extra registers in the above 425 * two cases. 426 */ 427 if (aux->exception_boundary || aux->exception_cb) { 428 emit(A64_POP(A64_R(27), A64_R(28), A64_SP), ctx); 429 emit(A64_POP(A64_R(25), A64_R(26), A64_SP), ctx); 430 emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx); 431 emit(A64_POP(A64_R(21), A64_R(22), A64_SP), ctx); 432 emit(A64_POP(A64_R(19), A64_R(20), A64_SP), ctx); 433 } else { 434 i = ctx->nr_used_callee_reg - 1; 435 if (ctx->nr_used_callee_reg % 2 != 0) { 436 reg1 = ctx->used_callee_reg[i]; 437 emit(A64_POP(reg1, A64_ZR, A64_SP), ctx); 438 i--; 439 } 440 while (i > 0) { 441 reg1 = ctx->used_callee_reg[i - 1]; 442 reg2 = ctx->used_callee_reg[i]; 443 emit(A64_POP(reg1, reg2, A64_SP), ctx); 444 i -= 2; 445 } 446 } 447 } 448 449 #define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0) 450 #define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0) 451 452 /* Offset of nop instruction in bpf prog entry to be poked */ 453 #define POKE_OFFSET (BTI_INSNS + 1) 454 455 /* Tail call offset to jump into */ 456 #define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 4) 457 458 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf) 459 { 460 const struct bpf_prog *prog = ctx->prog; 461 const bool is_main_prog = !bpf_is_subprog(prog); 462 const u8 fp = bpf2a64[BPF_REG_FP]; 463 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 464 const int idx0 = ctx->idx; 465 int cur_offset; 466 467 /* 468 * BPF prog stack layout 469 * 470 * high 471 * original A64_SP => 0:+-----+ BPF prologue 472 * |FP/LR| 473 * current A64_FP => -16:+-----+ 474 * | ... | callee saved registers 475 * BPF fp register => -64:+-----+ <= (BPF_FP) 476 * | | 477 * | ... | BPF prog stack 478 * | | 479 * +-----+ <= (BPF_FP - prog->aux->stack_depth) 480 * |RSVD | padding 481 * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size) 482 * | | 483 * | ... | Function call stack 484 * | | 485 * +-----+ 486 * low 487 * 488 */ 489 490 /* bpf function may be invoked by 3 instruction types: 491 * 1. bl, attached via freplace to bpf prog via short jump 492 * 2. br, attached via freplace to bpf prog via long jump 493 * 3. blr, working as a function pointer, used by emit_call. 494 * So BTI_JC should used here to support both br and blr. 495 */ 496 emit_bti(A64_BTI_JC, ctx); 497 498 emit(A64_MOV(1, A64_R(9), A64_LR), ctx); 499 emit(A64_NOP, ctx); 500 501 if (!prog->aux->exception_cb) { 502 /* Sign lr */ 503 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 504 emit(A64_PACIASP, ctx); 505 506 /* Save FP and LR registers to stay align with ARM64 AAPCS */ 507 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 508 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 509 510 prepare_bpf_tail_call_cnt(ctx); 511 512 if (!ebpf_from_cbpf && is_main_prog) { 513 cur_offset = ctx->idx - idx0; 514 if (cur_offset != PROLOGUE_OFFSET) { 515 pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n", 516 cur_offset, PROLOGUE_OFFSET); 517 return -1; 518 } 519 /* BTI landing pad for the tail call, done with a BR */ 520 emit_bti(A64_BTI_J, ctx); 521 } 522 push_callee_regs(ctx); 523 } else { 524 /* 525 * Exception callback receives FP of Main Program as third 526 * parameter 527 */ 528 emit(A64_MOV(1, A64_FP, A64_R(2)), ctx); 529 /* 530 * Main Program already pushed the frame record and the 531 * callee-saved registers. The exception callback will not push 532 * anything and re-use the main program's stack. 533 * 534 * 12 registers are on the stack 535 */ 536 emit(A64_SUB_I(1, A64_SP, A64_FP, 96), ctx); 537 } 538 539 if (ctx->fp_used) 540 /* Set up BPF prog stack base register */ 541 emit(A64_MOV(1, fp, A64_SP), ctx); 542 543 /* Stack must be multiples of 16B */ 544 ctx->stack_size = round_up(prog->aux->stack_depth, 16); 545 546 /* Set up function call stack */ 547 if (ctx->stack_size) 548 emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 549 550 if (ctx->arena_vm_start) 551 emit_a64_mov_i64(arena_vm_base, ctx->arena_vm_start, ctx); 552 553 return 0; 554 } 555 556 static int emit_bpf_tail_call(struct jit_ctx *ctx) 557 { 558 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ 559 const u8 r2 = bpf2a64[BPF_REG_2]; 560 const u8 r3 = bpf2a64[BPF_REG_3]; 561 562 const u8 tmp = bpf2a64[TMP_REG_1]; 563 const u8 prg = bpf2a64[TMP_REG_2]; 564 const u8 tcc = bpf2a64[TMP_REG_3]; 565 const u8 ptr = bpf2a64[TCCNT_PTR]; 566 size_t off; 567 __le32 *branch1 = NULL; 568 __le32 *branch2 = NULL; 569 __le32 *branch3 = NULL; 570 571 /* if (index >= array->map.max_entries) 572 * goto out; 573 */ 574 off = offsetof(struct bpf_array, map.max_entries); 575 emit_a64_mov_i64(tmp, off, ctx); 576 emit(A64_LDR32(tmp, r2, tmp), ctx); 577 emit(A64_MOV(0, r3, r3), ctx); 578 emit(A64_CMP(0, r3, tmp), ctx); 579 branch1 = ctx->image + ctx->idx; 580 emit(A64_NOP, ctx); 581 582 /* 583 * if ((*tail_call_cnt_ptr) >= MAX_TAIL_CALL_CNT) 584 * goto out; 585 */ 586 emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx); 587 emit(A64_LDR64I(tcc, ptr, 0), ctx); 588 emit(A64_CMP(1, tcc, tmp), ctx); 589 branch2 = ctx->image + ctx->idx; 590 emit(A64_NOP, ctx); 591 592 /* (*tail_call_cnt_ptr)++; */ 593 emit(A64_ADD_I(1, tcc, tcc, 1), ctx); 594 595 /* prog = array->ptrs[index]; 596 * if (prog == NULL) 597 * goto out; 598 */ 599 off = offsetof(struct bpf_array, ptrs); 600 emit_a64_mov_i64(tmp, off, ctx); 601 emit(A64_ADD(1, tmp, r2, tmp), ctx); 602 emit(A64_LSL(1, prg, r3, 3), ctx); 603 emit(A64_LDR64(prg, tmp, prg), ctx); 604 branch3 = ctx->image + ctx->idx; 605 emit(A64_NOP, ctx); 606 607 /* Update tail_call_cnt if the slot is populated. */ 608 emit(A64_STR64I(tcc, ptr, 0), ctx); 609 610 /* restore SP */ 611 if (ctx->stack_size) 612 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 613 614 pop_callee_regs(ctx); 615 616 /* goto *(prog->bpf_func + prologue_offset); */ 617 off = offsetof(struct bpf_prog, bpf_func); 618 emit_a64_mov_i64(tmp, off, ctx); 619 emit(A64_LDR64(tmp, prg, tmp), ctx); 620 emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx); 621 emit(A64_BR(tmp), ctx); 622 623 if (ctx->image) { 624 off = &ctx->image[ctx->idx] - branch1; 625 *branch1 = cpu_to_le32(A64_B_(A64_COND_CS, off)); 626 627 off = &ctx->image[ctx->idx] - branch2; 628 *branch2 = cpu_to_le32(A64_B_(A64_COND_CS, off)); 629 630 off = &ctx->image[ctx->idx] - branch3; 631 *branch3 = cpu_to_le32(A64_CBZ(1, prg, off)); 632 } 633 634 return 0; 635 } 636 637 #ifdef CONFIG_ARM64_LSE_ATOMICS 638 static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 639 { 640 const u8 code = insn->code; 641 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 642 const u8 dst = bpf2a64[insn->dst_reg]; 643 const u8 src = bpf2a64[insn->src_reg]; 644 const u8 tmp = bpf2a64[TMP_REG_1]; 645 const u8 tmp2 = bpf2a64[TMP_REG_2]; 646 const bool isdw = BPF_SIZE(code) == BPF_DW; 647 const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC; 648 const s16 off = insn->off; 649 u8 reg = dst; 650 651 if (off || arena) { 652 if (off) { 653 emit_a64_mov_i(1, tmp, off, ctx); 654 emit(A64_ADD(1, tmp, tmp, dst), ctx); 655 reg = tmp; 656 } 657 if (arena) { 658 emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx); 659 reg = tmp; 660 } 661 } 662 663 switch (insn->imm) { 664 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ 665 case BPF_ADD: 666 emit(A64_STADD(isdw, reg, src), ctx); 667 break; 668 case BPF_AND: 669 emit(A64_MVN(isdw, tmp2, src), ctx); 670 emit(A64_STCLR(isdw, reg, tmp2), ctx); 671 break; 672 case BPF_OR: 673 emit(A64_STSET(isdw, reg, src), ctx); 674 break; 675 case BPF_XOR: 676 emit(A64_STEOR(isdw, reg, src), ctx); 677 break; 678 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ 679 case BPF_ADD | BPF_FETCH: 680 emit(A64_LDADDAL(isdw, src, reg, src), ctx); 681 break; 682 case BPF_AND | BPF_FETCH: 683 emit(A64_MVN(isdw, tmp2, src), ctx); 684 emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx); 685 break; 686 case BPF_OR | BPF_FETCH: 687 emit(A64_LDSETAL(isdw, src, reg, src), ctx); 688 break; 689 case BPF_XOR | BPF_FETCH: 690 emit(A64_LDEORAL(isdw, src, reg, src), ctx); 691 break; 692 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 693 case BPF_XCHG: 694 emit(A64_SWPAL(isdw, src, reg, src), ctx); 695 break; 696 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 697 case BPF_CMPXCHG: 698 emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx); 699 break; 700 default: 701 pr_err_once("unknown atomic op code %02x\n", insn->imm); 702 return -EINVAL; 703 } 704 705 return 0; 706 } 707 #else 708 static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 709 { 710 return -EINVAL; 711 } 712 #endif 713 714 static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 715 { 716 const u8 code = insn->code; 717 const u8 dst = bpf2a64[insn->dst_reg]; 718 const u8 src = bpf2a64[insn->src_reg]; 719 const u8 tmp = bpf2a64[TMP_REG_1]; 720 const u8 tmp2 = bpf2a64[TMP_REG_2]; 721 const u8 tmp3 = bpf2a64[TMP_REG_3]; 722 const int i = insn - ctx->prog->insnsi; 723 const s32 imm = insn->imm; 724 const s16 off = insn->off; 725 const bool isdw = BPF_SIZE(code) == BPF_DW; 726 u8 reg; 727 s32 jmp_offset; 728 729 if (BPF_MODE(code) == BPF_PROBE_ATOMIC) { 730 /* ll_sc based atomics don't support unsafe pointers yet. */ 731 pr_err_once("unknown atomic opcode %02x\n", code); 732 return -EINVAL; 733 } 734 735 if (!off) { 736 reg = dst; 737 } else { 738 emit_a64_mov_i(1, tmp, off, ctx); 739 emit(A64_ADD(1, tmp, tmp, dst), ctx); 740 reg = tmp; 741 } 742 743 if (imm == BPF_ADD || imm == BPF_AND || 744 imm == BPF_OR || imm == BPF_XOR) { 745 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ 746 emit(A64_LDXR(isdw, tmp2, reg), ctx); 747 if (imm == BPF_ADD) 748 emit(A64_ADD(isdw, tmp2, tmp2, src), ctx); 749 else if (imm == BPF_AND) 750 emit(A64_AND(isdw, tmp2, tmp2, src), ctx); 751 else if (imm == BPF_OR) 752 emit(A64_ORR(isdw, tmp2, tmp2, src), ctx); 753 else 754 emit(A64_EOR(isdw, tmp2, tmp2, src), ctx); 755 emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx); 756 jmp_offset = -3; 757 check_imm19(jmp_offset); 758 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 759 } else if (imm == (BPF_ADD | BPF_FETCH) || 760 imm == (BPF_AND | BPF_FETCH) || 761 imm == (BPF_OR | BPF_FETCH) || 762 imm == (BPF_XOR | BPF_FETCH)) { 763 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ 764 const u8 ax = bpf2a64[BPF_REG_AX]; 765 766 emit(A64_MOV(isdw, ax, src), ctx); 767 emit(A64_LDXR(isdw, src, reg), ctx); 768 if (imm == (BPF_ADD | BPF_FETCH)) 769 emit(A64_ADD(isdw, tmp2, src, ax), ctx); 770 else if (imm == (BPF_AND | BPF_FETCH)) 771 emit(A64_AND(isdw, tmp2, src, ax), ctx); 772 else if (imm == (BPF_OR | BPF_FETCH)) 773 emit(A64_ORR(isdw, tmp2, src, ax), ctx); 774 else 775 emit(A64_EOR(isdw, tmp2, src, ax), ctx); 776 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); 777 jmp_offset = -3; 778 check_imm19(jmp_offset); 779 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 780 emit(A64_DMB_ISH, ctx); 781 } else if (imm == BPF_XCHG) { 782 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 783 emit(A64_MOV(isdw, tmp2, src), ctx); 784 emit(A64_LDXR(isdw, src, reg), ctx); 785 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); 786 jmp_offset = -2; 787 check_imm19(jmp_offset); 788 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 789 emit(A64_DMB_ISH, ctx); 790 } else if (imm == BPF_CMPXCHG) { 791 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 792 const u8 r0 = bpf2a64[BPF_REG_0]; 793 794 emit(A64_MOV(isdw, tmp2, r0), ctx); 795 emit(A64_LDXR(isdw, r0, reg), ctx); 796 emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx); 797 jmp_offset = 4; 798 check_imm19(jmp_offset); 799 emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx); 800 emit(A64_STLXR(isdw, src, reg, tmp3), ctx); 801 jmp_offset = -4; 802 check_imm19(jmp_offset); 803 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 804 emit(A64_DMB_ISH, ctx); 805 } else { 806 pr_err_once("unknown atomic op code %02x\n", imm); 807 return -EINVAL; 808 } 809 810 return 0; 811 } 812 813 void dummy_tramp(void); 814 815 asm ( 816 " .pushsection .text, \"ax\", @progbits\n" 817 " .global dummy_tramp\n" 818 " .type dummy_tramp, %function\n" 819 "dummy_tramp:" 820 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) 821 " bti j\n" /* dummy_tramp is called via "br x10" */ 822 #endif 823 " mov x10, x30\n" 824 " mov x30, x9\n" 825 " ret x10\n" 826 " .size dummy_tramp, .-dummy_tramp\n" 827 " .popsection\n" 828 ); 829 830 /* build a plt initialized like this: 831 * 832 * plt: 833 * ldr tmp, target 834 * br tmp 835 * target: 836 * .quad dummy_tramp 837 * 838 * when a long jump trampoline is attached, target is filled with the 839 * trampoline address, and when the trampoline is removed, target is 840 * restored to dummy_tramp address. 841 */ 842 static void build_plt(struct jit_ctx *ctx) 843 { 844 const u8 tmp = bpf2a64[TMP_REG_1]; 845 struct bpf_plt *plt = NULL; 846 847 /* make sure target is 64-bit aligned */ 848 if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2) 849 emit(A64_NOP, ctx); 850 851 plt = (struct bpf_plt *)(ctx->image + ctx->idx); 852 /* plt is called via bl, no BTI needed here */ 853 emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx); 854 emit(A64_BR(tmp), ctx); 855 856 if (ctx->image) 857 plt->target = (u64)&dummy_tramp; 858 } 859 860 static void build_epilogue(struct jit_ctx *ctx) 861 { 862 const u8 r0 = bpf2a64[BPF_REG_0]; 863 const u8 ptr = bpf2a64[TCCNT_PTR]; 864 865 /* We're done with BPF stack */ 866 if (ctx->stack_size) 867 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 868 869 pop_callee_regs(ctx); 870 871 emit(A64_POP(A64_ZR, ptr, A64_SP), ctx); 872 873 /* Restore FP/LR registers */ 874 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 875 876 /* Set return value */ 877 emit(A64_MOV(1, A64_R(0), r0), ctx); 878 879 /* Authenticate lr */ 880 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 881 emit(A64_AUTIASP, ctx); 882 883 emit(A64_RET(A64_LR), ctx); 884 } 885 886 #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0) 887 #define BPF_FIXUP_REG_MASK GENMASK(31, 27) 888 #define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */ 889 890 bool ex_handler_bpf(const struct exception_table_entry *ex, 891 struct pt_regs *regs) 892 { 893 off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup); 894 int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup); 895 896 if (dst_reg != DONT_CLEAR) 897 regs->regs[dst_reg] = 0; 898 regs->pc = (unsigned long)&ex->fixup - offset; 899 return true; 900 } 901 902 /* For accesses to BTF pointers, add an entry to the exception table */ 903 static int add_exception_handler(const struct bpf_insn *insn, 904 struct jit_ctx *ctx, 905 int dst_reg) 906 { 907 off_t ins_offset; 908 off_t fixup_offset; 909 unsigned long pc; 910 struct exception_table_entry *ex; 911 912 if (!ctx->image) 913 /* First pass */ 914 return 0; 915 916 if (BPF_MODE(insn->code) != BPF_PROBE_MEM && 917 BPF_MODE(insn->code) != BPF_PROBE_MEMSX && 918 BPF_MODE(insn->code) != BPF_PROBE_MEM32 && 919 BPF_MODE(insn->code) != BPF_PROBE_ATOMIC) 920 return 0; 921 922 if (!ctx->prog->aux->extable || 923 WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries)) 924 return -EINVAL; 925 926 ex = &ctx->prog->aux->extable[ctx->exentry_idx]; 927 pc = (unsigned long)&ctx->ro_image[ctx->idx - 1]; 928 929 /* 930 * This is the relative offset of the instruction that may fault from 931 * the exception table itself. This will be written to the exception 932 * table and if this instruction faults, the destination register will 933 * be set to '0' and the execution will jump to the next instruction. 934 */ 935 ins_offset = pc - (long)&ex->insn; 936 if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN)) 937 return -ERANGE; 938 939 /* 940 * Since the extable follows the program, the fixup offset is always 941 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value 942 * to keep things simple, and put the destination register in the upper 943 * bits. We don't need to worry about buildtime or runtime sort 944 * modifying the upper bits because the table is already sorted, and 945 * isn't part of the main exception table. 946 * 947 * The fixup_offset is set to the next instruction from the instruction 948 * that may fault. The execution will jump to this after handling the 949 * fault. 950 */ 951 fixup_offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE); 952 if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset)) 953 return -ERANGE; 954 955 /* 956 * The offsets above have been calculated using the RO buffer but we 957 * need to use the R/W buffer for writes. 958 * switch ex to rw buffer for writing. 959 */ 960 ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image); 961 962 ex->insn = ins_offset; 963 964 if (BPF_CLASS(insn->code) != BPF_LDX) 965 dst_reg = DONT_CLEAR; 966 967 ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) | 968 FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg); 969 970 ex->type = EX_TYPE_BPF; 971 972 ctx->exentry_idx++; 973 return 0; 974 } 975 976 /* JITs an eBPF instruction. 977 * Returns: 978 * 0 - successfully JITed an 8-byte eBPF instruction. 979 * >0 - successfully JITed a 16-byte eBPF instruction. 980 * <0 - failed to JIT. 981 */ 982 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, 983 bool extra_pass) 984 { 985 const u8 code = insn->code; 986 u8 dst = bpf2a64[insn->dst_reg]; 987 u8 src = bpf2a64[insn->src_reg]; 988 const u8 tmp = bpf2a64[TMP_REG_1]; 989 const u8 tmp2 = bpf2a64[TMP_REG_2]; 990 const u8 fp = bpf2a64[BPF_REG_FP]; 991 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 992 const s16 off = insn->off; 993 const s32 imm = insn->imm; 994 const int i = insn - ctx->prog->insnsi; 995 const bool is64 = BPF_CLASS(code) == BPF_ALU64 || 996 BPF_CLASS(code) == BPF_JMP; 997 u8 jmp_cond; 998 s32 jmp_offset; 999 u32 a64_insn; 1000 u8 src_adj; 1001 u8 dst_adj; 1002 int off_adj; 1003 int ret; 1004 bool sign_extend; 1005 1006 switch (code) { 1007 /* dst = src */ 1008 case BPF_ALU | BPF_MOV | BPF_X: 1009 case BPF_ALU64 | BPF_MOV | BPF_X: 1010 if (insn_is_cast_user(insn)) { 1011 emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits 1012 emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx); 1013 emit(A64_LSL(1, dst, dst, 32), ctx); 1014 emit(A64_CBZ(1, tmp, 2), ctx); 1015 emit(A64_ORR(1, tmp, dst, tmp), ctx); 1016 emit(A64_MOV(1, dst, tmp), ctx); 1017 break; 1018 } else if (insn_is_mov_percpu_addr(insn)) { 1019 if (dst != src) 1020 emit(A64_MOV(1, dst, src), ctx); 1021 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)) 1022 emit(A64_MRS_TPIDR_EL2(tmp), ctx); 1023 else 1024 emit(A64_MRS_TPIDR_EL1(tmp), ctx); 1025 emit(A64_ADD(1, dst, dst, tmp), ctx); 1026 break; 1027 } 1028 switch (insn->off) { 1029 case 0: 1030 emit(A64_MOV(is64, dst, src), ctx); 1031 break; 1032 case 8: 1033 emit(A64_SXTB(is64, dst, src), ctx); 1034 break; 1035 case 16: 1036 emit(A64_SXTH(is64, dst, src), ctx); 1037 break; 1038 case 32: 1039 emit(A64_SXTW(is64, dst, src), ctx); 1040 break; 1041 } 1042 break; 1043 /* dst = dst OP src */ 1044 case BPF_ALU | BPF_ADD | BPF_X: 1045 case BPF_ALU64 | BPF_ADD | BPF_X: 1046 emit(A64_ADD(is64, dst, dst, src), ctx); 1047 break; 1048 case BPF_ALU | BPF_SUB | BPF_X: 1049 case BPF_ALU64 | BPF_SUB | BPF_X: 1050 emit(A64_SUB(is64, dst, dst, src), ctx); 1051 break; 1052 case BPF_ALU | BPF_AND | BPF_X: 1053 case BPF_ALU64 | BPF_AND | BPF_X: 1054 emit(A64_AND(is64, dst, dst, src), ctx); 1055 break; 1056 case BPF_ALU | BPF_OR | BPF_X: 1057 case BPF_ALU64 | BPF_OR | BPF_X: 1058 emit(A64_ORR(is64, dst, dst, src), ctx); 1059 break; 1060 case BPF_ALU | BPF_XOR | BPF_X: 1061 case BPF_ALU64 | BPF_XOR | BPF_X: 1062 emit(A64_EOR(is64, dst, dst, src), ctx); 1063 break; 1064 case BPF_ALU | BPF_MUL | BPF_X: 1065 case BPF_ALU64 | BPF_MUL | BPF_X: 1066 emit(A64_MUL(is64, dst, dst, src), ctx); 1067 break; 1068 case BPF_ALU | BPF_DIV | BPF_X: 1069 case BPF_ALU64 | BPF_DIV | BPF_X: 1070 if (!off) 1071 emit(A64_UDIV(is64, dst, dst, src), ctx); 1072 else 1073 emit(A64_SDIV(is64, dst, dst, src), ctx); 1074 break; 1075 case BPF_ALU | BPF_MOD | BPF_X: 1076 case BPF_ALU64 | BPF_MOD | BPF_X: 1077 if (!off) 1078 emit(A64_UDIV(is64, tmp, dst, src), ctx); 1079 else 1080 emit(A64_SDIV(is64, tmp, dst, src), ctx); 1081 emit(A64_MSUB(is64, dst, dst, tmp, src), ctx); 1082 break; 1083 case BPF_ALU | BPF_LSH | BPF_X: 1084 case BPF_ALU64 | BPF_LSH | BPF_X: 1085 emit(A64_LSLV(is64, dst, dst, src), ctx); 1086 break; 1087 case BPF_ALU | BPF_RSH | BPF_X: 1088 case BPF_ALU64 | BPF_RSH | BPF_X: 1089 emit(A64_LSRV(is64, dst, dst, src), ctx); 1090 break; 1091 case BPF_ALU | BPF_ARSH | BPF_X: 1092 case BPF_ALU64 | BPF_ARSH | BPF_X: 1093 emit(A64_ASRV(is64, dst, dst, src), ctx); 1094 break; 1095 /* dst = -dst */ 1096 case BPF_ALU | BPF_NEG: 1097 case BPF_ALU64 | BPF_NEG: 1098 emit(A64_NEG(is64, dst, dst), ctx); 1099 break; 1100 /* dst = BSWAP##imm(dst) */ 1101 case BPF_ALU | BPF_END | BPF_FROM_LE: 1102 case BPF_ALU | BPF_END | BPF_FROM_BE: 1103 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 1104 #ifdef CONFIG_CPU_BIG_ENDIAN 1105 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE) 1106 goto emit_bswap_uxt; 1107 #else /* !CONFIG_CPU_BIG_ENDIAN */ 1108 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE) 1109 goto emit_bswap_uxt; 1110 #endif 1111 switch (imm) { 1112 case 16: 1113 emit(A64_REV16(is64, dst, dst), ctx); 1114 /* zero-extend 16 bits into 64 bits */ 1115 emit(A64_UXTH(is64, dst, dst), ctx); 1116 break; 1117 case 32: 1118 emit(A64_REV32(0, dst, dst), ctx); 1119 /* upper 32 bits already cleared */ 1120 break; 1121 case 64: 1122 emit(A64_REV64(dst, dst), ctx); 1123 break; 1124 } 1125 break; 1126 emit_bswap_uxt: 1127 switch (imm) { 1128 case 16: 1129 /* zero-extend 16 bits into 64 bits */ 1130 emit(A64_UXTH(is64, dst, dst), ctx); 1131 break; 1132 case 32: 1133 /* zero-extend 32 bits into 64 bits */ 1134 emit(A64_UXTW(is64, dst, dst), ctx); 1135 break; 1136 case 64: 1137 /* nop */ 1138 break; 1139 } 1140 break; 1141 /* dst = imm */ 1142 case BPF_ALU | BPF_MOV | BPF_K: 1143 case BPF_ALU64 | BPF_MOV | BPF_K: 1144 emit_a64_mov_i(is64, dst, imm, ctx); 1145 break; 1146 /* dst = dst OP imm */ 1147 case BPF_ALU | BPF_ADD | BPF_K: 1148 case BPF_ALU64 | BPF_ADD | BPF_K: 1149 if (is_addsub_imm(imm)) { 1150 emit(A64_ADD_I(is64, dst, dst, imm), ctx); 1151 } else if (is_addsub_imm(-imm)) { 1152 emit(A64_SUB_I(is64, dst, dst, -imm), ctx); 1153 } else { 1154 emit_a64_mov_i(is64, tmp, imm, ctx); 1155 emit(A64_ADD(is64, dst, dst, tmp), ctx); 1156 } 1157 break; 1158 case BPF_ALU | BPF_SUB | BPF_K: 1159 case BPF_ALU64 | BPF_SUB | BPF_K: 1160 if (is_addsub_imm(imm)) { 1161 emit(A64_SUB_I(is64, dst, dst, imm), ctx); 1162 } else if (is_addsub_imm(-imm)) { 1163 emit(A64_ADD_I(is64, dst, dst, -imm), ctx); 1164 } else { 1165 emit_a64_mov_i(is64, tmp, imm, ctx); 1166 emit(A64_SUB(is64, dst, dst, tmp), ctx); 1167 } 1168 break; 1169 case BPF_ALU | BPF_AND | BPF_K: 1170 case BPF_ALU64 | BPF_AND | BPF_K: 1171 a64_insn = A64_AND_I(is64, dst, dst, imm); 1172 if (a64_insn != AARCH64_BREAK_FAULT) { 1173 emit(a64_insn, ctx); 1174 } else { 1175 emit_a64_mov_i(is64, tmp, imm, ctx); 1176 emit(A64_AND(is64, dst, dst, tmp), ctx); 1177 } 1178 break; 1179 case BPF_ALU | BPF_OR | BPF_K: 1180 case BPF_ALU64 | BPF_OR | BPF_K: 1181 a64_insn = A64_ORR_I(is64, dst, dst, imm); 1182 if (a64_insn != AARCH64_BREAK_FAULT) { 1183 emit(a64_insn, ctx); 1184 } else { 1185 emit_a64_mov_i(is64, tmp, imm, ctx); 1186 emit(A64_ORR(is64, dst, dst, tmp), ctx); 1187 } 1188 break; 1189 case BPF_ALU | BPF_XOR | BPF_K: 1190 case BPF_ALU64 | BPF_XOR | BPF_K: 1191 a64_insn = A64_EOR_I(is64, dst, dst, imm); 1192 if (a64_insn != AARCH64_BREAK_FAULT) { 1193 emit(a64_insn, ctx); 1194 } else { 1195 emit_a64_mov_i(is64, tmp, imm, ctx); 1196 emit(A64_EOR(is64, dst, dst, tmp), ctx); 1197 } 1198 break; 1199 case BPF_ALU | BPF_MUL | BPF_K: 1200 case BPF_ALU64 | BPF_MUL | BPF_K: 1201 emit_a64_mov_i(is64, tmp, imm, ctx); 1202 emit(A64_MUL(is64, dst, dst, tmp), ctx); 1203 break; 1204 case BPF_ALU | BPF_DIV | BPF_K: 1205 case BPF_ALU64 | BPF_DIV | BPF_K: 1206 emit_a64_mov_i(is64, tmp, imm, ctx); 1207 if (!off) 1208 emit(A64_UDIV(is64, dst, dst, tmp), ctx); 1209 else 1210 emit(A64_SDIV(is64, dst, dst, tmp), ctx); 1211 break; 1212 case BPF_ALU | BPF_MOD | BPF_K: 1213 case BPF_ALU64 | BPF_MOD | BPF_K: 1214 emit_a64_mov_i(is64, tmp2, imm, ctx); 1215 if (!off) 1216 emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); 1217 else 1218 emit(A64_SDIV(is64, tmp, dst, tmp2), ctx); 1219 emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx); 1220 break; 1221 case BPF_ALU | BPF_LSH | BPF_K: 1222 case BPF_ALU64 | BPF_LSH | BPF_K: 1223 emit(A64_LSL(is64, dst, dst, imm), ctx); 1224 break; 1225 case BPF_ALU | BPF_RSH | BPF_K: 1226 case BPF_ALU64 | BPF_RSH | BPF_K: 1227 emit(A64_LSR(is64, dst, dst, imm), ctx); 1228 break; 1229 case BPF_ALU | BPF_ARSH | BPF_K: 1230 case BPF_ALU64 | BPF_ARSH | BPF_K: 1231 emit(A64_ASR(is64, dst, dst, imm), ctx); 1232 break; 1233 1234 /* JUMP off */ 1235 case BPF_JMP | BPF_JA: 1236 case BPF_JMP32 | BPF_JA: 1237 if (BPF_CLASS(code) == BPF_JMP) 1238 jmp_offset = bpf2a64_offset(i, off, ctx); 1239 else 1240 jmp_offset = bpf2a64_offset(i, imm, ctx); 1241 check_imm26(jmp_offset); 1242 emit(A64_B(jmp_offset), ctx); 1243 break; 1244 /* IF (dst COND src) JUMP off */ 1245 case BPF_JMP | BPF_JEQ | BPF_X: 1246 case BPF_JMP | BPF_JGT | BPF_X: 1247 case BPF_JMP | BPF_JLT | BPF_X: 1248 case BPF_JMP | BPF_JGE | BPF_X: 1249 case BPF_JMP | BPF_JLE | BPF_X: 1250 case BPF_JMP | BPF_JNE | BPF_X: 1251 case BPF_JMP | BPF_JSGT | BPF_X: 1252 case BPF_JMP | BPF_JSLT | BPF_X: 1253 case BPF_JMP | BPF_JSGE | BPF_X: 1254 case BPF_JMP | BPF_JSLE | BPF_X: 1255 case BPF_JMP32 | BPF_JEQ | BPF_X: 1256 case BPF_JMP32 | BPF_JGT | BPF_X: 1257 case BPF_JMP32 | BPF_JLT | BPF_X: 1258 case BPF_JMP32 | BPF_JGE | BPF_X: 1259 case BPF_JMP32 | BPF_JLE | BPF_X: 1260 case BPF_JMP32 | BPF_JNE | BPF_X: 1261 case BPF_JMP32 | BPF_JSGT | BPF_X: 1262 case BPF_JMP32 | BPF_JSLT | BPF_X: 1263 case BPF_JMP32 | BPF_JSGE | BPF_X: 1264 case BPF_JMP32 | BPF_JSLE | BPF_X: 1265 emit(A64_CMP(is64, dst, src), ctx); 1266 emit_cond_jmp: 1267 jmp_offset = bpf2a64_offset(i, off, ctx); 1268 check_imm19(jmp_offset); 1269 switch (BPF_OP(code)) { 1270 case BPF_JEQ: 1271 jmp_cond = A64_COND_EQ; 1272 break; 1273 case BPF_JGT: 1274 jmp_cond = A64_COND_HI; 1275 break; 1276 case BPF_JLT: 1277 jmp_cond = A64_COND_CC; 1278 break; 1279 case BPF_JGE: 1280 jmp_cond = A64_COND_CS; 1281 break; 1282 case BPF_JLE: 1283 jmp_cond = A64_COND_LS; 1284 break; 1285 case BPF_JSET: 1286 case BPF_JNE: 1287 jmp_cond = A64_COND_NE; 1288 break; 1289 case BPF_JSGT: 1290 jmp_cond = A64_COND_GT; 1291 break; 1292 case BPF_JSLT: 1293 jmp_cond = A64_COND_LT; 1294 break; 1295 case BPF_JSGE: 1296 jmp_cond = A64_COND_GE; 1297 break; 1298 case BPF_JSLE: 1299 jmp_cond = A64_COND_LE; 1300 break; 1301 default: 1302 return -EFAULT; 1303 } 1304 emit(A64_B_(jmp_cond, jmp_offset), ctx); 1305 break; 1306 case BPF_JMP | BPF_JSET | BPF_X: 1307 case BPF_JMP32 | BPF_JSET | BPF_X: 1308 emit(A64_TST(is64, dst, src), ctx); 1309 goto emit_cond_jmp; 1310 /* IF (dst COND imm) JUMP off */ 1311 case BPF_JMP | BPF_JEQ | BPF_K: 1312 case BPF_JMP | BPF_JGT | BPF_K: 1313 case BPF_JMP | BPF_JLT | BPF_K: 1314 case BPF_JMP | BPF_JGE | BPF_K: 1315 case BPF_JMP | BPF_JLE | BPF_K: 1316 case BPF_JMP | BPF_JNE | BPF_K: 1317 case BPF_JMP | BPF_JSGT | BPF_K: 1318 case BPF_JMP | BPF_JSLT | BPF_K: 1319 case BPF_JMP | BPF_JSGE | BPF_K: 1320 case BPF_JMP | BPF_JSLE | BPF_K: 1321 case BPF_JMP32 | BPF_JEQ | BPF_K: 1322 case BPF_JMP32 | BPF_JGT | BPF_K: 1323 case BPF_JMP32 | BPF_JLT | BPF_K: 1324 case BPF_JMP32 | BPF_JGE | BPF_K: 1325 case BPF_JMP32 | BPF_JLE | BPF_K: 1326 case BPF_JMP32 | BPF_JNE | BPF_K: 1327 case BPF_JMP32 | BPF_JSGT | BPF_K: 1328 case BPF_JMP32 | BPF_JSLT | BPF_K: 1329 case BPF_JMP32 | BPF_JSGE | BPF_K: 1330 case BPF_JMP32 | BPF_JSLE | BPF_K: 1331 if (is_addsub_imm(imm)) { 1332 emit(A64_CMP_I(is64, dst, imm), ctx); 1333 } else if (is_addsub_imm(-imm)) { 1334 emit(A64_CMN_I(is64, dst, -imm), ctx); 1335 } else { 1336 emit_a64_mov_i(is64, tmp, imm, ctx); 1337 emit(A64_CMP(is64, dst, tmp), ctx); 1338 } 1339 goto emit_cond_jmp; 1340 case BPF_JMP | BPF_JSET | BPF_K: 1341 case BPF_JMP32 | BPF_JSET | BPF_K: 1342 a64_insn = A64_TST_I(is64, dst, imm); 1343 if (a64_insn != AARCH64_BREAK_FAULT) { 1344 emit(a64_insn, ctx); 1345 } else { 1346 emit_a64_mov_i(is64, tmp, imm, ctx); 1347 emit(A64_TST(is64, dst, tmp), ctx); 1348 } 1349 goto emit_cond_jmp; 1350 /* function call */ 1351 case BPF_JMP | BPF_CALL: 1352 { 1353 const u8 r0 = bpf2a64[BPF_REG_0]; 1354 bool func_addr_fixed; 1355 u64 func_addr; 1356 u32 cpu_offset; 1357 1358 /* Implement helper call to bpf_get_smp_processor_id() inline */ 1359 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) { 1360 cpu_offset = offsetof(struct thread_info, cpu); 1361 1362 emit(A64_MRS_SP_EL0(tmp), ctx); 1363 if (is_lsi_offset(cpu_offset, 2)) { 1364 emit(A64_LDR32I(r0, tmp, cpu_offset), ctx); 1365 } else { 1366 emit_a64_mov_i(1, tmp2, cpu_offset, ctx); 1367 emit(A64_LDR32(r0, tmp, tmp2), ctx); 1368 } 1369 break; 1370 } 1371 1372 /* Implement helper call to bpf_get_current_task/_btf() inline */ 1373 if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task || 1374 insn->imm == BPF_FUNC_get_current_task_btf)) { 1375 emit(A64_MRS_SP_EL0(r0), ctx); 1376 break; 1377 } 1378 1379 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, 1380 &func_addr, &func_addr_fixed); 1381 if (ret < 0) 1382 return ret; 1383 emit_call(func_addr, ctx); 1384 emit(A64_MOV(1, r0, A64_R(0)), ctx); 1385 break; 1386 } 1387 /* tail call */ 1388 case BPF_JMP | BPF_TAIL_CALL: 1389 if (emit_bpf_tail_call(ctx)) 1390 return -EFAULT; 1391 break; 1392 /* function return */ 1393 case BPF_JMP | BPF_EXIT: 1394 /* Optimization: when last instruction is EXIT, 1395 simply fallthrough to epilogue. */ 1396 if (i == ctx->prog->len - 1) 1397 break; 1398 jmp_offset = epilogue_offset(ctx); 1399 check_imm26(jmp_offset); 1400 emit(A64_B(jmp_offset), ctx); 1401 break; 1402 1403 /* dst = imm64 */ 1404 case BPF_LD | BPF_IMM | BPF_DW: 1405 { 1406 const struct bpf_insn insn1 = insn[1]; 1407 u64 imm64; 1408 1409 imm64 = (u64)insn1.imm << 32 | (u32)imm; 1410 if (bpf_pseudo_func(insn)) 1411 emit_addr_mov_i64(dst, imm64, ctx); 1412 else 1413 emit_a64_mov_i64(dst, imm64, ctx); 1414 1415 return 1; 1416 } 1417 1418 /* LDX: dst = (u64)*(unsigned size *)(src + off) */ 1419 case BPF_LDX | BPF_MEM | BPF_W: 1420 case BPF_LDX | BPF_MEM | BPF_H: 1421 case BPF_LDX | BPF_MEM | BPF_B: 1422 case BPF_LDX | BPF_MEM | BPF_DW: 1423 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 1424 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 1425 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 1426 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 1427 /* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */ 1428 case BPF_LDX | BPF_MEMSX | BPF_B: 1429 case BPF_LDX | BPF_MEMSX | BPF_H: 1430 case BPF_LDX | BPF_MEMSX | BPF_W: 1431 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 1432 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 1433 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 1434 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 1435 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 1436 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 1437 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 1438 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1439 emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx); 1440 src = tmp2; 1441 } 1442 if (src == fp) { 1443 src_adj = A64_SP; 1444 off_adj = off + ctx->stack_size; 1445 } else { 1446 src_adj = src; 1447 off_adj = off; 1448 } 1449 sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX || 1450 BPF_MODE(insn->code) == BPF_PROBE_MEMSX); 1451 switch (BPF_SIZE(code)) { 1452 case BPF_W: 1453 if (is_lsi_offset(off_adj, 2)) { 1454 if (sign_extend) 1455 emit(A64_LDRSWI(dst, src_adj, off_adj), ctx); 1456 else 1457 emit(A64_LDR32I(dst, src_adj, off_adj), ctx); 1458 } else { 1459 emit_a64_mov_i(1, tmp, off, ctx); 1460 if (sign_extend) 1461 emit(A64_LDRSW(dst, src, tmp), ctx); 1462 else 1463 emit(A64_LDR32(dst, src, tmp), ctx); 1464 } 1465 break; 1466 case BPF_H: 1467 if (is_lsi_offset(off_adj, 1)) { 1468 if (sign_extend) 1469 emit(A64_LDRSHI(dst, src_adj, off_adj), ctx); 1470 else 1471 emit(A64_LDRHI(dst, src_adj, off_adj), ctx); 1472 } else { 1473 emit_a64_mov_i(1, tmp, off, ctx); 1474 if (sign_extend) 1475 emit(A64_LDRSH(dst, src, tmp), ctx); 1476 else 1477 emit(A64_LDRH(dst, src, tmp), ctx); 1478 } 1479 break; 1480 case BPF_B: 1481 if (is_lsi_offset(off_adj, 0)) { 1482 if (sign_extend) 1483 emit(A64_LDRSBI(dst, src_adj, off_adj), ctx); 1484 else 1485 emit(A64_LDRBI(dst, src_adj, off_adj), ctx); 1486 } else { 1487 emit_a64_mov_i(1, tmp, off, ctx); 1488 if (sign_extend) 1489 emit(A64_LDRSB(dst, src, tmp), ctx); 1490 else 1491 emit(A64_LDRB(dst, src, tmp), ctx); 1492 } 1493 break; 1494 case BPF_DW: 1495 if (is_lsi_offset(off_adj, 3)) { 1496 emit(A64_LDR64I(dst, src_adj, off_adj), ctx); 1497 } else { 1498 emit_a64_mov_i(1, tmp, off, ctx); 1499 emit(A64_LDR64(dst, src, tmp), ctx); 1500 } 1501 break; 1502 } 1503 1504 ret = add_exception_handler(insn, ctx, dst); 1505 if (ret) 1506 return ret; 1507 break; 1508 1509 /* speculation barrier */ 1510 case BPF_ST | BPF_NOSPEC: 1511 /* 1512 * Nothing required here. 1513 * 1514 * In case of arm64, we rely on the firmware mitigation of 1515 * Speculative Store Bypass as controlled via the ssbd kernel 1516 * parameter. Whenever the mitigation is enabled, it works 1517 * for all of the kernel code with no need to provide any 1518 * additional instructions. 1519 */ 1520 break; 1521 1522 /* ST: *(size *)(dst + off) = imm */ 1523 case BPF_ST | BPF_MEM | BPF_W: 1524 case BPF_ST | BPF_MEM | BPF_H: 1525 case BPF_ST | BPF_MEM | BPF_B: 1526 case BPF_ST | BPF_MEM | BPF_DW: 1527 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 1528 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 1529 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 1530 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 1531 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1532 emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx); 1533 dst = tmp2; 1534 } 1535 if (dst == fp) { 1536 dst_adj = A64_SP; 1537 off_adj = off + ctx->stack_size; 1538 } else { 1539 dst_adj = dst; 1540 off_adj = off; 1541 } 1542 /* Load imm to a register then store it */ 1543 emit_a64_mov_i(1, tmp, imm, ctx); 1544 switch (BPF_SIZE(code)) { 1545 case BPF_W: 1546 if (is_lsi_offset(off_adj, 2)) { 1547 emit(A64_STR32I(tmp, dst_adj, off_adj), ctx); 1548 } else { 1549 emit_a64_mov_i(1, tmp2, off, ctx); 1550 emit(A64_STR32(tmp, dst, tmp2), ctx); 1551 } 1552 break; 1553 case BPF_H: 1554 if (is_lsi_offset(off_adj, 1)) { 1555 emit(A64_STRHI(tmp, dst_adj, off_adj), ctx); 1556 } else { 1557 emit_a64_mov_i(1, tmp2, off, ctx); 1558 emit(A64_STRH(tmp, dst, tmp2), ctx); 1559 } 1560 break; 1561 case BPF_B: 1562 if (is_lsi_offset(off_adj, 0)) { 1563 emit(A64_STRBI(tmp, dst_adj, off_adj), ctx); 1564 } else { 1565 emit_a64_mov_i(1, tmp2, off, ctx); 1566 emit(A64_STRB(tmp, dst, tmp2), ctx); 1567 } 1568 break; 1569 case BPF_DW: 1570 if (is_lsi_offset(off_adj, 3)) { 1571 emit(A64_STR64I(tmp, dst_adj, off_adj), ctx); 1572 } else { 1573 emit_a64_mov_i(1, tmp2, off, ctx); 1574 emit(A64_STR64(tmp, dst, tmp2), ctx); 1575 } 1576 break; 1577 } 1578 1579 ret = add_exception_handler(insn, ctx, dst); 1580 if (ret) 1581 return ret; 1582 break; 1583 1584 /* STX: *(size *)(dst + off) = src */ 1585 case BPF_STX | BPF_MEM | BPF_W: 1586 case BPF_STX | BPF_MEM | BPF_H: 1587 case BPF_STX | BPF_MEM | BPF_B: 1588 case BPF_STX | BPF_MEM | BPF_DW: 1589 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 1590 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 1591 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 1592 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 1593 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1594 emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx); 1595 dst = tmp2; 1596 } 1597 if (dst == fp) { 1598 dst_adj = A64_SP; 1599 off_adj = off + ctx->stack_size; 1600 } else { 1601 dst_adj = dst; 1602 off_adj = off; 1603 } 1604 switch (BPF_SIZE(code)) { 1605 case BPF_W: 1606 if (is_lsi_offset(off_adj, 2)) { 1607 emit(A64_STR32I(src, dst_adj, off_adj), ctx); 1608 } else { 1609 emit_a64_mov_i(1, tmp, off, ctx); 1610 emit(A64_STR32(src, dst, tmp), ctx); 1611 } 1612 break; 1613 case BPF_H: 1614 if (is_lsi_offset(off_adj, 1)) { 1615 emit(A64_STRHI(src, dst_adj, off_adj), ctx); 1616 } else { 1617 emit_a64_mov_i(1, tmp, off, ctx); 1618 emit(A64_STRH(src, dst, tmp), ctx); 1619 } 1620 break; 1621 case BPF_B: 1622 if (is_lsi_offset(off_adj, 0)) { 1623 emit(A64_STRBI(src, dst_adj, off_adj), ctx); 1624 } else { 1625 emit_a64_mov_i(1, tmp, off, ctx); 1626 emit(A64_STRB(src, dst, tmp), ctx); 1627 } 1628 break; 1629 case BPF_DW: 1630 if (is_lsi_offset(off_adj, 3)) { 1631 emit(A64_STR64I(src, dst_adj, off_adj), ctx); 1632 } else { 1633 emit_a64_mov_i(1, tmp, off, ctx); 1634 emit(A64_STR64(src, dst, tmp), ctx); 1635 } 1636 break; 1637 } 1638 1639 ret = add_exception_handler(insn, ctx, dst); 1640 if (ret) 1641 return ret; 1642 break; 1643 1644 case BPF_STX | BPF_ATOMIC | BPF_W: 1645 case BPF_STX | BPF_ATOMIC | BPF_DW: 1646 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: 1647 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: 1648 if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) 1649 ret = emit_lse_atomic(insn, ctx); 1650 else 1651 ret = emit_ll_sc_atomic(insn, ctx); 1652 if (ret) 1653 return ret; 1654 1655 ret = add_exception_handler(insn, ctx, dst); 1656 if (ret) 1657 return ret; 1658 break; 1659 1660 default: 1661 pr_err_once("unknown opcode %02x\n", code); 1662 return -EINVAL; 1663 } 1664 1665 return 0; 1666 } 1667 1668 static int build_body(struct jit_ctx *ctx, bool extra_pass) 1669 { 1670 const struct bpf_prog *prog = ctx->prog; 1671 int i; 1672 1673 /* 1674 * - offset[0] offset of the end of prologue, 1675 * start of the 1st instruction. 1676 * - offset[1] - offset of the end of 1st instruction, 1677 * start of the 2nd instruction 1678 * [....] 1679 * - offset[3] - offset of the end of 3rd instruction, 1680 * start of 4th instruction 1681 */ 1682 for (i = 0; i < prog->len; i++) { 1683 const struct bpf_insn *insn = &prog->insnsi[i]; 1684 int ret; 1685 1686 ctx->offset[i] = ctx->idx; 1687 ret = build_insn(insn, ctx, extra_pass); 1688 if (ret > 0) { 1689 i++; 1690 ctx->offset[i] = ctx->idx; 1691 continue; 1692 } 1693 if (ret) 1694 return ret; 1695 } 1696 /* 1697 * offset is allocated with prog->len + 1 so fill in 1698 * the last element with the offset after the last 1699 * instruction (end of program) 1700 */ 1701 ctx->offset[i] = ctx->idx; 1702 1703 return 0; 1704 } 1705 1706 static int validate_code(struct jit_ctx *ctx) 1707 { 1708 int i; 1709 1710 for (i = 0; i < ctx->idx; i++) { 1711 u32 a64_insn = le32_to_cpu(ctx->image[i]); 1712 1713 if (a64_insn == AARCH64_BREAK_FAULT) 1714 return -1; 1715 } 1716 return 0; 1717 } 1718 1719 static int validate_ctx(struct jit_ctx *ctx) 1720 { 1721 if (validate_code(ctx)) 1722 return -1; 1723 1724 if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries)) 1725 return -1; 1726 1727 return 0; 1728 } 1729 1730 static inline void bpf_flush_icache(void *start, void *end) 1731 { 1732 flush_icache_range((unsigned long)start, (unsigned long)end); 1733 } 1734 1735 struct arm64_jit_data { 1736 struct bpf_binary_header *header; 1737 u8 *ro_image; 1738 struct bpf_binary_header *ro_header; 1739 struct jit_ctx ctx; 1740 }; 1741 1742 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 1743 { 1744 int image_size, prog_size, extable_size, extable_align, extable_offset; 1745 struct bpf_prog *tmp, *orig_prog = prog; 1746 struct bpf_binary_header *header; 1747 struct bpf_binary_header *ro_header; 1748 struct arm64_jit_data *jit_data; 1749 bool was_classic = bpf_prog_was_classic(prog); 1750 bool tmp_blinded = false; 1751 bool extra_pass = false; 1752 struct jit_ctx ctx; 1753 u8 *image_ptr; 1754 u8 *ro_image_ptr; 1755 int body_idx; 1756 int exentry_idx; 1757 1758 if (!prog->jit_requested) 1759 return orig_prog; 1760 1761 tmp = bpf_jit_blind_constants(prog); 1762 /* If blinding was requested and we failed during blinding, 1763 * we must fall back to the interpreter. 1764 */ 1765 if (IS_ERR(tmp)) 1766 return orig_prog; 1767 if (tmp != prog) { 1768 tmp_blinded = true; 1769 prog = tmp; 1770 } 1771 1772 jit_data = prog->aux->jit_data; 1773 if (!jit_data) { 1774 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 1775 if (!jit_data) { 1776 prog = orig_prog; 1777 goto out; 1778 } 1779 prog->aux->jit_data = jit_data; 1780 } 1781 if (jit_data->ctx.offset) { 1782 ctx = jit_data->ctx; 1783 ro_image_ptr = jit_data->ro_image; 1784 ro_header = jit_data->ro_header; 1785 header = jit_data->header; 1786 image_ptr = (void *)header + ((void *)ro_image_ptr 1787 - (void *)ro_header); 1788 extra_pass = true; 1789 prog_size = sizeof(u32) * ctx.idx; 1790 goto skip_init_ctx; 1791 } 1792 memset(&ctx, 0, sizeof(ctx)); 1793 ctx.prog = prog; 1794 1795 ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL); 1796 if (ctx.offset == NULL) { 1797 prog = orig_prog; 1798 goto out_off; 1799 } 1800 1801 ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena); 1802 ctx.arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena); 1803 1804 /* Pass 1: Estimate the maximum image size. 1805 * 1806 * BPF line info needs ctx->offset[i] to be the offset of 1807 * instruction[i] in jited image, so build prologue first. 1808 */ 1809 if (build_prologue(&ctx, was_classic)) { 1810 prog = orig_prog; 1811 goto out_off; 1812 } 1813 1814 if (build_body(&ctx, extra_pass)) { 1815 prog = orig_prog; 1816 goto out_off; 1817 } 1818 1819 ctx.epilogue_offset = ctx.idx; 1820 build_epilogue(&ctx); 1821 build_plt(&ctx); 1822 1823 extable_align = __alignof__(struct exception_table_entry); 1824 extable_size = prog->aux->num_exentries * 1825 sizeof(struct exception_table_entry); 1826 1827 /* Now we know the maximum image size. */ 1828 prog_size = sizeof(u32) * ctx.idx; 1829 /* also allocate space for plt target */ 1830 extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align); 1831 image_size = extable_offset + extable_size; 1832 ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr, 1833 sizeof(u32), &header, &image_ptr, 1834 jit_fill_hole); 1835 if (!ro_header) { 1836 prog = orig_prog; 1837 goto out_off; 1838 } 1839 1840 /* Pass 2: Determine jited position and result for each instruction */ 1841 1842 /* 1843 * Use the image(RW) for writing the JITed instructions. But also save 1844 * the ro_image(RX) for calculating the offsets in the image. The RW 1845 * image will be later copied to the RX image from where the program 1846 * will run. The bpf_jit_binary_pack_finalize() will do this copy in the 1847 * final step. 1848 */ 1849 ctx.image = (__le32 *)image_ptr; 1850 ctx.ro_image = (__le32 *)ro_image_ptr; 1851 if (extable_size) 1852 prog->aux->extable = (void *)ro_image_ptr + extable_offset; 1853 skip_init_ctx: 1854 ctx.idx = 0; 1855 ctx.exentry_idx = 0; 1856 ctx.write = true; 1857 1858 build_prologue(&ctx, was_classic); 1859 1860 /* Record exentry_idx and body_idx before first build_body */ 1861 exentry_idx = ctx.exentry_idx; 1862 body_idx = ctx.idx; 1863 /* Dont write body instructions to memory for now */ 1864 ctx.write = false; 1865 1866 if (build_body(&ctx, extra_pass)) { 1867 prog = orig_prog; 1868 goto out_free_hdr; 1869 } 1870 1871 ctx.epilogue_offset = ctx.idx; 1872 ctx.exentry_idx = exentry_idx; 1873 ctx.idx = body_idx; 1874 ctx.write = true; 1875 1876 /* Pass 3: Adjust jump offset and write final image */ 1877 if (build_body(&ctx, extra_pass) || 1878 WARN_ON_ONCE(ctx.idx != ctx.epilogue_offset)) { 1879 prog = orig_prog; 1880 goto out_free_hdr; 1881 } 1882 1883 build_epilogue(&ctx); 1884 build_plt(&ctx); 1885 1886 /* Extra pass to validate JITed code. */ 1887 if (validate_ctx(&ctx)) { 1888 prog = orig_prog; 1889 goto out_free_hdr; 1890 } 1891 1892 /* update the real prog size */ 1893 prog_size = sizeof(u32) * ctx.idx; 1894 1895 /* And we're done. */ 1896 if (bpf_jit_enable > 1) 1897 bpf_jit_dump(prog->len, prog_size, 2, ctx.image); 1898 1899 if (!prog->is_func || extra_pass) { 1900 /* The jited image may shrink since the jited result for 1901 * BPF_CALL to subprog may be changed from indirect call 1902 * to direct call. 1903 */ 1904 if (extra_pass && ctx.idx > jit_data->ctx.idx) { 1905 pr_err_once("multi-func JIT bug %d > %d\n", 1906 ctx.idx, jit_data->ctx.idx); 1907 prog->bpf_func = NULL; 1908 prog->jited = 0; 1909 prog->jited_len = 0; 1910 goto out_free_hdr; 1911 } 1912 if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) { 1913 /* ro_header has been freed */ 1914 ro_header = NULL; 1915 prog = orig_prog; 1916 goto out_off; 1917 } 1918 /* 1919 * The instructions have now been copied to the ROX region from 1920 * where they will execute. Now the data cache has to be cleaned to 1921 * the PoU and the I-cache has to be invalidated for the VAs. 1922 */ 1923 bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx); 1924 } else { 1925 jit_data->ctx = ctx; 1926 jit_data->ro_image = ro_image_ptr; 1927 jit_data->header = header; 1928 jit_data->ro_header = ro_header; 1929 } 1930 1931 prog->bpf_func = (void *)ctx.ro_image; 1932 prog->jited = 1; 1933 prog->jited_len = prog_size; 1934 1935 if (!prog->is_func || extra_pass) { 1936 int i; 1937 1938 /* offset[prog->len] is the size of program */ 1939 for (i = 0; i <= prog->len; i++) 1940 ctx.offset[i] *= AARCH64_INSN_SIZE; 1941 bpf_prog_fill_jited_linfo(prog, ctx.offset + 1); 1942 out_off: 1943 kvfree(ctx.offset); 1944 kfree(jit_data); 1945 prog->aux->jit_data = NULL; 1946 } 1947 out: 1948 if (tmp_blinded) 1949 bpf_jit_prog_release_other(prog, prog == orig_prog ? 1950 tmp : orig_prog); 1951 return prog; 1952 1953 out_free_hdr: 1954 if (header) { 1955 bpf_arch_text_copy(&ro_header->size, &header->size, 1956 sizeof(header->size)); 1957 bpf_jit_binary_pack_free(ro_header, header); 1958 } 1959 goto out_off; 1960 } 1961 1962 bool bpf_jit_supports_kfunc_call(void) 1963 { 1964 return true; 1965 } 1966 1967 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 1968 { 1969 if (!aarch64_insn_copy(dst, src, len)) 1970 return ERR_PTR(-EINVAL); 1971 return dst; 1972 } 1973 1974 u64 bpf_jit_alloc_exec_limit(void) 1975 { 1976 return VMALLOC_END - VMALLOC_START; 1977 } 1978 1979 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 1980 bool bpf_jit_supports_subprog_tailcalls(void) 1981 { 1982 return true; 1983 } 1984 1985 static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l, 1986 int args_off, int retval_off, int run_ctx_off, 1987 bool save_ret) 1988 { 1989 __le32 *branch; 1990 u64 enter_prog; 1991 u64 exit_prog; 1992 struct bpf_prog *p = l->link.prog; 1993 int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 1994 1995 enter_prog = (u64)bpf_trampoline_enter(p); 1996 exit_prog = (u64)bpf_trampoline_exit(p); 1997 1998 if (l->cookie == 0) { 1999 /* if cookie is zero, one instruction is enough to store it */ 2000 emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx); 2001 } else { 2002 emit_a64_mov_i64(A64_R(10), l->cookie, ctx); 2003 emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off), 2004 ctx); 2005 } 2006 2007 /* save p to callee saved register x19 to avoid loading p with mov_i64 2008 * each time. 2009 */ 2010 emit_addr_mov_i64(A64_R(19), (const u64)p, ctx); 2011 2012 /* arg1: prog */ 2013 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); 2014 /* arg2: &run_ctx */ 2015 emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx); 2016 2017 emit_call(enter_prog, ctx); 2018 2019 /* save return value to callee saved register x20 */ 2020 emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx); 2021 2022 /* if (__bpf_prog_enter(prog) == 0) 2023 * goto skip_exec_of_prog; 2024 */ 2025 branch = ctx->image + ctx->idx; 2026 emit(A64_NOP, ctx); 2027 2028 emit(A64_ADD_I(1, A64_R(0), A64_SP, args_off), ctx); 2029 if (!p->jited) 2030 emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx); 2031 2032 emit_call((const u64)p->bpf_func, ctx); 2033 2034 if (save_ret) 2035 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); 2036 2037 if (ctx->image) { 2038 int offset = &ctx->image[ctx->idx] - branch; 2039 *branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset)); 2040 } 2041 2042 /* arg1: prog */ 2043 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); 2044 /* arg2: start time */ 2045 emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx); 2046 /* arg3: &run_ctx */ 2047 emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx); 2048 2049 emit_call(exit_prog, ctx); 2050 } 2051 2052 static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl, 2053 int args_off, int retval_off, int run_ctx_off, 2054 __le32 **branches) 2055 { 2056 int i; 2057 2058 /* The first fmod_ret program will receive a garbage return value. 2059 * Set this to 0 to avoid confusing the program. 2060 */ 2061 emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx); 2062 for (i = 0; i < tl->nr_links; i++) { 2063 invoke_bpf_prog(ctx, tl->links[i], args_off, retval_off, 2064 run_ctx_off, true); 2065 /* if (*(u64 *)(sp + retval_off) != 0) 2066 * goto do_fexit; 2067 */ 2068 emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx); 2069 /* Save the location of branch, and generate a nop. 2070 * This nop will be replaced with a cbnz later. 2071 */ 2072 branches[i] = ctx->image + ctx->idx; 2073 emit(A64_NOP, ctx); 2074 } 2075 } 2076 2077 static void save_args(struct jit_ctx *ctx, int args_off, int nregs) 2078 { 2079 int i; 2080 2081 for (i = 0; i < nregs; i++) { 2082 emit(A64_STR64I(i, A64_SP, args_off), ctx); 2083 args_off += 8; 2084 } 2085 } 2086 2087 static void restore_args(struct jit_ctx *ctx, int args_off, int nregs) 2088 { 2089 int i; 2090 2091 for (i = 0; i < nregs; i++) { 2092 emit(A64_LDR64I(i, A64_SP, args_off), ctx); 2093 args_off += 8; 2094 } 2095 } 2096 2097 /* Based on the x86's implementation of arch_prepare_bpf_trampoline(). 2098 * 2099 * bpf prog and function entry before bpf trampoline hooked: 2100 * mov x9, lr 2101 * nop 2102 * 2103 * bpf prog and function entry after bpf trampoline hooked: 2104 * mov x9, lr 2105 * bl <bpf_trampoline or plt> 2106 * 2107 */ 2108 static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im, 2109 struct bpf_tramp_links *tlinks, void *func_addr, 2110 int nregs, u32 flags) 2111 { 2112 int i; 2113 int stack_size; 2114 int retaddr_off; 2115 int regs_off; 2116 int retval_off; 2117 int args_off; 2118 int nregs_off; 2119 int ip_off; 2120 int run_ctx_off; 2121 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 2122 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 2123 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 2124 bool save_ret; 2125 __le32 **branches = NULL; 2126 2127 /* trampoline stack layout: 2128 * [ parent ip ] 2129 * [ FP ] 2130 * SP + retaddr_off [ self ip ] 2131 * [ FP ] 2132 * 2133 * [ padding ] align SP to multiples of 16 2134 * 2135 * [ x20 ] callee saved reg x20 2136 * SP + regs_off [ x19 ] callee saved reg x19 2137 * 2138 * SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or 2139 * BPF_TRAMP_F_RET_FENTRY_RET 2140 * 2141 * [ arg reg N ] 2142 * [ ... ] 2143 * SP + args_off [ arg reg 1 ] 2144 * 2145 * SP + nregs_off [ arg regs count ] 2146 * 2147 * SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 2148 * 2149 * SP + run_ctx_off [ bpf_tramp_run_ctx ] 2150 */ 2151 2152 stack_size = 0; 2153 run_ctx_off = stack_size; 2154 /* room for bpf_tramp_run_ctx */ 2155 stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8); 2156 2157 ip_off = stack_size; 2158 /* room for IP address argument */ 2159 if (flags & BPF_TRAMP_F_IP_ARG) 2160 stack_size += 8; 2161 2162 nregs_off = stack_size; 2163 /* room for args count */ 2164 stack_size += 8; 2165 2166 args_off = stack_size; 2167 /* room for args */ 2168 stack_size += nregs * 8; 2169 2170 /* room for return value */ 2171 retval_off = stack_size; 2172 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 2173 if (save_ret) 2174 stack_size += 8; 2175 2176 /* room for callee saved registers, currently x19 and x20 are used */ 2177 regs_off = stack_size; 2178 stack_size += 16; 2179 2180 /* round up to multiples of 16 to avoid SPAlignmentFault */ 2181 stack_size = round_up(stack_size, 16); 2182 2183 /* return address locates above FP */ 2184 retaddr_off = stack_size + 8; 2185 2186 /* bpf trampoline may be invoked by 3 instruction types: 2187 * 1. bl, attached to bpf prog or kernel function via short jump 2188 * 2. br, attached to bpf prog or kernel function via long jump 2189 * 3. blr, working as a function pointer, used by struct_ops. 2190 * So BTI_JC should used here to support both br and blr. 2191 */ 2192 emit_bti(A64_BTI_JC, ctx); 2193 2194 /* frame for parent function */ 2195 emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx); 2196 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 2197 2198 /* frame for patched function */ 2199 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 2200 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 2201 2202 /* allocate stack space */ 2203 emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx); 2204 2205 if (flags & BPF_TRAMP_F_IP_ARG) { 2206 /* save ip address of the traced function */ 2207 emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx); 2208 emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx); 2209 } 2210 2211 /* save arg regs count*/ 2212 emit(A64_MOVZ(1, A64_R(10), nregs, 0), ctx); 2213 emit(A64_STR64I(A64_R(10), A64_SP, nregs_off), ctx); 2214 2215 /* save arg regs */ 2216 save_args(ctx, args_off, nregs); 2217 2218 /* save callee saved registers */ 2219 emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx); 2220 emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx); 2221 2222 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2223 /* for the first pass, assume the worst case */ 2224 if (!ctx->image) 2225 ctx->idx += 4; 2226 else 2227 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx); 2228 emit_call((const u64)__bpf_tramp_enter, ctx); 2229 } 2230 2231 for (i = 0; i < fentry->nr_links; i++) 2232 invoke_bpf_prog(ctx, fentry->links[i], args_off, 2233 retval_off, run_ctx_off, 2234 flags & BPF_TRAMP_F_RET_FENTRY_RET); 2235 2236 if (fmod_ret->nr_links) { 2237 branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *), 2238 GFP_KERNEL); 2239 if (!branches) 2240 return -ENOMEM; 2241 2242 invoke_bpf_mod_ret(ctx, fmod_ret, args_off, retval_off, 2243 run_ctx_off, branches); 2244 } 2245 2246 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2247 restore_args(ctx, args_off, nregs); 2248 /* call original func */ 2249 emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx); 2250 emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx); 2251 emit(A64_RET(A64_R(10)), ctx); 2252 /* store return value */ 2253 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); 2254 /* reserve a nop for bpf_tramp_image_put */ 2255 im->ip_after_call = ctx->ro_image + ctx->idx; 2256 emit(A64_NOP, ctx); 2257 } 2258 2259 /* update the branches saved in invoke_bpf_mod_ret with cbnz */ 2260 for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) { 2261 int offset = &ctx->image[ctx->idx] - branches[i]; 2262 *branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset)); 2263 } 2264 2265 for (i = 0; i < fexit->nr_links; i++) 2266 invoke_bpf_prog(ctx, fexit->links[i], args_off, retval_off, 2267 run_ctx_off, false); 2268 2269 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2270 im->ip_epilogue = ctx->ro_image + ctx->idx; 2271 /* for the first pass, assume the worst case */ 2272 if (!ctx->image) 2273 ctx->idx += 4; 2274 else 2275 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx); 2276 emit_call((const u64)__bpf_tramp_exit, ctx); 2277 } 2278 2279 if (flags & BPF_TRAMP_F_RESTORE_REGS) 2280 restore_args(ctx, args_off, nregs); 2281 2282 /* restore callee saved register x19 and x20 */ 2283 emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx); 2284 emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx); 2285 2286 if (save_ret) 2287 emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx); 2288 2289 /* reset SP */ 2290 emit(A64_MOV(1, A64_SP, A64_FP), ctx); 2291 2292 /* pop frames */ 2293 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 2294 emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx); 2295 2296 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 2297 /* skip patched function, return to parent */ 2298 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); 2299 emit(A64_RET(A64_R(9)), ctx); 2300 } else { 2301 /* return to patched function */ 2302 emit(A64_MOV(1, A64_R(10), A64_LR), ctx); 2303 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); 2304 emit(A64_RET(A64_R(10)), ctx); 2305 } 2306 2307 kfree(branches); 2308 2309 return ctx->idx; 2310 } 2311 2312 static int btf_func_model_nregs(const struct btf_func_model *m) 2313 { 2314 int nregs = m->nr_args; 2315 int i; 2316 2317 /* extra registers needed for struct argument */ 2318 for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) { 2319 /* The arg_size is at most 16 bytes, enforced by the verifier. */ 2320 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 2321 nregs += (m->arg_size[i] + 7) / 8 - 1; 2322 } 2323 2324 return nregs; 2325 } 2326 2327 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 2328 struct bpf_tramp_links *tlinks, void *func_addr) 2329 { 2330 struct jit_ctx ctx = { 2331 .image = NULL, 2332 .idx = 0, 2333 }; 2334 struct bpf_tramp_image im; 2335 int nregs, ret; 2336 2337 nregs = btf_func_model_nregs(m); 2338 /* the first 8 registers are used for arguments */ 2339 if (nregs > 8) 2340 return -ENOTSUPP; 2341 2342 ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, nregs, flags); 2343 if (ret < 0) 2344 return ret; 2345 2346 return ret < 0 ? ret : ret * AARCH64_INSN_SIZE; 2347 } 2348 2349 void *arch_alloc_bpf_trampoline(unsigned int size) 2350 { 2351 return bpf_prog_pack_alloc(size, jit_fill_hole); 2352 } 2353 2354 void arch_free_bpf_trampoline(void *image, unsigned int size) 2355 { 2356 bpf_prog_pack_free(image, size); 2357 } 2358 2359 int arch_protect_bpf_trampoline(void *image, unsigned int size) 2360 { 2361 return 0; 2362 } 2363 2364 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image, 2365 void *ro_image_end, const struct btf_func_model *m, 2366 u32 flags, struct bpf_tramp_links *tlinks, 2367 void *func_addr) 2368 { 2369 int ret, nregs; 2370 void *image, *tmp; 2371 u32 size = ro_image_end - ro_image; 2372 2373 /* image doesn't need to be in module memory range, so we can 2374 * use kvmalloc. 2375 */ 2376 image = kvmalloc(size, GFP_KERNEL); 2377 if (!image) 2378 return -ENOMEM; 2379 2380 struct jit_ctx ctx = { 2381 .image = image, 2382 .ro_image = ro_image, 2383 .idx = 0, 2384 .write = true, 2385 }; 2386 2387 nregs = btf_func_model_nregs(m); 2388 /* the first 8 registers are used for arguments */ 2389 if (nregs > 8) 2390 return -ENOTSUPP; 2391 2392 jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image)); 2393 ret = prepare_trampoline(&ctx, im, tlinks, func_addr, nregs, flags); 2394 2395 if (ret > 0 && validate_code(&ctx) < 0) { 2396 ret = -EINVAL; 2397 goto out; 2398 } 2399 2400 if (ret > 0) 2401 ret *= AARCH64_INSN_SIZE; 2402 2403 tmp = bpf_arch_text_copy(ro_image, image, size); 2404 if (IS_ERR(tmp)) { 2405 ret = PTR_ERR(tmp); 2406 goto out; 2407 } 2408 2409 bpf_flush_icache(ro_image, ro_image + size); 2410 out: 2411 kvfree(image); 2412 return ret; 2413 } 2414 2415 static bool is_long_jump(void *ip, void *target) 2416 { 2417 long offset; 2418 2419 /* NULL target means this is a NOP */ 2420 if (!target) 2421 return false; 2422 2423 offset = (long)target - (long)ip; 2424 return offset < -SZ_128M || offset >= SZ_128M; 2425 } 2426 2427 static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip, 2428 void *addr, void *plt, u32 *insn) 2429 { 2430 void *target; 2431 2432 if (!addr) { 2433 *insn = aarch64_insn_gen_nop(); 2434 return 0; 2435 } 2436 2437 if (is_long_jump(ip, addr)) 2438 target = plt; 2439 else 2440 target = addr; 2441 2442 *insn = aarch64_insn_gen_branch_imm((unsigned long)ip, 2443 (unsigned long)target, 2444 type); 2445 2446 return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT; 2447 } 2448 2449 /* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf 2450 * trampoline with the branch instruction from @ip to @new_addr. If @old_addr 2451 * or @new_addr is NULL, the old or new instruction is NOP. 2452 * 2453 * When @ip is the bpf prog entry, a bpf trampoline is being attached or 2454 * detached. Since bpf trampoline and bpf prog are allocated separately with 2455 * vmalloc, the address distance may exceed 128MB, the maximum branch range. 2456 * So long jump should be handled. 2457 * 2458 * When a bpf prog is constructed, a plt pointing to empty trampoline 2459 * dummy_tramp is placed at the end: 2460 * 2461 * bpf_prog: 2462 * mov x9, lr 2463 * nop // patchsite 2464 * ... 2465 * ret 2466 * 2467 * plt: 2468 * ldr x10, target 2469 * br x10 2470 * target: 2471 * .quad dummy_tramp // plt target 2472 * 2473 * This is also the state when no trampoline is attached. 2474 * 2475 * When a short-jump bpf trampoline is attached, the patchsite is patched 2476 * to a bl instruction to the trampoline directly: 2477 * 2478 * bpf_prog: 2479 * mov x9, lr 2480 * bl <short-jump bpf trampoline address> // patchsite 2481 * ... 2482 * ret 2483 * 2484 * plt: 2485 * ldr x10, target 2486 * br x10 2487 * target: 2488 * .quad dummy_tramp // plt target 2489 * 2490 * When a long-jump bpf trampoline is attached, the plt target is filled with 2491 * the trampoline address and the patchsite is patched to a bl instruction to 2492 * the plt: 2493 * 2494 * bpf_prog: 2495 * mov x9, lr 2496 * bl plt // patchsite 2497 * ... 2498 * ret 2499 * 2500 * plt: 2501 * ldr x10, target 2502 * br x10 2503 * target: 2504 * .quad <long-jump bpf trampoline address> // plt target 2505 * 2506 * The dummy_tramp is used to prevent another CPU from jumping to unknown 2507 * locations during the patching process, making the patching process easier. 2508 */ 2509 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type, 2510 void *old_addr, void *new_addr) 2511 { 2512 int ret; 2513 u32 old_insn; 2514 u32 new_insn; 2515 u32 replaced; 2516 struct bpf_plt *plt = NULL; 2517 unsigned long size = 0UL; 2518 unsigned long offset = ~0UL; 2519 enum aarch64_insn_branch_type branch_type; 2520 char namebuf[KSYM_NAME_LEN]; 2521 void *image = NULL; 2522 u64 plt_target = 0ULL; 2523 bool poking_bpf_entry; 2524 2525 if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf)) 2526 /* Only poking bpf text is supported. Since kernel function 2527 * entry is set up by ftrace, we reply on ftrace to poke kernel 2528 * functions. 2529 */ 2530 return -ENOTSUPP; 2531 2532 image = ip - offset; 2533 /* zero offset means we're poking bpf prog entry */ 2534 poking_bpf_entry = (offset == 0UL); 2535 2536 /* bpf prog entry, find plt and the real patchsite */ 2537 if (poking_bpf_entry) { 2538 /* plt locates at the end of bpf prog */ 2539 plt = image + size - PLT_TARGET_OFFSET; 2540 2541 /* skip to the nop instruction in bpf prog entry: 2542 * bti c // if BTI enabled 2543 * mov x9, x30 2544 * nop 2545 */ 2546 ip = image + POKE_OFFSET * AARCH64_INSN_SIZE; 2547 } 2548 2549 /* long jump is only possible at bpf prog entry */ 2550 if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) && 2551 !poking_bpf_entry)) 2552 return -EINVAL; 2553 2554 if (poke_type == BPF_MOD_CALL) 2555 branch_type = AARCH64_INSN_BRANCH_LINK; 2556 else 2557 branch_type = AARCH64_INSN_BRANCH_NOLINK; 2558 2559 if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0) 2560 return -EFAULT; 2561 2562 if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0) 2563 return -EFAULT; 2564 2565 if (is_long_jump(ip, new_addr)) 2566 plt_target = (u64)new_addr; 2567 else if (is_long_jump(ip, old_addr)) 2568 /* if the old target is a long jump and the new target is not, 2569 * restore the plt target to dummy_tramp, so there is always a 2570 * legal and harmless address stored in plt target, and we'll 2571 * never jump from plt to an unknown place. 2572 */ 2573 plt_target = (u64)&dummy_tramp; 2574 2575 if (plt_target) { 2576 /* non-zero plt_target indicates we're patching a bpf prog, 2577 * which is read only. 2578 */ 2579 if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1)) 2580 return -EFAULT; 2581 WRITE_ONCE(plt->target, plt_target); 2582 set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1); 2583 /* since plt target points to either the new trampoline 2584 * or dummy_tramp, even if another CPU reads the old plt 2585 * target value before fetching the bl instruction to plt, 2586 * it will be brought back by dummy_tramp, so no barrier is 2587 * required here. 2588 */ 2589 } 2590 2591 /* if the old target and the new target are both long jumps, no 2592 * patching is required 2593 */ 2594 if (old_insn == new_insn) 2595 return 0; 2596 2597 mutex_lock(&text_mutex); 2598 if (aarch64_insn_read(ip, &replaced)) { 2599 ret = -EFAULT; 2600 goto out; 2601 } 2602 2603 if (replaced != old_insn) { 2604 ret = -EFAULT; 2605 goto out; 2606 } 2607 2608 /* We call aarch64_insn_patch_text_nosync() to replace instruction 2609 * atomically, so no other CPUs will fetch a half-new and half-old 2610 * instruction. But there is chance that another CPU executes the 2611 * old instruction after the patching operation finishes (e.g., 2612 * pipeline not flushed, or icache not synchronized yet). 2613 * 2614 * 1. when a new trampoline is attached, it is not a problem for 2615 * different CPUs to jump to different trampolines temporarily. 2616 * 2617 * 2. when an old trampoline is freed, we should wait for all other 2618 * CPUs to exit the trampoline and make sure the trampoline is no 2619 * longer reachable, since bpf_tramp_image_put() function already 2620 * uses percpu_ref and task-based rcu to do the sync, no need to call 2621 * the sync version here, see bpf_tramp_image_put() for details. 2622 */ 2623 ret = aarch64_insn_patch_text_nosync(ip, new_insn); 2624 out: 2625 mutex_unlock(&text_mutex); 2626 2627 return ret; 2628 } 2629 2630 bool bpf_jit_supports_ptr_xchg(void) 2631 { 2632 return true; 2633 } 2634 2635 bool bpf_jit_supports_exceptions(void) 2636 { 2637 /* We unwind through both kernel frames starting from within bpf_throw 2638 * call and BPF frames. Therefore we require FP unwinder to be enabled 2639 * to walk kernel frames and reach BPF frames in the stack trace. 2640 * ARM64 kernel is aways compiled with CONFIG_FRAME_POINTER=y 2641 */ 2642 return true; 2643 } 2644 2645 bool bpf_jit_supports_arena(void) 2646 { 2647 return true; 2648 } 2649 2650 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) 2651 { 2652 if (!in_arena) 2653 return true; 2654 switch (insn->code) { 2655 case BPF_STX | BPF_ATOMIC | BPF_W: 2656 case BPF_STX | BPF_ATOMIC | BPF_DW: 2657 if (!cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) 2658 return false; 2659 } 2660 return true; 2661 } 2662 2663 bool bpf_jit_supports_percpu_insn(void) 2664 { 2665 return true; 2666 } 2667 2668 bool bpf_jit_inlines_helper_call(s32 imm) 2669 { 2670 switch (imm) { 2671 case BPF_FUNC_get_smp_processor_id: 2672 case BPF_FUNC_get_current_task: 2673 case BPF_FUNC_get_current_task_btf: 2674 return true; 2675 default: 2676 return false; 2677 } 2678 } 2679 2680 void bpf_jit_free(struct bpf_prog *prog) 2681 { 2682 if (prog->jited) { 2683 struct arm64_jit_data *jit_data = prog->aux->jit_data; 2684 struct bpf_binary_header *hdr; 2685 2686 /* 2687 * If we fail the final pass of JIT (from jit_subprogs), 2688 * the program may not be finalized yet. Call finalize here 2689 * before freeing it. 2690 */ 2691 if (jit_data) { 2692 bpf_arch_text_copy(&jit_data->ro_header->size, &jit_data->header->size, 2693 sizeof(jit_data->header->size)); 2694 kfree(jit_data); 2695 } 2696 hdr = bpf_jit_binary_pack_hdr(prog); 2697 bpf_jit_binary_pack_free(hdr, NULL); 2698 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 2699 } 2700 2701 bpf_prog_unlock_free(prog); 2702 } 2703