xref: /linux/arch/arm64/net/bpf_jit_comp.c (revision a3a02a52bcfcbcc4a637d4b68bf1bc391c9fad02)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler for ARM64
4  *
5  * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
6  */
7 
8 #define pr_fmt(fmt) "bpf_jit: " fmt
9 
10 #include <linux/bitfield.h>
11 #include <linux/bpf.h>
12 #include <linux/filter.h>
13 #include <linux/memory.h>
14 #include <linux/printk.h>
15 #include <linux/slab.h>
16 
17 #include <asm/asm-extable.h>
18 #include <asm/byteorder.h>
19 #include <asm/cacheflush.h>
20 #include <asm/debug-monitors.h>
21 #include <asm/insn.h>
22 #include <asm/patching.h>
23 #include <asm/set_memory.h>
24 
25 #include "bpf_jit.h"
26 
27 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
28 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
29 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
30 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
31 #define FP_BOTTOM (MAX_BPF_JIT_REG + 4)
32 #define ARENA_VM_START (MAX_BPF_JIT_REG + 5)
33 
34 #define check_imm(bits, imm) do {				\
35 	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
36 	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
37 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
38 			i, imm, imm);				\
39 		return -EINVAL;					\
40 	}							\
41 } while (0)
42 #define check_imm19(imm) check_imm(19, imm)
43 #define check_imm26(imm) check_imm(26, imm)
44 
45 /* Map BPF registers to A64 registers */
46 static const int bpf2a64[] = {
47 	/* return value from in-kernel function, and exit value from eBPF */
48 	[BPF_REG_0] = A64_R(7),
49 	/* arguments from eBPF program to in-kernel function */
50 	[BPF_REG_1] = A64_R(0),
51 	[BPF_REG_2] = A64_R(1),
52 	[BPF_REG_3] = A64_R(2),
53 	[BPF_REG_4] = A64_R(3),
54 	[BPF_REG_5] = A64_R(4),
55 	/* callee saved registers that in-kernel function will preserve */
56 	[BPF_REG_6] = A64_R(19),
57 	[BPF_REG_7] = A64_R(20),
58 	[BPF_REG_8] = A64_R(21),
59 	[BPF_REG_9] = A64_R(22),
60 	/* read-only frame pointer to access stack */
61 	[BPF_REG_FP] = A64_R(25),
62 	/* temporary registers for BPF JIT */
63 	[TMP_REG_1] = A64_R(10),
64 	[TMP_REG_2] = A64_R(11),
65 	[TMP_REG_3] = A64_R(12),
66 	/* tail_call_cnt */
67 	[TCALL_CNT] = A64_R(26),
68 	/* temporary register for blinding constants */
69 	[BPF_REG_AX] = A64_R(9),
70 	[FP_BOTTOM] = A64_R(27),
71 	/* callee saved register for kern_vm_start address */
72 	[ARENA_VM_START] = A64_R(28),
73 };
74 
75 struct jit_ctx {
76 	const struct bpf_prog *prog;
77 	int idx;
78 	int epilogue_offset;
79 	int *offset;
80 	int exentry_idx;
81 	__le32 *image;
82 	__le32 *ro_image;
83 	u32 stack_size;
84 	int fpb_offset;
85 	u64 user_vm_start;
86 };
87 
88 struct bpf_plt {
89 	u32 insn_ldr; /* load target */
90 	u32 insn_br;  /* branch to target */
91 	u64 target;   /* target value */
92 };
93 
94 #define PLT_TARGET_SIZE   sizeof_field(struct bpf_plt, target)
95 #define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target)
96 
97 static inline void emit(const u32 insn, struct jit_ctx *ctx)
98 {
99 	if (ctx->image != NULL)
100 		ctx->image[ctx->idx] = cpu_to_le32(insn);
101 
102 	ctx->idx++;
103 }
104 
105 static inline void emit_a64_mov_i(const int is64, const int reg,
106 				  const s32 val, struct jit_ctx *ctx)
107 {
108 	u16 hi = val >> 16;
109 	u16 lo = val & 0xffff;
110 
111 	if (hi & 0x8000) {
112 		if (hi == 0xffff) {
113 			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
114 		} else {
115 			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
116 			if (lo != 0xffff)
117 				emit(A64_MOVK(is64, reg, lo, 0), ctx);
118 		}
119 	} else {
120 		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
121 		if (hi)
122 			emit(A64_MOVK(is64, reg, hi, 16), ctx);
123 	}
124 }
125 
126 static int i64_i16_blocks(const u64 val, bool inverse)
127 {
128 	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
129 	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
130 	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
131 	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
132 }
133 
134 static inline void emit_a64_mov_i64(const int reg, const u64 val,
135 				    struct jit_ctx *ctx)
136 {
137 	u64 nrm_tmp = val, rev_tmp = ~val;
138 	bool inverse;
139 	int shift;
140 
141 	if (!(nrm_tmp >> 32))
142 		return emit_a64_mov_i(0, reg, (u32)val, ctx);
143 
144 	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
145 	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
146 					  (fls64(nrm_tmp) - 1)), 16), 0);
147 	if (inverse)
148 		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
149 	else
150 		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
151 	shift -= 16;
152 	while (shift >= 0) {
153 		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
154 			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
155 		shift -= 16;
156 	}
157 }
158 
159 static inline void emit_bti(u32 insn, struct jit_ctx *ctx)
160 {
161 	if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
162 		emit(insn, ctx);
163 }
164 
165 /*
166  * Kernel addresses in the vmalloc space use at most 48 bits, and the
167  * remaining bits are guaranteed to be 0x1. So we can compose the address
168  * with a fixed length movn/movk/movk sequence.
169  */
170 static inline void emit_addr_mov_i64(const int reg, const u64 val,
171 				     struct jit_ctx *ctx)
172 {
173 	u64 tmp = val;
174 	int shift = 0;
175 
176 	emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
177 	while (shift < 32) {
178 		tmp >>= 16;
179 		shift += 16;
180 		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
181 	}
182 }
183 
184 static inline void emit_call(u64 target, struct jit_ctx *ctx)
185 {
186 	u8 tmp = bpf2a64[TMP_REG_1];
187 
188 	emit_addr_mov_i64(tmp, target, ctx);
189 	emit(A64_BLR(tmp), ctx);
190 }
191 
192 static inline int bpf2a64_offset(int bpf_insn, int off,
193 				 const struct jit_ctx *ctx)
194 {
195 	/* BPF JMP offset is relative to the next instruction */
196 	bpf_insn++;
197 	/*
198 	 * Whereas arm64 branch instructions encode the offset
199 	 * from the branch itself, so we must subtract 1 from the
200 	 * instruction offset.
201 	 */
202 	return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
203 }
204 
205 static void jit_fill_hole(void *area, unsigned int size)
206 {
207 	__le32 *ptr;
208 	/* We are guaranteed to have aligned memory. */
209 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
210 		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
211 }
212 
213 int bpf_arch_text_invalidate(void *dst, size_t len)
214 {
215 	if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len))
216 		return -EINVAL;
217 
218 	return 0;
219 }
220 
221 static inline int epilogue_offset(const struct jit_ctx *ctx)
222 {
223 	int to = ctx->epilogue_offset;
224 	int from = ctx->idx;
225 
226 	return to - from;
227 }
228 
229 static bool is_addsub_imm(u32 imm)
230 {
231 	/* Either imm12 or shifted imm12. */
232 	return !(imm & ~0xfff) || !(imm & ~0xfff000);
233 }
234 
235 /*
236  * There are 3 types of AArch64 LDR/STR (immediate) instruction:
237  * Post-index, Pre-index, Unsigned offset.
238  *
239  * For BPF ldr/str, the "unsigned offset" type is sufficient.
240  *
241  * "Unsigned offset" type LDR(immediate) format:
242  *
243  *    3                   2                   1                   0
244  *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
245  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
246  * |x x|1 1 1 0 0 1 0 1|         imm12         |    Rn   |    Rt   |
247  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
248  * scale
249  *
250  * "Unsigned offset" type STR(immediate) format:
251  *    3                   2                   1                   0
252  *  1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
253  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
254  * |x x|1 1 1 0 0 1 0 0|         imm12         |    Rn   |    Rt   |
255  * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
256  * scale
257  *
258  * The offset is calculated from imm12 and scale in the following way:
259  *
260  * offset = (u64)imm12 << scale
261  */
262 static bool is_lsi_offset(int offset, int scale)
263 {
264 	if (offset < 0)
265 		return false;
266 
267 	if (offset > (0xFFF << scale))
268 		return false;
269 
270 	if (offset & ((1 << scale) - 1))
271 		return false;
272 
273 	return true;
274 }
275 
276 /* generated prologue:
277  *      bti c // if CONFIG_ARM64_BTI_KERNEL
278  *      mov x9, lr
279  *      nop  // POKE_OFFSET
280  *      paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL
281  *      stp x29, lr, [sp, #-16]!
282  *      mov x29, sp
283  *      stp x19, x20, [sp, #-16]!
284  *      stp x21, x22, [sp, #-16]!
285  *      stp x25, x26, [sp, #-16]!
286  *      stp x27, x28, [sp, #-16]!
287  *      mov x25, sp
288  *      mov tcc, #0
289  *      // PROLOGUE_OFFSET
290  */
291 
292 #define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0)
293 #define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0)
294 
295 /* Offset of nop instruction in bpf prog entry to be poked */
296 #define POKE_OFFSET (BTI_INSNS + 1)
297 
298 /* Tail call offset to jump into */
299 #define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 8)
300 
301 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf,
302 			  bool is_exception_cb, u64 arena_vm_start)
303 {
304 	const struct bpf_prog *prog = ctx->prog;
305 	const bool is_main_prog = !bpf_is_subprog(prog);
306 	const u8 r6 = bpf2a64[BPF_REG_6];
307 	const u8 r7 = bpf2a64[BPF_REG_7];
308 	const u8 r8 = bpf2a64[BPF_REG_8];
309 	const u8 r9 = bpf2a64[BPF_REG_9];
310 	const u8 fp = bpf2a64[BPF_REG_FP];
311 	const u8 tcc = bpf2a64[TCALL_CNT];
312 	const u8 fpb = bpf2a64[FP_BOTTOM];
313 	const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
314 	const int idx0 = ctx->idx;
315 	int cur_offset;
316 
317 	/*
318 	 * BPF prog stack layout
319 	 *
320 	 *                         high
321 	 * original A64_SP =>   0:+-----+ BPF prologue
322 	 *                        |FP/LR|
323 	 * current A64_FP =>  -16:+-----+
324 	 *                        | ... | callee saved registers
325 	 * BPF fp register => -64:+-----+ <= (BPF_FP)
326 	 *                        |     |
327 	 *                        | ... | BPF prog stack
328 	 *                        |     |
329 	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
330 	 *                        |RSVD | padding
331 	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
332 	 *                        |     |
333 	 *                        | ... | Function call stack
334 	 *                        |     |
335 	 *                        +-----+
336 	 *                          low
337 	 *
338 	 */
339 
340 	/* bpf function may be invoked by 3 instruction types:
341 	 * 1. bl, attached via freplace to bpf prog via short jump
342 	 * 2. br, attached via freplace to bpf prog via long jump
343 	 * 3. blr, working as a function pointer, used by emit_call.
344 	 * So BTI_JC should used here to support both br and blr.
345 	 */
346 	emit_bti(A64_BTI_JC, ctx);
347 
348 	emit(A64_MOV(1, A64_R(9), A64_LR), ctx);
349 	emit(A64_NOP, ctx);
350 
351 	if (!is_exception_cb) {
352 		/* Sign lr */
353 		if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
354 			emit(A64_PACIASP, ctx);
355 		/* Save FP and LR registers to stay align with ARM64 AAPCS */
356 		emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
357 		emit(A64_MOV(1, A64_FP, A64_SP), ctx);
358 
359 		/* Save callee-saved registers */
360 		emit(A64_PUSH(r6, r7, A64_SP), ctx);
361 		emit(A64_PUSH(r8, r9, A64_SP), ctx);
362 		emit(A64_PUSH(fp, tcc, A64_SP), ctx);
363 		emit(A64_PUSH(fpb, A64_R(28), A64_SP), ctx);
364 	} else {
365 		/*
366 		 * Exception callback receives FP of Main Program as third
367 		 * parameter
368 		 */
369 		emit(A64_MOV(1, A64_FP, A64_R(2)), ctx);
370 		/*
371 		 * Main Program already pushed the frame record and the
372 		 * callee-saved registers. The exception callback will not push
373 		 * anything and re-use the main program's stack.
374 		 *
375 		 * 10 registers are on the stack
376 		 */
377 		emit(A64_SUB_I(1, A64_SP, A64_FP, 80), ctx);
378 	}
379 
380 	/* Set up BPF prog stack base register */
381 	emit(A64_MOV(1, fp, A64_SP), ctx);
382 
383 	if (!ebpf_from_cbpf && is_main_prog) {
384 		/* Initialize tail_call_cnt */
385 		emit(A64_MOVZ(1, tcc, 0, 0), ctx);
386 
387 		cur_offset = ctx->idx - idx0;
388 		if (cur_offset != PROLOGUE_OFFSET) {
389 			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
390 				    cur_offset, PROLOGUE_OFFSET);
391 			return -1;
392 		}
393 
394 		/* BTI landing pad for the tail call, done with a BR */
395 		emit_bti(A64_BTI_J, ctx);
396 	}
397 
398 	/*
399 	 * Program acting as exception boundary should save all ARM64
400 	 * Callee-saved registers as the exception callback needs to recover
401 	 * all ARM64 Callee-saved registers in its epilogue.
402 	 */
403 	if (prog->aux->exception_boundary) {
404 		/*
405 		 * As we are pushing two more registers, BPF_FP should be moved
406 		 * 16 bytes
407 		 */
408 		emit(A64_SUB_I(1, fp, fp, 16), ctx);
409 		emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx);
410 	}
411 
412 	emit(A64_SUB_I(1, fpb, fp, ctx->fpb_offset), ctx);
413 
414 	/* Stack must be multiples of 16B */
415 	ctx->stack_size = round_up(prog->aux->stack_depth, 16);
416 
417 	/* Set up function call stack */
418 	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
419 
420 	if (arena_vm_start)
421 		emit_a64_mov_i64(arena_vm_base, arena_vm_start, ctx);
422 
423 	return 0;
424 }
425 
426 static int out_offset = -1; /* initialized on the first pass of build_body() */
427 static int emit_bpf_tail_call(struct jit_ctx *ctx)
428 {
429 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
430 	const u8 r2 = bpf2a64[BPF_REG_2];
431 	const u8 r3 = bpf2a64[BPF_REG_3];
432 
433 	const u8 tmp = bpf2a64[TMP_REG_1];
434 	const u8 prg = bpf2a64[TMP_REG_2];
435 	const u8 tcc = bpf2a64[TCALL_CNT];
436 	const int idx0 = ctx->idx;
437 #define cur_offset (ctx->idx - idx0)
438 #define jmp_offset (out_offset - (cur_offset))
439 	size_t off;
440 
441 	/* if (index >= array->map.max_entries)
442 	 *     goto out;
443 	 */
444 	off = offsetof(struct bpf_array, map.max_entries);
445 	emit_a64_mov_i64(tmp, off, ctx);
446 	emit(A64_LDR32(tmp, r2, tmp), ctx);
447 	emit(A64_MOV(0, r3, r3), ctx);
448 	emit(A64_CMP(0, r3, tmp), ctx);
449 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
450 
451 	/*
452 	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
453 	 *     goto out;
454 	 * tail_call_cnt++;
455 	 */
456 	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
457 	emit(A64_CMP(1, tcc, tmp), ctx);
458 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
459 	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
460 
461 	/* prog = array->ptrs[index];
462 	 * if (prog == NULL)
463 	 *     goto out;
464 	 */
465 	off = offsetof(struct bpf_array, ptrs);
466 	emit_a64_mov_i64(tmp, off, ctx);
467 	emit(A64_ADD(1, tmp, r2, tmp), ctx);
468 	emit(A64_LSL(1, prg, r3, 3), ctx);
469 	emit(A64_LDR64(prg, tmp, prg), ctx);
470 	emit(A64_CBZ(1, prg, jmp_offset), ctx);
471 
472 	/* goto *(prog->bpf_func + prologue_offset); */
473 	off = offsetof(struct bpf_prog, bpf_func);
474 	emit_a64_mov_i64(tmp, off, ctx);
475 	emit(A64_LDR64(tmp, prg, tmp), ctx);
476 	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
477 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
478 	emit(A64_BR(tmp), ctx);
479 
480 	/* out: */
481 	if (out_offset == -1)
482 		out_offset = cur_offset;
483 	if (cur_offset != out_offset) {
484 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
485 			    cur_offset, out_offset);
486 		return -1;
487 	}
488 	return 0;
489 #undef cur_offset
490 #undef jmp_offset
491 }
492 
493 #ifdef CONFIG_ARM64_LSE_ATOMICS
494 static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
495 {
496 	const u8 code = insn->code;
497 	const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
498 	const u8 dst = bpf2a64[insn->dst_reg];
499 	const u8 src = bpf2a64[insn->src_reg];
500 	const u8 tmp = bpf2a64[TMP_REG_1];
501 	const u8 tmp2 = bpf2a64[TMP_REG_2];
502 	const bool isdw = BPF_SIZE(code) == BPF_DW;
503 	const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC;
504 	const s16 off = insn->off;
505 	u8 reg = dst;
506 
507 	if (off || arena) {
508 		if (off) {
509 			emit_a64_mov_i(1, tmp, off, ctx);
510 			emit(A64_ADD(1, tmp, tmp, dst), ctx);
511 			reg = tmp;
512 		}
513 		if (arena) {
514 			emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx);
515 			reg = tmp;
516 		}
517 	}
518 
519 	switch (insn->imm) {
520 	/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
521 	case BPF_ADD:
522 		emit(A64_STADD(isdw, reg, src), ctx);
523 		break;
524 	case BPF_AND:
525 		emit(A64_MVN(isdw, tmp2, src), ctx);
526 		emit(A64_STCLR(isdw, reg, tmp2), ctx);
527 		break;
528 	case BPF_OR:
529 		emit(A64_STSET(isdw, reg, src), ctx);
530 		break;
531 	case BPF_XOR:
532 		emit(A64_STEOR(isdw, reg, src), ctx);
533 		break;
534 	/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
535 	case BPF_ADD | BPF_FETCH:
536 		emit(A64_LDADDAL(isdw, src, reg, src), ctx);
537 		break;
538 	case BPF_AND | BPF_FETCH:
539 		emit(A64_MVN(isdw, tmp2, src), ctx);
540 		emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx);
541 		break;
542 	case BPF_OR | BPF_FETCH:
543 		emit(A64_LDSETAL(isdw, src, reg, src), ctx);
544 		break;
545 	case BPF_XOR | BPF_FETCH:
546 		emit(A64_LDEORAL(isdw, src, reg, src), ctx);
547 		break;
548 	/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
549 	case BPF_XCHG:
550 		emit(A64_SWPAL(isdw, src, reg, src), ctx);
551 		break;
552 	/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
553 	case BPF_CMPXCHG:
554 		emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx);
555 		break;
556 	default:
557 		pr_err_once("unknown atomic op code %02x\n", insn->imm);
558 		return -EINVAL;
559 	}
560 
561 	return 0;
562 }
563 #else
564 static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
565 {
566 	return -EINVAL;
567 }
568 #endif
569 
570 static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
571 {
572 	const u8 code = insn->code;
573 	const u8 dst = bpf2a64[insn->dst_reg];
574 	const u8 src = bpf2a64[insn->src_reg];
575 	const u8 tmp = bpf2a64[TMP_REG_1];
576 	const u8 tmp2 = bpf2a64[TMP_REG_2];
577 	const u8 tmp3 = bpf2a64[TMP_REG_3];
578 	const int i = insn - ctx->prog->insnsi;
579 	const s32 imm = insn->imm;
580 	const s16 off = insn->off;
581 	const bool isdw = BPF_SIZE(code) == BPF_DW;
582 	u8 reg;
583 	s32 jmp_offset;
584 
585 	if (BPF_MODE(code) == BPF_PROBE_ATOMIC) {
586 		/* ll_sc based atomics don't support unsafe pointers yet. */
587 		pr_err_once("unknown atomic opcode %02x\n", code);
588 		return -EINVAL;
589 	}
590 
591 	if (!off) {
592 		reg = dst;
593 	} else {
594 		emit_a64_mov_i(1, tmp, off, ctx);
595 		emit(A64_ADD(1, tmp, tmp, dst), ctx);
596 		reg = tmp;
597 	}
598 
599 	if (imm == BPF_ADD || imm == BPF_AND ||
600 	    imm == BPF_OR || imm == BPF_XOR) {
601 		/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
602 		emit(A64_LDXR(isdw, tmp2, reg), ctx);
603 		if (imm == BPF_ADD)
604 			emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
605 		else if (imm == BPF_AND)
606 			emit(A64_AND(isdw, tmp2, tmp2, src), ctx);
607 		else if (imm == BPF_OR)
608 			emit(A64_ORR(isdw, tmp2, tmp2, src), ctx);
609 		else
610 			emit(A64_EOR(isdw, tmp2, tmp2, src), ctx);
611 		emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
612 		jmp_offset = -3;
613 		check_imm19(jmp_offset);
614 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
615 	} else if (imm == (BPF_ADD | BPF_FETCH) ||
616 		   imm == (BPF_AND | BPF_FETCH) ||
617 		   imm == (BPF_OR | BPF_FETCH) ||
618 		   imm == (BPF_XOR | BPF_FETCH)) {
619 		/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
620 		const u8 ax = bpf2a64[BPF_REG_AX];
621 
622 		emit(A64_MOV(isdw, ax, src), ctx);
623 		emit(A64_LDXR(isdw, src, reg), ctx);
624 		if (imm == (BPF_ADD | BPF_FETCH))
625 			emit(A64_ADD(isdw, tmp2, src, ax), ctx);
626 		else if (imm == (BPF_AND | BPF_FETCH))
627 			emit(A64_AND(isdw, tmp2, src, ax), ctx);
628 		else if (imm == (BPF_OR | BPF_FETCH))
629 			emit(A64_ORR(isdw, tmp2, src, ax), ctx);
630 		else
631 			emit(A64_EOR(isdw, tmp2, src, ax), ctx);
632 		emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
633 		jmp_offset = -3;
634 		check_imm19(jmp_offset);
635 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
636 		emit(A64_DMB_ISH, ctx);
637 	} else if (imm == BPF_XCHG) {
638 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
639 		emit(A64_MOV(isdw, tmp2, src), ctx);
640 		emit(A64_LDXR(isdw, src, reg), ctx);
641 		emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
642 		jmp_offset = -2;
643 		check_imm19(jmp_offset);
644 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
645 		emit(A64_DMB_ISH, ctx);
646 	} else if (imm == BPF_CMPXCHG) {
647 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
648 		const u8 r0 = bpf2a64[BPF_REG_0];
649 
650 		emit(A64_MOV(isdw, tmp2, r0), ctx);
651 		emit(A64_LDXR(isdw, r0, reg), ctx);
652 		emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx);
653 		jmp_offset = 4;
654 		check_imm19(jmp_offset);
655 		emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx);
656 		emit(A64_STLXR(isdw, src, reg, tmp3), ctx);
657 		jmp_offset = -4;
658 		check_imm19(jmp_offset);
659 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
660 		emit(A64_DMB_ISH, ctx);
661 	} else {
662 		pr_err_once("unknown atomic op code %02x\n", imm);
663 		return -EINVAL;
664 	}
665 
666 	return 0;
667 }
668 
669 void dummy_tramp(void);
670 
671 asm (
672 "	.pushsection .text, \"ax\", @progbits\n"
673 "	.global dummy_tramp\n"
674 "	.type dummy_tramp, %function\n"
675 "dummy_tramp:"
676 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
677 "	bti j\n" /* dummy_tramp is called via "br x10" */
678 #endif
679 "	mov x10, x30\n"
680 "	mov x30, x9\n"
681 "	ret x10\n"
682 "	.size dummy_tramp, .-dummy_tramp\n"
683 "	.popsection\n"
684 );
685 
686 /* build a plt initialized like this:
687  *
688  * plt:
689  *      ldr tmp, target
690  *      br tmp
691  * target:
692  *      .quad dummy_tramp
693  *
694  * when a long jump trampoline is attached, target is filled with the
695  * trampoline address, and when the trampoline is removed, target is
696  * restored to dummy_tramp address.
697  */
698 static void build_plt(struct jit_ctx *ctx)
699 {
700 	const u8 tmp = bpf2a64[TMP_REG_1];
701 	struct bpf_plt *plt = NULL;
702 
703 	/* make sure target is 64-bit aligned */
704 	if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2)
705 		emit(A64_NOP, ctx);
706 
707 	plt = (struct bpf_plt *)(ctx->image + ctx->idx);
708 	/* plt is called via bl, no BTI needed here */
709 	emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx);
710 	emit(A64_BR(tmp), ctx);
711 
712 	if (ctx->image)
713 		plt->target = (u64)&dummy_tramp;
714 }
715 
716 static void build_epilogue(struct jit_ctx *ctx, bool is_exception_cb)
717 {
718 	const u8 r0 = bpf2a64[BPF_REG_0];
719 	const u8 r6 = bpf2a64[BPF_REG_6];
720 	const u8 r7 = bpf2a64[BPF_REG_7];
721 	const u8 r8 = bpf2a64[BPF_REG_8];
722 	const u8 r9 = bpf2a64[BPF_REG_9];
723 	const u8 fp = bpf2a64[BPF_REG_FP];
724 	const u8 fpb = bpf2a64[FP_BOTTOM];
725 
726 	/* We're done with BPF stack */
727 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
728 
729 	/*
730 	 * Program acting as exception boundary pushes R23 and R24 in addition
731 	 * to BPF callee-saved registers. Exception callback uses the boundary
732 	 * program's stack frame, so recover these extra registers in the above
733 	 * two cases.
734 	 */
735 	if (ctx->prog->aux->exception_boundary || is_exception_cb)
736 		emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx);
737 
738 	/* Restore x27 and x28 */
739 	emit(A64_POP(fpb, A64_R(28), A64_SP), ctx);
740 	/* Restore fs (x25) and x26 */
741 	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
742 
743 	/* Restore callee-saved register */
744 	emit(A64_POP(r8, r9, A64_SP), ctx);
745 	emit(A64_POP(r6, r7, A64_SP), ctx);
746 
747 	/* Restore FP/LR registers */
748 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
749 
750 	/* Set return value */
751 	emit(A64_MOV(1, A64_R(0), r0), ctx);
752 
753 	/* Authenticate lr */
754 	if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL))
755 		emit(A64_AUTIASP, ctx);
756 
757 	emit(A64_RET(A64_LR), ctx);
758 }
759 
760 #define BPF_FIXUP_OFFSET_MASK	GENMASK(26, 0)
761 #define BPF_FIXUP_REG_MASK	GENMASK(31, 27)
762 #define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */
763 
764 bool ex_handler_bpf(const struct exception_table_entry *ex,
765 		    struct pt_regs *regs)
766 {
767 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
768 	int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
769 
770 	if (dst_reg != DONT_CLEAR)
771 		regs->regs[dst_reg] = 0;
772 	regs->pc = (unsigned long)&ex->fixup - offset;
773 	return true;
774 }
775 
776 /* For accesses to BTF pointers, add an entry to the exception table */
777 static int add_exception_handler(const struct bpf_insn *insn,
778 				 struct jit_ctx *ctx,
779 				 int dst_reg)
780 {
781 	off_t ins_offset;
782 	off_t fixup_offset;
783 	unsigned long pc;
784 	struct exception_table_entry *ex;
785 
786 	if (!ctx->image)
787 		/* First pass */
788 		return 0;
789 
790 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM &&
791 		BPF_MODE(insn->code) != BPF_PROBE_MEMSX &&
792 			BPF_MODE(insn->code) != BPF_PROBE_MEM32 &&
793 				BPF_MODE(insn->code) != BPF_PROBE_ATOMIC)
794 		return 0;
795 
796 	if (!ctx->prog->aux->extable ||
797 	    WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
798 		return -EINVAL;
799 
800 	ex = &ctx->prog->aux->extable[ctx->exentry_idx];
801 	pc = (unsigned long)&ctx->ro_image[ctx->idx - 1];
802 
803 	/*
804 	 * This is the relative offset of the instruction that may fault from
805 	 * the exception table itself. This will be written to the exception
806 	 * table and if this instruction faults, the destination register will
807 	 * be set to '0' and the execution will jump to the next instruction.
808 	 */
809 	ins_offset = pc - (long)&ex->insn;
810 	if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN))
811 		return -ERANGE;
812 
813 	/*
814 	 * Since the extable follows the program, the fixup offset is always
815 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
816 	 * to keep things simple, and put the destination register in the upper
817 	 * bits. We don't need to worry about buildtime or runtime sort
818 	 * modifying the upper bits because the table is already sorted, and
819 	 * isn't part of the main exception table.
820 	 *
821 	 * The fixup_offset is set to the next instruction from the instruction
822 	 * that may fault. The execution will jump to this after handling the
823 	 * fault.
824 	 */
825 	fixup_offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE);
826 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset))
827 		return -ERANGE;
828 
829 	/*
830 	 * The offsets above have been calculated using the RO buffer but we
831 	 * need to use the R/W buffer for writes.
832 	 * switch ex to rw buffer for writing.
833 	 */
834 	ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image);
835 
836 	ex->insn = ins_offset;
837 
838 	if (BPF_CLASS(insn->code) != BPF_LDX)
839 		dst_reg = DONT_CLEAR;
840 
841 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) |
842 		    FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
843 
844 	ex->type = EX_TYPE_BPF;
845 
846 	ctx->exentry_idx++;
847 	return 0;
848 }
849 
850 /* JITs an eBPF instruction.
851  * Returns:
852  * 0  - successfully JITed an 8-byte eBPF instruction.
853  * >0 - successfully JITed a 16-byte eBPF instruction.
854  * <0 - failed to JIT.
855  */
856 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
857 		      bool extra_pass)
858 {
859 	const u8 code = insn->code;
860 	u8 dst = bpf2a64[insn->dst_reg];
861 	u8 src = bpf2a64[insn->src_reg];
862 	const u8 tmp = bpf2a64[TMP_REG_1];
863 	const u8 tmp2 = bpf2a64[TMP_REG_2];
864 	const u8 fp = bpf2a64[BPF_REG_FP];
865 	const u8 fpb = bpf2a64[FP_BOTTOM];
866 	const u8 arena_vm_base = bpf2a64[ARENA_VM_START];
867 	const s16 off = insn->off;
868 	const s32 imm = insn->imm;
869 	const int i = insn - ctx->prog->insnsi;
870 	const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
871 			  BPF_CLASS(code) == BPF_JMP;
872 	u8 jmp_cond;
873 	s32 jmp_offset;
874 	u32 a64_insn;
875 	u8 src_adj;
876 	u8 dst_adj;
877 	int off_adj;
878 	int ret;
879 	bool sign_extend;
880 
881 	switch (code) {
882 	/* dst = src */
883 	case BPF_ALU | BPF_MOV | BPF_X:
884 	case BPF_ALU64 | BPF_MOV | BPF_X:
885 		if (insn_is_cast_user(insn)) {
886 			emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits
887 			emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx);
888 			emit(A64_LSL(1, dst, dst, 32), ctx);
889 			emit(A64_CBZ(1, tmp, 2), ctx);
890 			emit(A64_ORR(1, tmp, dst, tmp), ctx);
891 			emit(A64_MOV(1, dst, tmp), ctx);
892 			break;
893 		} else if (insn_is_mov_percpu_addr(insn)) {
894 			if (dst != src)
895 				emit(A64_MOV(1, dst, src), ctx);
896 			if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
897 				emit(A64_MRS_TPIDR_EL2(tmp), ctx);
898 			else
899 				emit(A64_MRS_TPIDR_EL1(tmp), ctx);
900 			emit(A64_ADD(1, dst, dst, tmp), ctx);
901 			break;
902 		}
903 		switch (insn->off) {
904 		case 0:
905 			emit(A64_MOV(is64, dst, src), ctx);
906 			break;
907 		case 8:
908 			emit(A64_SXTB(is64, dst, src), ctx);
909 			break;
910 		case 16:
911 			emit(A64_SXTH(is64, dst, src), ctx);
912 			break;
913 		case 32:
914 			emit(A64_SXTW(is64, dst, src), ctx);
915 			break;
916 		}
917 		break;
918 	/* dst = dst OP src */
919 	case BPF_ALU | BPF_ADD | BPF_X:
920 	case BPF_ALU64 | BPF_ADD | BPF_X:
921 		emit(A64_ADD(is64, dst, dst, src), ctx);
922 		break;
923 	case BPF_ALU | BPF_SUB | BPF_X:
924 	case BPF_ALU64 | BPF_SUB | BPF_X:
925 		emit(A64_SUB(is64, dst, dst, src), ctx);
926 		break;
927 	case BPF_ALU | BPF_AND | BPF_X:
928 	case BPF_ALU64 | BPF_AND | BPF_X:
929 		emit(A64_AND(is64, dst, dst, src), ctx);
930 		break;
931 	case BPF_ALU | BPF_OR | BPF_X:
932 	case BPF_ALU64 | BPF_OR | BPF_X:
933 		emit(A64_ORR(is64, dst, dst, src), ctx);
934 		break;
935 	case BPF_ALU | BPF_XOR | BPF_X:
936 	case BPF_ALU64 | BPF_XOR | BPF_X:
937 		emit(A64_EOR(is64, dst, dst, src), ctx);
938 		break;
939 	case BPF_ALU | BPF_MUL | BPF_X:
940 	case BPF_ALU64 | BPF_MUL | BPF_X:
941 		emit(A64_MUL(is64, dst, dst, src), ctx);
942 		break;
943 	case BPF_ALU | BPF_DIV | BPF_X:
944 	case BPF_ALU64 | BPF_DIV | BPF_X:
945 		if (!off)
946 			emit(A64_UDIV(is64, dst, dst, src), ctx);
947 		else
948 			emit(A64_SDIV(is64, dst, dst, src), ctx);
949 		break;
950 	case BPF_ALU | BPF_MOD | BPF_X:
951 	case BPF_ALU64 | BPF_MOD | BPF_X:
952 		if (!off)
953 			emit(A64_UDIV(is64, tmp, dst, src), ctx);
954 		else
955 			emit(A64_SDIV(is64, tmp, dst, src), ctx);
956 		emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
957 		break;
958 	case BPF_ALU | BPF_LSH | BPF_X:
959 	case BPF_ALU64 | BPF_LSH | BPF_X:
960 		emit(A64_LSLV(is64, dst, dst, src), ctx);
961 		break;
962 	case BPF_ALU | BPF_RSH | BPF_X:
963 	case BPF_ALU64 | BPF_RSH | BPF_X:
964 		emit(A64_LSRV(is64, dst, dst, src), ctx);
965 		break;
966 	case BPF_ALU | BPF_ARSH | BPF_X:
967 	case BPF_ALU64 | BPF_ARSH | BPF_X:
968 		emit(A64_ASRV(is64, dst, dst, src), ctx);
969 		break;
970 	/* dst = -dst */
971 	case BPF_ALU | BPF_NEG:
972 	case BPF_ALU64 | BPF_NEG:
973 		emit(A64_NEG(is64, dst, dst), ctx);
974 		break;
975 	/* dst = BSWAP##imm(dst) */
976 	case BPF_ALU | BPF_END | BPF_FROM_LE:
977 	case BPF_ALU | BPF_END | BPF_FROM_BE:
978 	case BPF_ALU64 | BPF_END | BPF_FROM_LE:
979 #ifdef CONFIG_CPU_BIG_ENDIAN
980 		if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE)
981 			goto emit_bswap_uxt;
982 #else /* !CONFIG_CPU_BIG_ENDIAN */
983 		if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE)
984 			goto emit_bswap_uxt;
985 #endif
986 		switch (imm) {
987 		case 16:
988 			emit(A64_REV16(is64, dst, dst), ctx);
989 			/* zero-extend 16 bits into 64 bits */
990 			emit(A64_UXTH(is64, dst, dst), ctx);
991 			break;
992 		case 32:
993 			emit(A64_REV32(0, dst, dst), ctx);
994 			/* upper 32 bits already cleared */
995 			break;
996 		case 64:
997 			emit(A64_REV64(dst, dst), ctx);
998 			break;
999 		}
1000 		break;
1001 emit_bswap_uxt:
1002 		switch (imm) {
1003 		case 16:
1004 			/* zero-extend 16 bits into 64 bits */
1005 			emit(A64_UXTH(is64, dst, dst), ctx);
1006 			break;
1007 		case 32:
1008 			/* zero-extend 32 bits into 64 bits */
1009 			emit(A64_UXTW(is64, dst, dst), ctx);
1010 			break;
1011 		case 64:
1012 			/* nop */
1013 			break;
1014 		}
1015 		break;
1016 	/* dst = imm */
1017 	case BPF_ALU | BPF_MOV | BPF_K:
1018 	case BPF_ALU64 | BPF_MOV | BPF_K:
1019 		emit_a64_mov_i(is64, dst, imm, ctx);
1020 		break;
1021 	/* dst = dst OP imm */
1022 	case BPF_ALU | BPF_ADD | BPF_K:
1023 	case BPF_ALU64 | BPF_ADD | BPF_K:
1024 		if (is_addsub_imm(imm)) {
1025 			emit(A64_ADD_I(is64, dst, dst, imm), ctx);
1026 		} else if (is_addsub_imm(-imm)) {
1027 			emit(A64_SUB_I(is64, dst, dst, -imm), ctx);
1028 		} else {
1029 			emit_a64_mov_i(is64, tmp, imm, ctx);
1030 			emit(A64_ADD(is64, dst, dst, tmp), ctx);
1031 		}
1032 		break;
1033 	case BPF_ALU | BPF_SUB | BPF_K:
1034 	case BPF_ALU64 | BPF_SUB | BPF_K:
1035 		if (is_addsub_imm(imm)) {
1036 			emit(A64_SUB_I(is64, dst, dst, imm), ctx);
1037 		} else if (is_addsub_imm(-imm)) {
1038 			emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
1039 		} else {
1040 			emit_a64_mov_i(is64, tmp, imm, ctx);
1041 			emit(A64_SUB(is64, dst, dst, tmp), ctx);
1042 		}
1043 		break;
1044 	case BPF_ALU | BPF_AND | BPF_K:
1045 	case BPF_ALU64 | BPF_AND | BPF_K:
1046 		a64_insn = A64_AND_I(is64, dst, dst, imm);
1047 		if (a64_insn != AARCH64_BREAK_FAULT) {
1048 			emit(a64_insn, ctx);
1049 		} else {
1050 			emit_a64_mov_i(is64, tmp, imm, ctx);
1051 			emit(A64_AND(is64, dst, dst, tmp), ctx);
1052 		}
1053 		break;
1054 	case BPF_ALU | BPF_OR | BPF_K:
1055 	case BPF_ALU64 | BPF_OR | BPF_K:
1056 		a64_insn = A64_ORR_I(is64, dst, dst, imm);
1057 		if (a64_insn != AARCH64_BREAK_FAULT) {
1058 			emit(a64_insn, ctx);
1059 		} else {
1060 			emit_a64_mov_i(is64, tmp, imm, ctx);
1061 			emit(A64_ORR(is64, dst, dst, tmp), ctx);
1062 		}
1063 		break;
1064 	case BPF_ALU | BPF_XOR | BPF_K:
1065 	case BPF_ALU64 | BPF_XOR | BPF_K:
1066 		a64_insn = A64_EOR_I(is64, dst, dst, imm);
1067 		if (a64_insn != AARCH64_BREAK_FAULT) {
1068 			emit(a64_insn, ctx);
1069 		} else {
1070 			emit_a64_mov_i(is64, tmp, imm, ctx);
1071 			emit(A64_EOR(is64, dst, dst, tmp), ctx);
1072 		}
1073 		break;
1074 	case BPF_ALU | BPF_MUL | BPF_K:
1075 	case BPF_ALU64 | BPF_MUL | BPF_K:
1076 		emit_a64_mov_i(is64, tmp, imm, ctx);
1077 		emit(A64_MUL(is64, dst, dst, tmp), ctx);
1078 		break;
1079 	case BPF_ALU | BPF_DIV | BPF_K:
1080 	case BPF_ALU64 | BPF_DIV | BPF_K:
1081 		emit_a64_mov_i(is64, tmp, imm, ctx);
1082 		if (!off)
1083 			emit(A64_UDIV(is64, dst, dst, tmp), ctx);
1084 		else
1085 			emit(A64_SDIV(is64, dst, dst, tmp), ctx);
1086 		break;
1087 	case BPF_ALU | BPF_MOD | BPF_K:
1088 	case BPF_ALU64 | BPF_MOD | BPF_K:
1089 		emit_a64_mov_i(is64, tmp2, imm, ctx);
1090 		if (!off)
1091 			emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
1092 		else
1093 			emit(A64_SDIV(is64, tmp, dst, tmp2), ctx);
1094 		emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
1095 		break;
1096 	case BPF_ALU | BPF_LSH | BPF_K:
1097 	case BPF_ALU64 | BPF_LSH | BPF_K:
1098 		emit(A64_LSL(is64, dst, dst, imm), ctx);
1099 		break;
1100 	case BPF_ALU | BPF_RSH | BPF_K:
1101 	case BPF_ALU64 | BPF_RSH | BPF_K:
1102 		emit(A64_LSR(is64, dst, dst, imm), ctx);
1103 		break;
1104 	case BPF_ALU | BPF_ARSH | BPF_K:
1105 	case BPF_ALU64 | BPF_ARSH | BPF_K:
1106 		emit(A64_ASR(is64, dst, dst, imm), ctx);
1107 		break;
1108 
1109 	/* JUMP off */
1110 	case BPF_JMP | BPF_JA:
1111 	case BPF_JMP32 | BPF_JA:
1112 		if (BPF_CLASS(code) == BPF_JMP)
1113 			jmp_offset = bpf2a64_offset(i, off, ctx);
1114 		else
1115 			jmp_offset = bpf2a64_offset(i, imm, ctx);
1116 		check_imm26(jmp_offset);
1117 		emit(A64_B(jmp_offset), ctx);
1118 		break;
1119 	/* IF (dst COND src) JUMP off */
1120 	case BPF_JMP | BPF_JEQ | BPF_X:
1121 	case BPF_JMP | BPF_JGT | BPF_X:
1122 	case BPF_JMP | BPF_JLT | BPF_X:
1123 	case BPF_JMP | BPF_JGE | BPF_X:
1124 	case BPF_JMP | BPF_JLE | BPF_X:
1125 	case BPF_JMP | BPF_JNE | BPF_X:
1126 	case BPF_JMP | BPF_JSGT | BPF_X:
1127 	case BPF_JMP | BPF_JSLT | BPF_X:
1128 	case BPF_JMP | BPF_JSGE | BPF_X:
1129 	case BPF_JMP | BPF_JSLE | BPF_X:
1130 	case BPF_JMP32 | BPF_JEQ | BPF_X:
1131 	case BPF_JMP32 | BPF_JGT | BPF_X:
1132 	case BPF_JMP32 | BPF_JLT | BPF_X:
1133 	case BPF_JMP32 | BPF_JGE | BPF_X:
1134 	case BPF_JMP32 | BPF_JLE | BPF_X:
1135 	case BPF_JMP32 | BPF_JNE | BPF_X:
1136 	case BPF_JMP32 | BPF_JSGT | BPF_X:
1137 	case BPF_JMP32 | BPF_JSLT | BPF_X:
1138 	case BPF_JMP32 | BPF_JSGE | BPF_X:
1139 	case BPF_JMP32 | BPF_JSLE | BPF_X:
1140 		emit(A64_CMP(is64, dst, src), ctx);
1141 emit_cond_jmp:
1142 		jmp_offset = bpf2a64_offset(i, off, ctx);
1143 		check_imm19(jmp_offset);
1144 		switch (BPF_OP(code)) {
1145 		case BPF_JEQ:
1146 			jmp_cond = A64_COND_EQ;
1147 			break;
1148 		case BPF_JGT:
1149 			jmp_cond = A64_COND_HI;
1150 			break;
1151 		case BPF_JLT:
1152 			jmp_cond = A64_COND_CC;
1153 			break;
1154 		case BPF_JGE:
1155 			jmp_cond = A64_COND_CS;
1156 			break;
1157 		case BPF_JLE:
1158 			jmp_cond = A64_COND_LS;
1159 			break;
1160 		case BPF_JSET:
1161 		case BPF_JNE:
1162 			jmp_cond = A64_COND_NE;
1163 			break;
1164 		case BPF_JSGT:
1165 			jmp_cond = A64_COND_GT;
1166 			break;
1167 		case BPF_JSLT:
1168 			jmp_cond = A64_COND_LT;
1169 			break;
1170 		case BPF_JSGE:
1171 			jmp_cond = A64_COND_GE;
1172 			break;
1173 		case BPF_JSLE:
1174 			jmp_cond = A64_COND_LE;
1175 			break;
1176 		default:
1177 			return -EFAULT;
1178 		}
1179 		emit(A64_B_(jmp_cond, jmp_offset), ctx);
1180 		break;
1181 	case BPF_JMP | BPF_JSET | BPF_X:
1182 	case BPF_JMP32 | BPF_JSET | BPF_X:
1183 		emit(A64_TST(is64, dst, src), ctx);
1184 		goto emit_cond_jmp;
1185 	/* IF (dst COND imm) JUMP off */
1186 	case BPF_JMP | BPF_JEQ | BPF_K:
1187 	case BPF_JMP | BPF_JGT | BPF_K:
1188 	case BPF_JMP | BPF_JLT | BPF_K:
1189 	case BPF_JMP | BPF_JGE | BPF_K:
1190 	case BPF_JMP | BPF_JLE | BPF_K:
1191 	case BPF_JMP | BPF_JNE | BPF_K:
1192 	case BPF_JMP | BPF_JSGT | BPF_K:
1193 	case BPF_JMP | BPF_JSLT | BPF_K:
1194 	case BPF_JMP | BPF_JSGE | BPF_K:
1195 	case BPF_JMP | BPF_JSLE | BPF_K:
1196 	case BPF_JMP32 | BPF_JEQ | BPF_K:
1197 	case BPF_JMP32 | BPF_JGT | BPF_K:
1198 	case BPF_JMP32 | BPF_JLT | BPF_K:
1199 	case BPF_JMP32 | BPF_JGE | BPF_K:
1200 	case BPF_JMP32 | BPF_JLE | BPF_K:
1201 	case BPF_JMP32 | BPF_JNE | BPF_K:
1202 	case BPF_JMP32 | BPF_JSGT | BPF_K:
1203 	case BPF_JMP32 | BPF_JSLT | BPF_K:
1204 	case BPF_JMP32 | BPF_JSGE | BPF_K:
1205 	case BPF_JMP32 | BPF_JSLE | BPF_K:
1206 		if (is_addsub_imm(imm)) {
1207 			emit(A64_CMP_I(is64, dst, imm), ctx);
1208 		} else if (is_addsub_imm(-imm)) {
1209 			emit(A64_CMN_I(is64, dst, -imm), ctx);
1210 		} else {
1211 			emit_a64_mov_i(is64, tmp, imm, ctx);
1212 			emit(A64_CMP(is64, dst, tmp), ctx);
1213 		}
1214 		goto emit_cond_jmp;
1215 	case BPF_JMP | BPF_JSET | BPF_K:
1216 	case BPF_JMP32 | BPF_JSET | BPF_K:
1217 		a64_insn = A64_TST_I(is64, dst, imm);
1218 		if (a64_insn != AARCH64_BREAK_FAULT) {
1219 			emit(a64_insn, ctx);
1220 		} else {
1221 			emit_a64_mov_i(is64, tmp, imm, ctx);
1222 			emit(A64_TST(is64, dst, tmp), ctx);
1223 		}
1224 		goto emit_cond_jmp;
1225 	/* function call */
1226 	case BPF_JMP | BPF_CALL:
1227 	{
1228 		const u8 r0 = bpf2a64[BPF_REG_0];
1229 		bool func_addr_fixed;
1230 		u64 func_addr;
1231 		u32 cpu_offset;
1232 
1233 		/* Implement helper call to bpf_get_smp_processor_id() inline */
1234 		if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) {
1235 			cpu_offset = offsetof(struct thread_info, cpu);
1236 
1237 			emit(A64_MRS_SP_EL0(tmp), ctx);
1238 			if (is_lsi_offset(cpu_offset, 2)) {
1239 				emit(A64_LDR32I(r0, tmp, cpu_offset), ctx);
1240 			} else {
1241 				emit_a64_mov_i(1, tmp2, cpu_offset, ctx);
1242 				emit(A64_LDR32(r0, tmp, tmp2), ctx);
1243 			}
1244 			break;
1245 		}
1246 
1247 		/* Implement helper call to bpf_get_current_task/_btf() inline */
1248 		if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task ||
1249 					   insn->imm == BPF_FUNC_get_current_task_btf)) {
1250 			emit(A64_MRS_SP_EL0(r0), ctx);
1251 			break;
1252 		}
1253 
1254 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
1255 					    &func_addr, &func_addr_fixed);
1256 		if (ret < 0)
1257 			return ret;
1258 		emit_call(func_addr, ctx);
1259 		emit(A64_MOV(1, r0, A64_R(0)), ctx);
1260 		break;
1261 	}
1262 	/* tail call */
1263 	case BPF_JMP | BPF_TAIL_CALL:
1264 		if (emit_bpf_tail_call(ctx))
1265 			return -EFAULT;
1266 		break;
1267 	/* function return */
1268 	case BPF_JMP | BPF_EXIT:
1269 		/* Optimization: when last instruction is EXIT,
1270 		   simply fallthrough to epilogue. */
1271 		if (i == ctx->prog->len - 1)
1272 			break;
1273 		jmp_offset = epilogue_offset(ctx);
1274 		check_imm26(jmp_offset);
1275 		emit(A64_B(jmp_offset), ctx);
1276 		break;
1277 
1278 	/* dst = imm64 */
1279 	case BPF_LD | BPF_IMM | BPF_DW:
1280 	{
1281 		const struct bpf_insn insn1 = insn[1];
1282 		u64 imm64;
1283 
1284 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
1285 		if (bpf_pseudo_func(insn))
1286 			emit_addr_mov_i64(dst, imm64, ctx);
1287 		else
1288 			emit_a64_mov_i64(dst, imm64, ctx);
1289 
1290 		return 1;
1291 	}
1292 
1293 	/* LDX: dst = (u64)*(unsigned size *)(src + off) */
1294 	case BPF_LDX | BPF_MEM | BPF_W:
1295 	case BPF_LDX | BPF_MEM | BPF_H:
1296 	case BPF_LDX | BPF_MEM | BPF_B:
1297 	case BPF_LDX | BPF_MEM | BPF_DW:
1298 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1299 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1300 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1301 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1302 	/* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */
1303 	case BPF_LDX | BPF_MEMSX | BPF_B:
1304 	case BPF_LDX | BPF_MEMSX | BPF_H:
1305 	case BPF_LDX | BPF_MEMSX | BPF_W:
1306 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_B:
1307 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_H:
1308 	case BPF_LDX | BPF_PROBE_MEMSX | BPF_W:
1309 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_B:
1310 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_H:
1311 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_W:
1312 	case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW:
1313 		if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1314 			emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx);
1315 			src = tmp2;
1316 		}
1317 		if (ctx->fpb_offset > 0 && src == fp && BPF_MODE(insn->code) != BPF_PROBE_MEM32) {
1318 			src_adj = fpb;
1319 			off_adj = off + ctx->fpb_offset;
1320 		} else {
1321 			src_adj = src;
1322 			off_adj = off;
1323 		}
1324 		sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX ||
1325 				BPF_MODE(insn->code) == BPF_PROBE_MEMSX);
1326 		switch (BPF_SIZE(code)) {
1327 		case BPF_W:
1328 			if (is_lsi_offset(off_adj, 2)) {
1329 				if (sign_extend)
1330 					emit(A64_LDRSWI(dst, src_adj, off_adj), ctx);
1331 				else
1332 					emit(A64_LDR32I(dst, src_adj, off_adj), ctx);
1333 			} else {
1334 				emit_a64_mov_i(1, tmp, off, ctx);
1335 				if (sign_extend)
1336 					emit(A64_LDRSW(dst, src, tmp), ctx);
1337 				else
1338 					emit(A64_LDR32(dst, src, tmp), ctx);
1339 			}
1340 			break;
1341 		case BPF_H:
1342 			if (is_lsi_offset(off_adj, 1)) {
1343 				if (sign_extend)
1344 					emit(A64_LDRSHI(dst, src_adj, off_adj), ctx);
1345 				else
1346 					emit(A64_LDRHI(dst, src_adj, off_adj), ctx);
1347 			} else {
1348 				emit_a64_mov_i(1, tmp, off, ctx);
1349 				if (sign_extend)
1350 					emit(A64_LDRSH(dst, src, tmp), ctx);
1351 				else
1352 					emit(A64_LDRH(dst, src, tmp), ctx);
1353 			}
1354 			break;
1355 		case BPF_B:
1356 			if (is_lsi_offset(off_adj, 0)) {
1357 				if (sign_extend)
1358 					emit(A64_LDRSBI(dst, src_adj, off_adj), ctx);
1359 				else
1360 					emit(A64_LDRBI(dst, src_adj, off_adj), ctx);
1361 			} else {
1362 				emit_a64_mov_i(1, tmp, off, ctx);
1363 				if (sign_extend)
1364 					emit(A64_LDRSB(dst, src, tmp), ctx);
1365 				else
1366 					emit(A64_LDRB(dst, src, tmp), ctx);
1367 			}
1368 			break;
1369 		case BPF_DW:
1370 			if (is_lsi_offset(off_adj, 3)) {
1371 				emit(A64_LDR64I(dst, src_adj, off_adj), ctx);
1372 			} else {
1373 				emit_a64_mov_i(1, tmp, off, ctx);
1374 				emit(A64_LDR64(dst, src, tmp), ctx);
1375 			}
1376 			break;
1377 		}
1378 
1379 		ret = add_exception_handler(insn, ctx, dst);
1380 		if (ret)
1381 			return ret;
1382 		break;
1383 
1384 	/* speculation barrier */
1385 	case BPF_ST | BPF_NOSPEC:
1386 		/*
1387 		 * Nothing required here.
1388 		 *
1389 		 * In case of arm64, we rely on the firmware mitigation of
1390 		 * Speculative Store Bypass as controlled via the ssbd kernel
1391 		 * parameter. Whenever the mitigation is enabled, it works
1392 		 * for all of the kernel code with no need to provide any
1393 		 * additional instructions.
1394 		 */
1395 		break;
1396 
1397 	/* ST: *(size *)(dst + off) = imm */
1398 	case BPF_ST | BPF_MEM | BPF_W:
1399 	case BPF_ST | BPF_MEM | BPF_H:
1400 	case BPF_ST | BPF_MEM | BPF_B:
1401 	case BPF_ST | BPF_MEM | BPF_DW:
1402 	case BPF_ST | BPF_PROBE_MEM32 | BPF_B:
1403 	case BPF_ST | BPF_PROBE_MEM32 | BPF_H:
1404 	case BPF_ST | BPF_PROBE_MEM32 | BPF_W:
1405 	case BPF_ST | BPF_PROBE_MEM32 | BPF_DW:
1406 		if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1407 			emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1408 			dst = tmp2;
1409 		}
1410 		if (ctx->fpb_offset > 0 && dst == fp && BPF_MODE(insn->code) != BPF_PROBE_MEM32) {
1411 			dst_adj = fpb;
1412 			off_adj = off + ctx->fpb_offset;
1413 		} else {
1414 			dst_adj = dst;
1415 			off_adj = off;
1416 		}
1417 		/* Load imm to a register then store it */
1418 		emit_a64_mov_i(1, tmp, imm, ctx);
1419 		switch (BPF_SIZE(code)) {
1420 		case BPF_W:
1421 			if (is_lsi_offset(off_adj, 2)) {
1422 				emit(A64_STR32I(tmp, dst_adj, off_adj), ctx);
1423 			} else {
1424 				emit_a64_mov_i(1, tmp2, off, ctx);
1425 				emit(A64_STR32(tmp, dst, tmp2), ctx);
1426 			}
1427 			break;
1428 		case BPF_H:
1429 			if (is_lsi_offset(off_adj, 1)) {
1430 				emit(A64_STRHI(tmp, dst_adj, off_adj), ctx);
1431 			} else {
1432 				emit_a64_mov_i(1, tmp2, off, ctx);
1433 				emit(A64_STRH(tmp, dst, tmp2), ctx);
1434 			}
1435 			break;
1436 		case BPF_B:
1437 			if (is_lsi_offset(off_adj, 0)) {
1438 				emit(A64_STRBI(tmp, dst_adj, off_adj), ctx);
1439 			} else {
1440 				emit_a64_mov_i(1, tmp2, off, ctx);
1441 				emit(A64_STRB(tmp, dst, tmp2), ctx);
1442 			}
1443 			break;
1444 		case BPF_DW:
1445 			if (is_lsi_offset(off_adj, 3)) {
1446 				emit(A64_STR64I(tmp, dst_adj, off_adj), ctx);
1447 			} else {
1448 				emit_a64_mov_i(1, tmp2, off, ctx);
1449 				emit(A64_STR64(tmp, dst, tmp2), ctx);
1450 			}
1451 			break;
1452 		}
1453 
1454 		ret = add_exception_handler(insn, ctx, dst);
1455 		if (ret)
1456 			return ret;
1457 		break;
1458 
1459 	/* STX: *(size *)(dst + off) = src */
1460 	case BPF_STX | BPF_MEM | BPF_W:
1461 	case BPF_STX | BPF_MEM | BPF_H:
1462 	case BPF_STX | BPF_MEM | BPF_B:
1463 	case BPF_STX | BPF_MEM | BPF_DW:
1464 	case BPF_STX | BPF_PROBE_MEM32 | BPF_B:
1465 	case BPF_STX | BPF_PROBE_MEM32 | BPF_H:
1466 	case BPF_STX | BPF_PROBE_MEM32 | BPF_W:
1467 	case BPF_STX | BPF_PROBE_MEM32 | BPF_DW:
1468 		if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) {
1469 			emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx);
1470 			dst = tmp2;
1471 		}
1472 		if (ctx->fpb_offset > 0 && dst == fp && BPF_MODE(insn->code) != BPF_PROBE_MEM32) {
1473 			dst_adj = fpb;
1474 			off_adj = off + ctx->fpb_offset;
1475 		} else {
1476 			dst_adj = dst;
1477 			off_adj = off;
1478 		}
1479 		switch (BPF_SIZE(code)) {
1480 		case BPF_W:
1481 			if (is_lsi_offset(off_adj, 2)) {
1482 				emit(A64_STR32I(src, dst_adj, off_adj), ctx);
1483 			} else {
1484 				emit_a64_mov_i(1, tmp, off, ctx);
1485 				emit(A64_STR32(src, dst, tmp), ctx);
1486 			}
1487 			break;
1488 		case BPF_H:
1489 			if (is_lsi_offset(off_adj, 1)) {
1490 				emit(A64_STRHI(src, dst_adj, off_adj), ctx);
1491 			} else {
1492 				emit_a64_mov_i(1, tmp, off, ctx);
1493 				emit(A64_STRH(src, dst, tmp), ctx);
1494 			}
1495 			break;
1496 		case BPF_B:
1497 			if (is_lsi_offset(off_adj, 0)) {
1498 				emit(A64_STRBI(src, dst_adj, off_adj), ctx);
1499 			} else {
1500 				emit_a64_mov_i(1, tmp, off, ctx);
1501 				emit(A64_STRB(src, dst, tmp), ctx);
1502 			}
1503 			break;
1504 		case BPF_DW:
1505 			if (is_lsi_offset(off_adj, 3)) {
1506 				emit(A64_STR64I(src, dst_adj, off_adj), ctx);
1507 			} else {
1508 				emit_a64_mov_i(1, tmp, off, ctx);
1509 				emit(A64_STR64(src, dst, tmp), ctx);
1510 			}
1511 			break;
1512 		}
1513 
1514 		ret = add_exception_handler(insn, ctx, dst);
1515 		if (ret)
1516 			return ret;
1517 		break;
1518 
1519 	case BPF_STX | BPF_ATOMIC | BPF_W:
1520 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1521 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_W:
1522 	case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW:
1523 		if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
1524 			ret = emit_lse_atomic(insn, ctx);
1525 		else
1526 			ret = emit_ll_sc_atomic(insn, ctx);
1527 		if (ret)
1528 			return ret;
1529 
1530 		ret = add_exception_handler(insn, ctx, dst);
1531 		if (ret)
1532 			return ret;
1533 		break;
1534 
1535 	default:
1536 		pr_err_once("unknown opcode %02x\n", code);
1537 		return -EINVAL;
1538 	}
1539 
1540 	return 0;
1541 }
1542 
1543 /*
1544  * Return 0 if FP may change at runtime, otherwise find the minimum negative
1545  * offset to FP, converts it to positive number, and align down to 8 bytes.
1546  */
1547 static int find_fpb_offset(struct bpf_prog *prog)
1548 {
1549 	int i;
1550 	int offset = 0;
1551 
1552 	for (i = 0; i < prog->len; i++) {
1553 		const struct bpf_insn *insn = &prog->insnsi[i];
1554 		const u8 class = BPF_CLASS(insn->code);
1555 		const u8 mode = BPF_MODE(insn->code);
1556 		const u8 src = insn->src_reg;
1557 		const u8 dst = insn->dst_reg;
1558 		const s32 imm = insn->imm;
1559 		const s16 off = insn->off;
1560 
1561 		switch (class) {
1562 		case BPF_STX:
1563 		case BPF_ST:
1564 			/* fp holds atomic operation result */
1565 			if (class == BPF_STX && mode == BPF_ATOMIC &&
1566 			    ((imm == BPF_XCHG ||
1567 			      imm == (BPF_FETCH | BPF_ADD) ||
1568 			      imm == (BPF_FETCH | BPF_AND) ||
1569 			      imm == (BPF_FETCH | BPF_XOR) ||
1570 			      imm == (BPF_FETCH | BPF_OR)) &&
1571 			     src == BPF_REG_FP))
1572 				return 0;
1573 
1574 			if (mode == BPF_MEM && dst == BPF_REG_FP &&
1575 			    off < offset)
1576 				offset = insn->off;
1577 			break;
1578 
1579 		case BPF_JMP32:
1580 		case BPF_JMP:
1581 			break;
1582 
1583 		case BPF_LDX:
1584 		case BPF_LD:
1585 			/* fp holds load result */
1586 			if (dst == BPF_REG_FP)
1587 				return 0;
1588 
1589 			if (class == BPF_LDX && mode == BPF_MEM &&
1590 			    src == BPF_REG_FP && off < offset)
1591 				offset = off;
1592 			break;
1593 
1594 		case BPF_ALU:
1595 		case BPF_ALU64:
1596 		default:
1597 			/* fp holds ALU result */
1598 			if (dst == BPF_REG_FP)
1599 				return 0;
1600 		}
1601 	}
1602 
1603 	if (offset < 0) {
1604 		/*
1605 		 * safely be converted to a positive 'int', since insn->off
1606 		 * is 's16'
1607 		 */
1608 		offset = -offset;
1609 		/* align down to 8 bytes */
1610 		offset = ALIGN_DOWN(offset, 8);
1611 	}
1612 
1613 	return offset;
1614 }
1615 
1616 static int build_body(struct jit_ctx *ctx, bool extra_pass)
1617 {
1618 	const struct bpf_prog *prog = ctx->prog;
1619 	int i;
1620 
1621 	/*
1622 	 * - offset[0] offset of the end of prologue,
1623 	 *   start of the 1st instruction.
1624 	 * - offset[1] - offset of the end of 1st instruction,
1625 	 *   start of the 2nd instruction
1626 	 * [....]
1627 	 * - offset[3] - offset of the end of 3rd instruction,
1628 	 *   start of 4th instruction
1629 	 */
1630 	for (i = 0; i < prog->len; i++) {
1631 		const struct bpf_insn *insn = &prog->insnsi[i];
1632 		int ret;
1633 
1634 		if (ctx->image == NULL)
1635 			ctx->offset[i] = ctx->idx;
1636 		ret = build_insn(insn, ctx, extra_pass);
1637 		if (ret > 0) {
1638 			i++;
1639 			if (ctx->image == NULL)
1640 				ctx->offset[i] = ctx->idx;
1641 			continue;
1642 		}
1643 		if (ret)
1644 			return ret;
1645 	}
1646 	/*
1647 	 * offset is allocated with prog->len + 1 so fill in
1648 	 * the last element with the offset after the last
1649 	 * instruction (end of program)
1650 	 */
1651 	if (ctx->image == NULL)
1652 		ctx->offset[i] = ctx->idx;
1653 
1654 	return 0;
1655 }
1656 
1657 static int validate_code(struct jit_ctx *ctx)
1658 {
1659 	int i;
1660 
1661 	for (i = 0; i < ctx->idx; i++) {
1662 		u32 a64_insn = le32_to_cpu(ctx->image[i]);
1663 
1664 		if (a64_insn == AARCH64_BREAK_FAULT)
1665 			return -1;
1666 	}
1667 	return 0;
1668 }
1669 
1670 static int validate_ctx(struct jit_ctx *ctx)
1671 {
1672 	if (validate_code(ctx))
1673 		return -1;
1674 
1675 	if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
1676 		return -1;
1677 
1678 	return 0;
1679 }
1680 
1681 static inline void bpf_flush_icache(void *start, void *end)
1682 {
1683 	flush_icache_range((unsigned long)start, (unsigned long)end);
1684 }
1685 
1686 struct arm64_jit_data {
1687 	struct bpf_binary_header *header;
1688 	u8 *ro_image;
1689 	struct bpf_binary_header *ro_header;
1690 	struct jit_ctx ctx;
1691 };
1692 
1693 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1694 {
1695 	int image_size, prog_size, extable_size, extable_align, extable_offset;
1696 	struct bpf_prog *tmp, *orig_prog = prog;
1697 	struct bpf_binary_header *header;
1698 	struct bpf_binary_header *ro_header;
1699 	struct arm64_jit_data *jit_data;
1700 	bool was_classic = bpf_prog_was_classic(prog);
1701 	bool tmp_blinded = false;
1702 	bool extra_pass = false;
1703 	struct jit_ctx ctx;
1704 	u64 arena_vm_start;
1705 	u8 *image_ptr;
1706 	u8 *ro_image_ptr;
1707 
1708 	if (!prog->jit_requested)
1709 		return orig_prog;
1710 
1711 	tmp = bpf_jit_blind_constants(prog);
1712 	/* If blinding was requested and we failed during blinding,
1713 	 * we must fall back to the interpreter.
1714 	 */
1715 	if (IS_ERR(tmp))
1716 		return orig_prog;
1717 	if (tmp != prog) {
1718 		tmp_blinded = true;
1719 		prog = tmp;
1720 	}
1721 
1722 	arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena);
1723 	jit_data = prog->aux->jit_data;
1724 	if (!jit_data) {
1725 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1726 		if (!jit_data) {
1727 			prog = orig_prog;
1728 			goto out;
1729 		}
1730 		prog->aux->jit_data = jit_data;
1731 	}
1732 	if (jit_data->ctx.offset) {
1733 		ctx = jit_data->ctx;
1734 		ro_image_ptr = jit_data->ro_image;
1735 		ro_header = jit_data->ro_header;
1736 		header = jit_data->header;
1737 		image_ptr = (void *)header + ((void *)ro_image_ptr
1738 						 - (void *)ro_header);
1739 		extra_pass = true;
1740 		prog_size = sizeof(u32) * ctx.idx;
1741 		goto skip_init_ctx;
1742 	}
1743 	memset(&ctx, 0, sizeof(ctx));
1744 	ctx.prog = prog;
1745 
1746 	ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
1747 	if (ctx.offset == NULL) {
1748 		prog = orig_prog;
1749 		goto out_off;
1750 	}
1751 
1752 	ctx.fpb_offset = find_fpb_offset(prog);
1753 	ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena);
1754 
1755 	/*
1756 	 * 1. Initial fake pass to compute ctx->idx and ctx->offset.
1757 	 *
1758 	 * BPF line info needs ctx->offset[i] to be the offset of
1759 	 * instruction[i] in jited image, so build prologue first.
1760 	 */
1761 	if (build_prologue(&ctx, was_classic, prog->aux->exception_cb,
1762 			   arena_vm_start)) {
1763 		prog = orig_prog;
1764 		goto out_off;
1765 	}
1766 
1767 	if (build_body(&ctx, extra_pass)) {
1768 		prog = orig_prog;
1769 		goto out_off;
1770 	}
1771 
1772 	ctx.epilogue_offset = ctx.idx;
1773 	build_epilogue(&ctx, prog->aux->exception_cb);
1774 	build_plt(&ctx);
1775 
1776 	extable_align = __alignof__(struct exception_table_entry);
1777 	extable_size = prog->aux->num_exentries *
1778 		sizeof(struct exception_table_entry);
1779 
1780 	/* Now we know the actual image size. */
1781 	prog_size = sizeof(u32) * ctx.idx;
1782 	/* also allocate space for plt target */
1783 	extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align);
1784 	image_size = extable_offset + extable_size;
1785 	ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr,
1786 					      sizeof(u32), &header, &image_ptr,
1787 					      jit_fill_hole);
1788 	if (!ro_header) {
1789 		prog = orig_prog;
1790 		goto out_off;
1791 	}
1792 
1793 	/* 2. Now, the actual pass. */
1794 
1795 	/*
1796 	 * Use the image(RW) for writing the JITed instructions. But also save
1797 	 * the ro_image(RX) for calculating the offsets in the image. The RW
1798 	 * image will be later copied to the RX image from where the program
1799 	 * will run. The bpf_jit_binary_pack_finalize() will do this copy in the
1800 	 * final step.
1801 	 */
1802 	ctx.image = (__le32 *)image_ptr;
1803 	ctx.ro_image = (__le32 *)ro_image_ptr;
1804 	if (extable_size)
1805 		prog->aux->extable = (void *)ro_image_ptr + extable_offset;
1806 skip_init_ctx:
1807 	ctx.idx = 0;
1808 	ctx.exentry_idx = 0;
1809 
1810 	build_prologue(&ctx, was_classic, prog->aux->exception_cb, arena_vm_start);
1811 
1812 	if (build_body(&ctx, extra_pass)) {
1813 		prog = orig_prog;
1814 		goto out_free_hdr;
1815 	}
1816 
1817 	build_epilogue(&ctx, prog->aux->exception_cb);
1818 	build_plt(&ctx);
1819 
1820 	/* 3. Extra pass to validate JITed code. */
1821 	if (validate_ctx(&ctx)) {
1822 		prog = orig_prog;
1823 		goto out_free_hdr;
1824 	}
1825 
1826 	/* And we're done. */
1827 	if (bpf_jit_enable > 1)
1828 		bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
1829 
1830 	if (!prog->is_func || extra_pass) {
1831 		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
1832 			pr_err_once("multi-func JIT bug %d != %d\n",
1833 				    ctx.idx, jit_data->ctx.idx);
1834 			prog->bpf_func = NULL;
1835 			prog->jited = 0;
1836 			prog->jited_len = 0;
1837 			goto out_free_hdr;
1838 		}
1839 		if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) {
1840 			/* ro_header has been freed */
1841 			ro_header = NULL;
1842 			prog = orig_prog;
1843 			goto out_off;
1844 		}
1845 		/*
1846 		 * The instructions have now been copied to the ROX region from
1847 		 * where they will execute. Now the data cache has to be cleaned to
1848 		 * the PoU and the I-cache has to be invalidated for the VAs.
1849 		 */
1850 		bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx);
1851 	} else {
1852 		jit_data->ctx = ctx;
1853 		jit_data->ro_image = ro_image_ptr;
1854 		jit_data->header = header;
1855 		jit_data->ro_header = ro_header;
1856 	}
1857 
1858 	prog->bpf_func = (void *)ctx.ro_image;
1859 	prog->jited = 1;
1860 	prog->jited_len = prog_size;
1861 
1862 	if (!prog->is_func || extra_pass) {
1863 		int i;
1864 
1865 		/* offset[prog->len] is the size of program */
1866 		for (i = 0; i <= prog->len; i++)
1867 			ctx.offset[i] *= AARCH64_INSN_SIZE;
1868 		bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
1869 out_off:
1870 		kvfree(ctx.offset);
1871 		kfree(jit_data);
1872 		prog->aux->jit_data = NULL;
1873 	}
1874 out:
1875 	if (tmp_blinded)
1876 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1877 					   tmp : orig_prog);
1878 	return prog;
1879 
1880 out_free_hdr:
1881 	if (header) {
1882 		bpf_arch_text_copy(&ro_header->size, &header->size,
1883 				   sizeof(header->size));
1884 		bpf_jit_binary_pack_free(ro_header, header);
1885 	}
1886 	goto out_off;
1887 }
1888 
1889 bool bpf_jit_supports_kfunc_call(void)
1890 {
1891 	return true;
1892 }
1893 
1894 void *bpf_arch_text_copy(void *dst, void *src, size_t len)
1895 {
1896 	if (!aarch64_insn_copy(dst, src, len))
1897 		return ERR_PTR(-EINVAL);
1898 	return dst;
1899 }
1900 
1901 u64 bpf_jit_alloc_exec_limit(void)
1902 {
1903 	return VMALLOC_END - VMALLOC_START;
1904 }
1905 
1906 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */
1907 bool bpf_jit_supports_subprog_tailcalls(void)
1908 {
1909 	return true;
1910 }
1911 
1912 static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l,
1913 			    int args_off, int retval_off, int run_ctx_off,
1914 			    bool save_ret)
1915 {
1916 	__le32 *branch;
1917 	u64 enter_prog;
1918 	u64 exit_prog;
1919 	struct bpf_prog *p = l->link.prog;
1920 	int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie);
1921 
1922 	enter_prog = (u64)bpf_trampoline_enter(p);
1923 	exit_prog = (u64)bpf_trampoline_exit(p);
1924 
1925 	if (l->cookie == 0) {
1926 		/* if cookie is zero, one instruction is enough to store it */
1927 		emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx);
1928 	} else {
1929 		emit_a64_mov_i64(A64_R(10), l->cookie, ctx);
1930 		emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off),
1931 		     ctx);
1932 	}
1933 
1934 	/* save p to callee saved register x19 to avoid loading p with mov_i64
1935 	 * each time.
1936 	 */
1937 	emit_addr_mov_i64(A64_R(19), (const u64)p, ctx);
1938 
1939 	/* arg1: prog */
1940 	emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
1941 	/* arg2: &run_ctx */
1942 	emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx);
1943 
1944 	emit_call(enter_prog, ctx);
1945 
1946 	/* save return value to callee saved register x20 */
1947 	emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx);
1948 
1949 	/* if (__bpf_prog_enter(prog) == 0)
1950 	 *         goto skip_exec_of_prog;
1951 	 */
1952 	branch = ctx->image + ctx->idx;
1953 	emit(A64_NOP, ctx);
1954 
1955 	emit(A64_ADD_I(1, A64_R(0), A64_SP, args_off), ctx);
1956 	if (!p->jited)
1957 		emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx);
1958 
1959 	emit_call((const u64)p->bpf_func, ctx);
1960 
1961 	if (save_ret)
1962 		emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
1963 
1964 	if (ctx->image) {
1965 		int offset = &ctx->image[ctx->idx] - branch;
1966 		*branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset));
1967 	}
1968 
1969 	/* arg1: prog */
1970 	emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx);
1971 	/* arg2: start time */
1972 	emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx);
1973 	/* arg3: &run_ctx */
1974 	emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx);
1975 
1976 	emit_call(exit_prog, ctx);
1977 }
1978 
1979 static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl,
1980 			       int args_off, int retval_off, int run_ctx_off,
1981 			       __le32 **branches)
1982 {
1983 	int i;
1984 
1985 	/* The first fmod_ret program will receive a garbage return value.
1986 	 * Set this to 0 to avoid confusing the program.
1987 	 */
1988 	emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx);
1989 	for (i = 0; i < tl->nr_links; i++) {
1990 		invoke_bpf_prog(ctx, tl->links[i], args_off, retval_off,
1991 				run_ctx_off, true);
1992 		/* if (*(u64 *)(sp + retval_off) !=  0)
1993 		 *	goto do_fexit;
1994 		 */
1995 		emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx);
1996 		/* Save the location of branch, and generate a nop.
1997 		 * This nop will be replaced with a cbnz later.
1998 		 */
1999 		branches[i] = ctx->image + ctx->idx;
2000 		emit(A64_NOP, ctx);
2001 	}
2002 }
2003 
2004 static void save_args(struct jit_ctx *ctx, int args_off, int nregs)
2005 {
2006 	int i;
2007 
2008 	for (i = 0; i < nregs; i++) {
2009 		emit(A64_STR64I(i, A64_SP, args_off), ctx);
2010 		args_off += 8;
2011 	}
2012 }
2013 
2014 static void restore_args(struct jit_ctx *ctx, int args_off, int nregs)
2015 {
2016 	int i;
2017 
2018 	for (i = 0; i < nregs; i++) {
2019 		emit(A64_LDR64I(i, A64_SP, args_off), ctx);
2020 		args_off += 8;
2021 	}
2022 }
2023 
2024 /* Based on the x86's implementation of arch_prepare_bpf_trampoline().
2025  *
2026  * bpf prog and function entry before bpf trampoline hooked:
2027  *   mov x9, lr
2028  *   nop
2029  *
2030  * bpf prog and function entry after bpf trampoline hooked:
2031  *   mov x9, lr
2032  *   bl  <bpf_trampoline or plt>
2033  *
2034  */
2035 static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im,
2036 			      struct bpf_tramp_links *tlinks, void *func_addr,
2037 			      int nregs, u32 flags)
2038 {
2039 	int i;
2040 	int stack_size;
2041 	int retaddr_off;
2042 	int regs_off;
2043 	int retval_off;
2044 	int args_off;
2045 	int nregs_off;
2046 	int ip_off;
2047 	int run_ctx_off;
2048 	struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY];
2049 	struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT];
2050 	struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN];
2051 	bool save_ret;
2052 	__le32 **branches = NULL;
2053 
2054 	/* trampoline stack layout:
2055 	 *                  [ parent ip         ]
2056 	 *                  [ FP                ]
2057 	 * SP + retaddr_off [ self ip           ]
2058 	 *                  [ FP                ]
2059 	 *
2060 	 *                  [ padding           ] align SP to multiples of 16
2061 	 *
2062 	 *                  [ x20               ] callee saved reg x20
2063 	 * SP + regs_off    [ x19               ] callee saved reg x19
2064 	 *
2065 	 * SP + retval_off  [ return value      ] BPF_TRAMP_F_CALL_ORIG or
2066 	 *                                        BPF_TRAMP_F_RET_FENTRY_RET
2067 	 *
2068 	 *                  [ arg reg N         ]
2069 	 *                  [ ...               ]
2070 	 * SP + args_off    [ arg reg 1         ]
2071 	 *
2072 	 * SP + nregs_off   [ arg regs count    ]
2073 	 *
2074 	 * SP + ip_off      [ traced function   ] BPF_TRAMP_F_IP_ARG flag
2075 	 *
2076 	 * SP + run_ctx_off [ bpf_tramp_run_ctx ]
2077 	 */
2078 
2079 	stack_size = 0;
2080 	run_ctx_off = stack_size;
2081 	/* room for bpf_tramp_run_ctx */
2082 	stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8);
2083 
2084 	ip_off = stack_size;
2085 	/* room for IP address argument */
2086 	if (flags & BPF_TRAMP_F_IP_ARG)
2087 		stack_size += 8;
2088 
2089 	nregs_off = stack_size;
2090 	/* room for args count */
2091 	stack_size += 8;
2092 
2093 	args_off = stack_size;
2094 	/* room for args */
2095 	stack_size += nregs * 8;
2096 
2097 	/* room for return value */
2098 	retval_off = stack_size;
2099 	save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET);
2100 	if (save_ret)
2101 		stack_size += 8;
2102 
2103 	/* room for callee saved registers, currently x19 and x20 are used */
2104 	regs_off = stack_size;
2105 	stack_size += 16;
2106 
2107 	/* round up to multiples of 16 to avoid SPAlignmentFault */
2108 	stack_size = round_up(stack_size, 16);
2109 
2110 	/* return address locates above FP */
2111 	retaddr_off = stack_size + 8;
2112 
2113 	/* bpf trampoline may be invoked by 3 instruction types:
2114 	 * 1. bl, attached to bpf prog or kernel function via short jump
2115 	 * 2. br, attached to bpf prog or kernel function via long jump
2116 	 * 3. blr, working as a function pointer, used by struct_ops.
2117 	 * So BTI_JC should used here to support both br and blr.
2118 	 */
2119 	emit_bti(A64_BTI_JC, ctx);
2120 
2121 	/* frame for parent function */
2122 	emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx);
2123 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2124 
2125 	/* frame for patched function */
2126 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
2127 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
2128 
2129 	/* allocate stack space */
2130 	emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx);
2131 
2132 	if (flags & BPF_TRAMP_F_IP_ARG) {
2133 		/* save ip address of the traced function */
2134 		emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx);
2135 		emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx);
2136 	}
2137 
2138 	/* save arg regs count*/
2139 	emit(A64_MOVZ(1, A64_R(10), nregs, 0), ctx);
2140 	emit(A64_STR64I(A64_R(10), A64_SP, nregs_off), ctx);
2141 
2142 	/* save arg regs */
2143 	save_args(ctx, args_off, nregs);
2144 
2145 	/* save callee saved registers */
2146 	emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx);
2147 	emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2148 
2149 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2150 		emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2151 		emit_call((const u64)__bpf_tramp_enter, ctx);
2152 	}
2153 
2154 	for (i = 0; i < fentry->nr_links; i++)
2155 		invoke_bpf_prog(ctx, fentry->links[i], args_off,
2156 				retval_off, run_ctx_off,
2157 				flags & BPF_TRAMP_F_RET_FENTRY_RET);
2158 
2159 	if (fmod_ret->nr_links) {
2160 		branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *),
2161 				   GFP_KERNEL);
2162 		if (!branches)
2163 			return -ENOMEM;
2164 
2165 		invoke_bpf_mod_ret(ctx, fmod_ret, args_off, retval_off,
2166 				   run_ctx_off, branches);
2167 	}
2168 
2169 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2170 		restore_args(ctx, args_off, nregs);
2171 		/* call original func */
2172 		emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx);
2173 		emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx);
2174 		emit(A64_RET(A64_R(10)), ctx);
2175 		/* store return value */
2176 		emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx);
2177 		/* reserve a nop for bpf_tramp_image_put */
2178 		im->ip_after_call = ctx->ro_image + ctx->idx;
2179 		emit(A64_NOP, ctx);
2180 	}
2181 
2182 	/* update the branches saved in invoke_bpf_mod_ret with cbnz */
2183 	for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) {
2184 		int offset = &ctx->image[ctx->idx] - branches[i];
2185 		*branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset));
2186 	}
2187 
2188 	for (i = 0; i < fexit->nr_links; i++)
2189 		invoke_bpf_prog(ctx, fexit->links[i], args_off, retval_off,
2190 				run_ctx_off, false);
2191 
2192 	if (flags & BPF_TRAMP_F_CALL_ORIG) {
2193 		im->ip_epilogue = ctx->ro_image + ctx->idx;
2194 		emit_a64_mov_i64(A64_R(0), (const u64)im, ctx);
2195 		emit_call((const u64)__bpf_tramp_exit, ctx);
2196 	}
2197 
2198 	if (flags & BPF_TRAMP_F_RESTORE_REGS)
2199 		restore_args(ctx, args_off, nregs);
2200 
2201 	/* restore callee saved register x19 and x20 */
2202 	emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx);
2203 	emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx);
2204 
2205 	if (save_ret)
2206 		emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx);
2207 
2208 	/* reset SP  */
2209 	emit(A64_MOV(1, A64_SP, A64_FP), ctx);
2210 
2211 	/* pop frames  */
2212 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
2213 	emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx);
2214 
2215 	if (flags & BPF_TRAMP_F_SKIP_FRAME) {
2216 		/* skip patched function, return to parent */
2217 		emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2218 		emit(A64_RET(A64_R(9)), ctx);
2219 	} else {
2220 		/* return to patched function */
2221 		emit(A64_MOV(1, A64_R(10), A64_LR), ctx);
2222 		emit(A64_MOV(1, A64_LR, A64_R(9)), ctx);
2223 		emit(A64_RET(A64_R(10)), ctx);
2224 	}
2225 
2226 	kfree(branches);
2227 
2228 	return ctx->idx;
2229 }
2230 
2231 static int btf_func_model_nregs(const struct btf_func_model *m)
2232 {
2233 	int nregs = m->nr_args;
2234 	int i;
2235 
2236 	/* extra registers needed for struct argument */
2237 	for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) {
2238 		/* The arg_size is at most 16 bytes, enforced by the verifier. */
2239 		if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG)
2240 			nregs += (m->arg_size[i] + 7) / 8 - 1;
2241 	}
2242 
2243 	return nregs;
2244 }
2245 
2246 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
2247 			     struct bpf_tramp_links *tlinks, void *func_addr)
2248 {
2249 	struct jit_ctx ctx = {
2250 		.image = NULL,
2251 		.idx = 0,
2252 	};
2253 	struct bpf_tramp_image im;
2254 	int nregs, ret;
2255 
2256 	nregs = btf_func_model_nregs(m);
2257 	/* the first 8 registers are used for arguments */
2258 	if (nregs > 8)
2259 		return -ENOTSUPP;
2260 
2261 	ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, nregs, flags);
2262 	if (ret < 0)
2263 		return ret;
2264 
2265 	return ret < 0 ? ret : ret * AARCH64_INSN_SIZE;
2266 }
2267 
2268 void *arch_alloc_bpf_trampoline(unsigned int size)
2269 {
2270 	return bpf_prog_pack_alloc(size, jit_fill_hole);
2271 }
2272 
2273 void arch_free_bpf_trampoline(void *image, unsigned int size)
2274 {
2275 	bpf_prog_pack_free(image, size);
2276 }
2277 
2278 int arch_protect_bpf_trampoline(void *image, unsigned int size)
2279 {
2280 	return 0;
2281 }
2282 
2283 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image,
2284 				void *ro_image_end, const struct btf_func_model *m,
2285 				u32 flags, struct bpf_tramp_links *tlinks,
2286 				void *func_addr)
2287 {
2288 	int ret, nregs;
2289 	void *image, *tmp;
2290 	u32 size = ro_image_end - ro_image;
2291 
2292 	/* image doesn't need to be in module memory range, so we can
2293 	 * use kvmalloc.
2294 	 */
2295 	image = kvmalloc(size, GFP_KERNEL);
2296 	if (!image)
2297 		return -ENOMEM;
2298 
2299 	struct jit_ctx ctx = {
2300 		.image = image,
2301 		.ro_image = ro_image,
2302 		.idx = 0,
2303 	};
2304 
2305 	nregs = btf_func_model_nregs(m);
2306 	/* the first 8 registers are used for arguments */
2307 	if (nregs > 8)
2308 		return -ENOTSUPP;
2309 
2310 	jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image));
2311 	ret = prepare_trampoline(&ctx, im, tlinks, func_addr, nregs, flags);
2312 
2313 	if (ret > 0 && validate_code(&ctx) < 0) {
2314 		ret = -EINVAL;
2315 		goto out;
2316 	}
2317 
2318 	if (ret > 0)
2319 		ret *= AARCH64_INSN_SIZE;
2320 
2321 	tmp = bpf_arch_text_copy(ro_image, image, size);
2322 	if (IS_ERR(tmp)) {
2323 		ret = PTR_ERR(tmp);
2324 		goto out;
2325 	}
2326 
2327 	bpf_flush_icache(ro_image, ro_image + size);
2328 out:
2329 	kvfree(image);
2330 	return ret;
2331 }
2332 
2333 static bool is_long_jump(void *ip, void *target)
2334 {
2335 	long offset;
2336 
2337 	/* NULL target means this is a NOP */
2338 	if (!target)
2339 		return false;
2340 
2341 	offset = (long)target - (long)ip;
2342 	return offset < -SZ_128M || offset >= SZ_128M;
2343 }
2344 
2345 static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip,
2346 			     void *addr, void *plt, u32 *insn)
2347 {
2348 	void *target;
2349 
2350 	if (!addr) {
2351 		*insn = aarch64_insn_gen_nop();
2352 		return 0;
2353 	}
2354 
2355 	if (is_long_jump(ip, addr))
2356 		target = plt;
2357 	else
2358 		target = addr;
2359 
2360 	*insn = aarch64_insn_gen_branch_imm((unsigned long)ip,
2361 					    (unsigned long)target,
2362 					    type);
2363 
2364 	return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT;
2365 }
2366 
2367 /* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf
2368  * trampoline with the branch instruction from @ip to @new_addr. If @old_addr
2369  * or @new_addr is NULL, the old or new instruction is NOP.
2370  *
2371  * When @ip is the bpf prog entry, a bpf trampoline is being attached or
2372  * detached. Since bpf trampoline and bpf prog are allocated separately with
2373  * vmalloc, the address distance may exceed 128MB, the maximum branch range.
2374  * So long jump should be handled.
2375  *
2376  * When a bpf prog is constructed, a plt pointing to empty trampoline
2377  * dummy_tramp is placed at the end:
2378  *
2379  *      bpf_prog:
2380  *              mov x9, lr
2381  *              nop // patchsite
2382  *              ...
2383  *              ret
2384  *
2385  *      plt:
2386  *              ldr x10, target
2387  *              br x10
2388  *      target:
2389  *              .quad dummy_tramp // plt target
2390  *
2391  * This is also the state when no trampoline is attached.
2392  *
2393  * When a short-jump bpf trampoline is attached, the patchsite is patched
2394  * to a bl instruction to the trampoline directly:
2395  *
2396  *      bpf_prog:
2397  *              mov x9, lr
2398  *              bl <short-jump bpf trampoline address> // patchsite
2399  *              ...
2400  *              ret
2401  *
2402  *      plt:
2403  *              ldr x10, target
2404  *              br x10
2405  *      target:
2406  *              .quad dummy_tramp // plt target
2407  *
2408  * When a long-jump bpf trampoline is attached, the plt target is filled with
2409  * the trampoline address and the patchsite is patched to a bl instruction to
2410  * the plt:
2411  *
2412  *      bpf_prog:
2413  *              mov x9, lr
2414  *              bl plt // patchsite
2415  *              ...
2416  *              ret
2417  *
2418  *      plt:
2419  *              ldr x10, target
2420  *              br x10
2421  *      target:
2422  *              .quad <long-jump bpf trampoline address> // plt target
2423  *
2424  * The dummy_tramp is used to prevent another CPU from jumping to unknown
2425  * locations during the patching process, making the patching process easier.
2426  */
2427 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type,
2428 		       void *old_addr, void *new_addr)
2429 {
2430 	int ret;
2431 	u32 old_insn;
2432 	u32 new_insn;
2433 	u32 replaced;
2434 	struct bpf_plt *plt = NULL;
2435 	unsigned long size = 0UL;
2436 	unsigned long offset = ~0UL;
2437 	enum aarch64_insn_branch_type branch_type;
2438 	char namebuf[KSYM_NAME_LEN];
2439 	void *image = NULL;
2440 	u64 plt_target = 0ULL;
2441 	bool poking_bpf_entry;
2442 
2443 	if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf))
2444 		/* Only poking bpf text is supported. Since kernel function
2445 		 * entry is set up by ftrace, we reply on ftrace to poke kernel
2446 		 * functions.
2447 		 */
2448 		return -ENOTSUPP;
2449 
2450 	image = ip - offset;
2451 	/* zero offset means we're poking bpf prog entry */
2452 	poking_bpf_entry = (offset == 0UL);
2453 
2454 	/* bpf prog entry, find plt and the real patchsite */
2455 	if (poking_bpf_entry) {
2456 		/* plt locates at the end of bpf prog */
2457 		plt = image + size - PLT_TARGET_OFFSET;
2458 
2459 		/* skip to the nop instruction in bpf prog entry:
2460 		 * bti c // if BTI enabled
2461 		 * mov x9, x30
2462 		 * nop
2463 		 */
2464 		ip = image + POKE_OFFSET * AARCH64_INSN_SIZE;
2465 	}
2466 
2467 	/* long jump is only possible at bpf prog entry */
2468 	if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) &&
2469 		    !poking_bpf_entry))
2470 		return -EINVAL;
2471 
2472 	if (poke_type == BPF_MOD_CALL)
2473 		branch_type = AARCH64_INSN_BRANCH_LINK;
2474 	else
2475 		branch_type = AARCH64_INSN_BRANCH_NOLINK;
2476 
2477 	if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0)
2478 		return -EFAULT;
2479 
2480 	if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0)
2481 		return -EFAULT;
2482 
2483 	if (is_long_jump(ip, new_addr))
2484 		plt_target = (u64)new_addr;
2485 	else if (is_long_jump(ip, old_addr))
2486 		/* if the old target is a long jump and the new target is not,
2487 		 * restore the plt target to dummy_tramp, so there is always a
2488 		 * legal and harmless address stored in plt target, and we'll
2489 		 * never jump from plt to an unknown place.
2490 		 */
2491 		plt_target = (u64)&dummy_tramp;
2492 
2493 	if (plt_target) {
2494 		/* non-zero plt_target indicates we're patching a bpf prog,
2495 		 * which is read only.
2496 		 */
2497 		if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1))
2498 			return -EFAULT;
2499 		WRITE_ONCE(plt->target, plt_target);
2500 		set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1);
2501 		/* since plt target points to either the new trampoline
2502 		 * or dummy_tramp, even if another CPU reads the old plt
2503 		 * target value before fetching the bl instruction to plt,
2504 		 * it will be brought back by dummy_tramp, so no barrier is
2505 		 * required here.
2506 		 */
2507 	}
2508 
2509 	/* if the old target and the new target are both long jumps, no
2510 	 * patching is required
2511 	 */
2512 	if (old_insn == new_insn)
2513 		return 0;
2514 
2515 	mutex_lock(&text_mutex);
2516 	if (aarch64_insn_read(ip, &replaced)) {
2517 		ret = -EFAULT;
2518 		goto out;
2519 	}
2520 
2521 	if (replaced != old_insn) {
2522 		ret = -EFAULT;
2523 		goto out;
2524 	}
2525 
2526 	/* We call aarch64_insn_patch_text_nosync() to replace instruction
2527 	 * atomically, so no other CPUs will fetch a half-new and half-old
2528 	 * instruction. But there is chance that another CPU executes the
2529 	 * old instruction after the patching operation finishes (e.g.,
2530 	 * pipeline not flushed, or icache not synchronized yet).
2531 	 *
2532 	 * 1. when a new trampoline is attached, it is not a problem for
2533 	 *    different CPUs to jump to different trampolines temporarily.
2534 	 *
2535 	 * 2. when an old trampoline is freed, we should wait for all other
2536 	 *    CPUs to exit the trampoline and make sure the trampoline is no
2537 	 *    longer reachable, since bpf_tramp_image_put() function already
2538 	 *    uses percpu_ref and task-based rcu to do the sync, no need to call
2539 	 *    the sync version here, see bpf_tramp_image_put() for details.
2540 	 */
2541 	ret = aarch64_insn_patch_text_nosync(ip, new_insn);
2542 out:
2543 	mutex_unlock(&text_mutex);
2544 
2545 	return ret;
2546 }
2547 
2548 bool bpf_jit_supports_ptr_xchg(void)
2549 {
2550 	return true;
2551 }
2552 
2553 bool bpf_jit_supports_exceptions(void)
2554 {
2555 	/* We unwind through both kernel frames starting from within bpf_throw
2556 	 * call and BPF frames. Therefore we require FP unwinder to be enabled
2557 	 * to walk kernel frames and reach BPF frames in the stack trace.
2558 	 * ARM64 kernel is aways compiled with CONFIG_FRAME_POINTER=y
2559 	 */
2560 	return true;
2561 }
2562 
2563 bool bpf_jit_supports_arena(void)
2564 {
2565 	return true;
2566 }
2567 
2568 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena)
2569 {
2570 	if (!in_arena)
2571 		return true;
2572 	switch (insn->code) {
2573 	case BPF_STX | BPF_ATOMIC | BPF_W:
2574 	case BPF_STX | BPF_ATOMIC | BPF_DW:
2575 		if (!cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
2576 			return false;
2577 	}
2578 	return true;
2579 }
2580 
2581 bool bpf_jit_supports_percpu_insn(void)
2582 {
2583 	return true;
2584 }
2585 
2586 bool bpf_jit_inlines_helper_call(s32 imm)
2587 {
2588 	switch (imm) {
2589 	case BPF_FUNC_get_smp_processor_id:
2590 	case BPF_FUNC_get_current_task:
2591 	case BPF_FUNC_get_current_task_btf:
2592 		return true;
2593 	default:
2594 		return false;
2595 	}
2596 }
2597 
2598 void bpf_jit_free(struct bpf_prog *prog)
2599 {
2600 	if (prog->jited) {
2601 		struct arm64_jit_data *jit_data = prog->aux->jit_data;
2602 		struct bpf_binary_header *hdr;
2603 
2604 		/*
2605 		 * If we fail the final pass of JIT (from jit_subprogs),
2606 		 * the program may not be finalized yet. Call finalize here
2607 		 * before freeing it.
2608 		 */
2609 		if (jit_data) {
2610 			bpf_arch_text_copy(&jit_data->ro_header->size, &jit_data->header->size,
2611 					   sizeof(jit_data->header->size));
2612 			kfree(jit_data);
2613 		}
2614 		hdr = bpf_jit_binary_pack_hdr(prog);
2615 		bpf_jit_binary_pack_free(hdr, NULL);
2616 		WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog));
2617 	}
2618 
2619 	bpf_prog_unlock_free(prog);
2620 }
2621