1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler for ARM64 4 * 5 * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "bpf_jit: " fmt 9 10 #include <linux/bitfield.h> 11 #include <linux/bpf.h> 12 #include <linux/filter.h> 13 #include <linux/memory.h> 14 #include <linux/printk.h> 15 #include <linux/slab.h> 16 17 #include <asm/asm-extable.h> 18 #include <asm/byteorder.h> 19 #include <asm/cacheflush.h> 20 #include <asm/debug-monitors.h> 21 #include <asm/insn.h> 22 #include <asm/patching.h> 23 #include <asm/set_memory.h> 24 25 #include "bpf_jit.h" 26 27 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) 28 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) 29 #define TCCNT_PTR (MAX_BPF_JIT_REG + 2) 30 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3) 31 #define ARENA_VM_START (MAX_BPF_JIT_REG + 5) 32 33 #define check_imm(bits, imm) do { \ 34 if ((((imm) > 0) && ((imm) >> (bits))) || \ 35 (((imm) < 0) && (~(imm) >> (bits)))) { \ 36 pr_info("[%2d] imm=%d(0x%x) out of range\n", \ 37 i, imm, imm); \ 38 return -EINVAL; \ 39 } \ 40 } while (0) 41 #define check_imm19(imm) check_imm(19, imm) 42 #define check_imm26(imm) check_imm(26, imm) 43 44 /* Map BPF registers to A64 registers */ 45 static const int bpf2a64[] = { 46 /* return value from in-kernel function, and exit value from eBPF */ 47 [BPF_REG_0] = A64_R(7), 48 /* arguments from eBPF program to in-kernel function */ 49 [BPF_REG_1] = A64_R(0), 50 [BPF_REG_2] = A64_R(1), 51 [BPF_REG_3] = A64_R(2), 52 [BPF_REG_4] = A64_R(3), 53 [BPF_REG_5] = A64_R(4), 54 /* callee saved registers that in-kernel function will preserve */ 55 [BPF_REG_6] = A64_R(19), 56 [BPF_REG_7] = A64_R(20), 57 [BPF_REG_8] = A64_R(21), 58 [BPF_REG_9] = A64_R(22), 59 /* read-only frame pointer to access stack */ 60 [BPF_REG_FP] = A64_R(25), 61 /* temporary registers for BPF JIT */ 62 [TMP_REG_1] = A64_R(10), 63 [TMP_REG_2] = A64_R(11), 64 [TMP_REG_3] = A64_R(12), 65 /* tail_call_cnt_ptr */ 66 [TCCNT_PTR] = A64_R(26), 67 /* temporary register for blinding constants */ 68 [BPF_REG_AX] = A64_R(9), 69 /* callee saved register for kern_vm_start address */ 70 [ARENA_VM_START] = A64_R(28), 71 }; 72 73 struct jit_ctx { 74 const struct bpf_prog *prog; 75 int idx; 76 int epilogue_offset; 77 int *offset; 78 int exentry_idx; 79 int nr_used_callee_reg; 80 u8 used_callee_reg[8]; /* r6~r9, fp, arena_vm_start */ 81 __le32 *image; 82 __le32 *ro_image; 83 u32 stack_size; 84 u64 user_vm_start; 85 u64 arena_vm_start; 86 bool fp_used; 87 }; 88 89 struct bpf_plt { 90 u32 insn_ldr; /* load target */ 91 u32 insn_br; /* branch to target */ 92 u64 target; /* target value */ 93 }; 94 95 #define PLT_TARGET_SIZE sizeof_field(struct bpf_plt, target) 96 #define PLT_TARGET_OFFSET offsetof(struct bpf_plt, target) 97 98 static inline void emit(const u32 insn, struct jit_ctx *ctx) 99 { 100 if (ctx->image != NULL) 101 ctx->image[ctx->idx] = cpu_to_le32(insn); 102 103 ctx->idx++; 104 } 105 106 static inline void emit_a64_mov_i(const int is64, const int reg, 107 const s32 val, struct jit_ctx *ctx) 108 { 109 u16 hi = val >> 16; 110 u16 lo = val & 0xffff; 111 112 if (hi & 0x8000) { 113 if (hi == 0xffff) { 114 emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); 115 } else { 116 emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); 117 if (lo != 0xffff) 118 emit(A64_MOVK(is64, reg, lo, 0), ctx); 119 } 120 } else { 121 emit(A64_MOVZ(is64, reg, lo, 0), ctx); 122 if (hi) 123 emit(A64_MOVK(is64, reg, hi, 16), ctx); 124 } 125 } 126 127 static int i64_i16_blocks(const u64 val, bool inverse) 128 { 129 return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 130 (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 131 (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 132 (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000)); 133 } 134 135 static inline void emit_a64_mov_i64(const int reg, const u64 val, 136 struct jit_ctx *ctx) 137 { 138 u64 nrm_tmp = val, rev_tmp = ~val; 139 bool inverse; 140 int shift; 141 142 if (!(nrm_tmp >> 32)) 143 return emit_a64_mov_i(0, reg, (u32)val, ctx); 144 145 inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false); 146 shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) : 147 (fls64(nrm_tmp) - 1)), 16), 0); 148 if (inverse) 149 emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx); 150 else 151 emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 152 shift -= 16; 153 while (shift >= 0) { 154 if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000)) 155 emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 156 shift -= 16; 157 } 158 } 159 160 static inline void emit_bti(u32 insn, struct jit_ctx *ctx) 161 { 162 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)) 163 emit(insn, ctx); 164 } 165 166 /* 167 * Kernel addresses in the vmalloc space use at most 48 bits, and the 168 * remaining bits are guaranteed to be 0x1. So we can compose the address 169 * with a fixed length movn/movk/movk sequence. 170 */ 171 static inline void emit_addr_mov_i64(const int reg, const u64 val, 172 struct jit_ctx *ctx) 173 { 174 u64 tmp = val; 175 int shift = 0; 176 177 emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx); 178 while (shift < 32) { 179 tmp >>= 16; 180 shift += 16; 181 emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); 182 } 183 } 184 185 static inline void emit_call(u64 target, struct jit_ctx *ctx) 186 { 187 u8 tmp = bpf2a64[TMP_REG_1]; 188 189 emit_addr_mov_i64(tmp, target, ctx); 190 emit(A64_BLR(tmp), ctx); 191 } 192 193 static inline int bpf2a64_offset(int bpf_insn, int off, 194 const struct jit_ctx *ctx) 195 { 196 /* BPF JMP offset is relative to the next instruction */ 197 bpf_insn++; 198 /* 199 * Whereas arm64 branch instructions encode the offset 200 * from the branch itself, so we must subtract 1 from the 201 * instruction offset. 202 */ 203 return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1); 204 } 205 206 static void jit_fill_hole(void *area, unsigned int size) 207 { 208 __le32 *ptr; 209 /* We are guaranteed to have aligned memory. */ 210 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 211 *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); 212 } 213 214 int bpf_arch_text_invalidate(void *dst, size_t len) 215 { 216 if (!aarch64_insn_set(dst, AARCH64_BREAK_FAULT, len)) 217 return -EINVAL; 218 219 return 0; 220 } 221 222 static inline int epilogue_offset(const struct jit_ctx *ctx) 223 { 224 int to = ctx->epilogue_offset; 225 int from = ctx->idx; 226 227 return to - from; 228 } 229 230 static bool is_addsub_imm(u32 imm) 231 { 232 /* Either imm12 or shifted imm12. */ 233 return !(imm & ~0xfff) || !(imm & ~0xfff000); 234 } 235 236 /* 237 * There are 3 types of AArch64 LDR/STR (immediate) instruction: 238 * Post-index, Pre-index, Unsigned offset. 239 * 240 * For BPF ldr/str, the "unsigned offset" type is sufficient. 241 * 242 * "Unsigned offset" type LDR(immediate) format: 243 * 244 * 3 2 1 0 245 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 246 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 247 * |x x|1 1 1 0 0 1 0 1| imm12 | Rn | Rt | 248 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 249 * scale 250 * 251 * "Unsigned offset" type STR(immediate) format: 252 * 3 2 1 0 253 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 254 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 255 * |x x|1 1 1 0 0 1 0 0| imm12 | Rn | Rt | 256 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 257 * scale 258 * 259 * The offset is calculated from imm12 and scale in the following way: 260 * 261 * offset = (u64)imm12 << scale 262 */ 263 static bool is_lsi_offset(int offset, int scale) 264 { 265 if (offset < 0) 266 return false; 267 268 if (offset > (0xFFF << scale)) 269 return false; 270 271 if (offset & ((1 << scale) - 1)) 272 return false; 273 274 return true; 275 } 276 277 /* generated main prog prologue: 278 * bti c // if CONFIG_ARM64_BTI_KERNEL 279 * mov x9, lr 280 * nop // POKE_OFFSET 281 * paciasp // if CONFIG_ARM64_PTR_AUTH_KERNEL 282 * stp x29, lr, [sp, #-16]! 283 * mov x29, sp 284 * stp xzr, x26, [sp, #-16]! 285 * mov x26, sp 286 * // PROLOGUE_OFFSET 287 * // save callee-saved registers 288 */ 289 static void prepare_bpf_tail_call_cnt(struct jit_ctx *ctx) 290 { 291 const bool is_main_prog = !bpf_is_subprog(ctx->prog); 292 const u8 ptr = bpf2a64[TCCNT_PTR]; 293 294 if (is_main_prog) { 295 /* Initialize tail_call_cnt. */ 296 emit(A64_PUSH(A64_ZR, ptr, A64_SP), ctx); 297 emit(A64_MOV(1, ptr, A64_SP), ctx); 298 } else 299 emit(A64_PUSH(ptr, ptr, A64_SP), ctx); 300 } 301 302 static void find_used_callee_regs(struct jit_ctx *ctx) 303 { 304 int i; 305 const struct bpf_prog *prog = ctx->prog; 306 const struct bpf_insn *insn = &prog->insnsi[0]; 307 int reg_used = 0; 308 309 for (i = 0; i < prog->len; i++, insn++) { 310 if (insn->dst_reg == BPF_REG_6 || insn->src_reg == BPF_REG_6) 311 reg_used |= 1; 312 313 if (insn->dst_reg == BPF_REG_7 || insn->src_reg == BPF_REG_7) 314 reg_used |= 2; 315 316 if (insn->dst_reg == BPF_REG_8 || insn->src_reg == BPF_REG_8) 317 reg_used |= 4; 318 319 if (insn->dst_reg == BPF_REG_9 || insn->src_reg == BPF_REG_9) 320 reg_used |= 8; 321 322 if (insn->dst_reg == BPF_REG_FP || insn->src_reg == BPF_REG_FP) { 323 ctx->fp_used = true; 324 reg_used |= 16; 325 } 326 } 327 328 i = 0; 329 if (reg_used & 1) 330 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_6]; 331 332 if (reg_used & 2) 333 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_7]; 334 335 if (reg_used & 4) 336 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_8]; 337 338 if (reg_used & 8) 339 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_9]; 340 341 if (reg_used & 16) 342 ctx->used_callee_reg[i++] = bpf2a64[BPF_REG_FP]; 343 344 if (ctx->arena_vm_start) 345 ctx->used_callee_reg[i++] = bpf2a64[ARENA_VM_START]; 346 347 ctx->nr_used_callee_reg = i; 348 } 349 350 /* Save callee-saved registers */ 351 static void push_callee_regs(struct jit_ctx *ctx) 352 { 353 int reg1, reg2, i; 354 355 /* 356 * Program acting as exception boundary should save all ARM64 357 * Callee-saved registers as the exception callback needs to recover 358 * all ARM64 Callee-saved registers in its epilogue. 359 */ 360 if (ctx->prog->aux->exception_boundary) { 361 emit(A64_PUSH(A64_R(19), A64_R(20), A64_SP), ctx); 362 emit(A64_PUSH(A64_R(21), A64_R(22), A64_SP), ctx); 363 emit(A64_PUSH(A64_R(23), A64_R(24), A64_SP), ctx); 364 emit(A64_PUSH(A64_R(25), A64_R(26), A64_SP), ctx); 365 emit(A64_PUSH(A64_R(27), A64_R(28), A64_SP), ctx); 366 } else { 367 find_used_callee_regs(ctx); 368 for (i = 0; i + 1 < ctx->nr_used_callee_reg; i += 2) { 369 reg1 = ctx->used_callee_reg[i]; 370 reg2 = ctx->used_callee_reg[i + 1]; 371 emit(A64_PUSH(reg1, reg2, A64_SP), ctx); 372 } 373 if (i < ctx->nr_used_callee_reg) { 374 reg1 = ctx->used_callee_reg[i]; 375 /* keep SP 16-byte aligned */ 376 emit(A64_PUSH(reg1, A64_ZR, A64_SP), ctx); 377 } 378 } 379 } 380 381 /* Restore callee-saved registers */ 382 static void pop_callee_regs(struct jit_ctx *ctx) 383 { 384 struct bpf_prog_aux *aux = ctx->prog->aux; 385 int reg1, reg2, i; 386 387 /* 388 * Program acting as exception boundary pushes R23 and R24 in addition 389 * to BPF callee-saved registers. Exception callback uses the boundary 390 * program's stack frame, so recover these extra registers in the above 391 * two cases. 392 */ 393 if (aux->exception_boundary || aux->exception_cb) { 394 emit(A64_POP(A64_R(27), A64_R(28), A64_SP), ctx); 395 emit(A64_POP(A64_R(25), A64_R(26), A64_SP), ctx); 396 emit(A64_POP(A64_R(23), A64_R(24), A64_SP), ctx); 397 emit(A64_POP(A64_R(21), A64_R(22), A64_SP), ctx); 398 emit(A64_POP(A64_R(19), A64_R(20), A64_SP), ctx); 399 } else { 400 i = ctx->nr_used_callee_reg - 1; 401 if (ctx->nr_used_callee_reg % 2 != 0) { 402 reg1 = ctx->used_callee_reg[i]; 403 emit(A64_POP(reg1, A64_ZR, A64_SP), ctx); 404 i--; 405 } 406 while (i > 0) { 407 reg1 = ctx->used_callee_reg[i - 1]; 408 reg2 = ctx->used_callee_reg[i]; 409 emit(A64_POP(reg1, reg2, A64_SP), ctx); 410 i -= 2; 411 } 412 } 413 } 414 415 #define BTI_INSNS (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) ? 1 : 0) 416 #define PAC_INSNS (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL) ? 1 : 0) 417 418 /* Offset of nop instruction in bpf prog entry to be poked */ 419 #define POKE_OFFSET (BTI_INSNS + 1) 420 421 /* Tail call offset to jump into */ 422 #define PROLOGUE_OFFSET (BTI_INSNS + 2 + PAC_INSNS + 4) 423 424 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf) 425 { 426 const struct bpf_prog *prog = ctx->prog; 427 const bool is_main_prog = !bpf_is_subprog(prog); 428 const u8 fp = bpf2a64[BPF_REG_FP]; 429 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 430 const int idx0 = ctx->idx; 431 int cur_offset; 432 433 /* 434 * BPF prog stack layout 435 * 436 * high 437 * original A64_SP => 0:+-----+ BPF prologue 438 * |FP/LR| 439 * current A64_FP => -16:+-----+ 440 * | ... | callee saved registers 441 * BPF fp register => -64:+-----+ <= (BPF_FP) 442 * | | 443 * | ... | BPF prog stack 444 * | | 445 * +-----+ <= (BPF_FP - prog->aux->stack_depth) 446 * |RSVD | padding 447 * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size) 448 * | | 449 * | ... | Function call stack 450 * | | 451 * +-----+ 452 * low 453 * 454 */ 455 456 /* bpf function may be invoked by 3 instruction types: 457 * 1. bl, attached via freplace to bpf prog via short jump 458 * 2. br, attached via freplace to bpf prog via long jump 459 * 3. blr, working as a function pointer, used by emit_call. 460 * So BTI_JC should used here to support both br and blr. 461 */ 462 emit_bti(A64_BTI_JC, ctx); 463 464 emit(A64_MOV(1, A64_R(9), A64_LR), ctx); 465 emit(A64_NOP, ctx); 466 467 if (!prog->aux->exception_cb) { 468 /* Sign lr */ 469 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 470 emit(A64_PACIASP, ctx); 471 472 /* Save FP and LR registers to stay align with ARM64 AAPCS */ 473 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 474 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 475 476 prepare_bpf_tail_call_cnt(ctx); 477 478 if (!ebpf_from_cbpf && is_main_prog) { 479 cur_offset = ctx->idx - idx0; 480 if (cur_offset != PROLOGUE_OFFSET) { 481 pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n", 482 cur_offset, PROLOGUE_OFFSET); 483 return -1; 484 } 485 /* BTI landing pad for the tail call, done with a BR */ 486 emit_bti(A64_BTI_J, ctx); 487 } 488 push_callee_regs(ctx); 489 } else { 490 /* 491 * Exception callback receives FP of Main Program as third 492 * parameter 493 */ 494 emit(A64_MOV(1, A64_FP, A64_R(2)), ctx); 495 /* 496 * Main Program already pushed the frame record and the 497 * callee-saved registers. The exception callback will not push 498 * anything and re-use the main program's stack. 499 * 500 * 12 registers are on the stack 501 */ 502 emit(A64_SUB_I(1, A64_SP, A64_FP, 96), ctx); 503 } 504 505 if (ctx->fp_used) 506 /* Set up BPF prog stack base register */ 507 emit(A64_MOV(1, fp, A64_SP), ctx); 508 509 /* Stack must be multiples of 16B */ 510 ctx->stack_size = round_up(prog->aux->stack_depth, 16); 511 512 /* Set up function call stack */ 513 if (ctx->stack_size) 514 emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 515 516 if (ctx->arena_vm_start) 517 emit_a64_mov_i64(arena_vm_base, ctx->arena_vm_start, ctx); 518 519 return 0; 520 } 521 522 static int emit_bpf_tail_call(struct jit_ctx *ctx) 523 { 524 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ 525 const u8 r2 = bpf2a64[BPF_REG_2]; 526 const u8 r3 = bpf2a64[BPF_REG_3]; 527 528 const u8 tmp = bpf2a64[TMP_REG_1]; 529 const u8 prg = bpf2a64[TMP_REG_2]; 530 const u8 tcc = bpf2a64[TMP_REG_3]; 531 const u8 ptr = bpf2a64[TCCNT_PTR]; 532 size_t off; 533 __le32 *branch1 = NULL; 534 __le32 *branch2 = NULL; 535 __le32 *branch3 = NULL; 536 537 /* if (index >= array->map.max_entries) 538 * goto out; 539 */ 540 off = offsetof(struct bpf_array, map.max_entries); 541 emit_a64_mov_i64(tmp, off, ctx); 542 emit(A64_LDR32(tmp, r2, tmp), ctx); 543 emit(A64_MOV(0, r3, r3), ctx); 544 emit(A64_CMP(0, r3, tmp), ctx); 545 branch1 = ctx->image + ctx->idx; 546 emit(A64_NOP, ctx); 547 548 /* 549 * if ((*tail_call_cnt_ptr) >= MAX_TAIL_CALL_CNT) 550 * goto out; 551 */ 552 emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx); 553 emit(A64_LDR64I(tcc, ptr, 0), ctx); 554 emit(A64_CMP(1, tcc, tmp), ctx); 555 branch2 = ctx->image + ctx->idx; 556 emit(A64_NOP, ctx); 557 558 /* (*tail_call_cnt_ptr)++; */ 559 emit(A64_ADD_I(1, tcc, tcc, 1), ctx); 560 561 /* prog = array->ptrs[index]; 562 * if (prog == NULL) 563 * goto out; 564 */ 565 off = offsetof(struct bpf_array, ptrs); 566 emit_a64_mov_i64(tmp, off, ctx); 567 emit(A64_ADD(1, tmp, r2, tmp), ctx); 568 emit(A64_LSL(1, prg, r3, 3), ctx); 569 emit(A64_LDR64(prg, tmp, prg), ctx); 570 branch3 = ctx->image + ctx->idx; 571 emit(A64_NOP, ctx); 572 573 /* Update tail_call_cnt if the slot is populated. */ 574 emit(A64_STR64I(tcc, ptr, 0), ctx); 575 576 /* restore SP */ 577 if (ctx->stack_size) 578 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 579 580 pop_callee_regs(ctx); 581 582 /* goto *(prog->bpf_func + prologue_offset); */ 583 off = offsetof(struct bpf_prog, bpf_func); 584 emit_a64_mov_i64(tmp, off, ctx); 585 emit(A64_LDR64(tmp, prg, tmp), ctx); 586 emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx); 587 emit(A64_BR(tmp), ctx); 588 589 if (ctx->image) { 590 off = &ctx->image[ctx->idx] - branch1; 591 *branch1 = cpu_to_le32(A64_B_(A64_COND_CS, off)); 592 593 off = &ctx->image[ctx->idx] - branch2; 594 *branch2 = cpu_to_le32(A64_B_(A64_COND_CS, off)); 595 596 off = &ctx->image[ctx->idx] - branch3; 597 *branch3 = cpu_to_le32(A64_CBZ(1, prg, off)); 598 } 599 600 return 0; 601 } 602 603 #ifdef CONFIG_ARM64_LSE_ATOMICS 604 static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 605 { 606 const u8 code = insn->code; 607 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 608 const u8 dst = bpf2a64[insn->dst_reg]; 609 const u8 src = bpf2a64[insn->src_reg]; 610 const u8 tmp = bpf2a64[TMP_REG_1]; 611 const u8 tmp2 = bpf2a64[TMP_REG_2]; 612 const bool isdw = BPF_SIZE(code) == BPF_DW; 613 const bool arena = BPF_MODE(code) == BPF_PROBE_ATOMIC; 614 const s16 off = insn->off; 615 u8 reg = dst; 616 617 if (off || arena) { 618 if (off) { 619 emit_a64_mov_i(1, tmp, off, ctx); 620 emit(A64_ADD(1, tmp, tmp, dst), ctx); 621 reg = tmp; 622 } 623 if (arena) { 624 emit(A64_ADD(1, tmp, reg, arena_vm_base), ctx); 625 reg = tmp; 626 } 627 } 628 629 switch (insn->imm) { 630 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ 631 case BPF_ADD: 632 emit(A64_STADD(isdw, reg, src), ctx); 633 break; 634 case BPF_AND: 635 emit(A64_MVN(isdw, tmp2, src), ctx); 636 emit(A64_STCLR(isdw, reg, tmp2), ctx); 637 break; 638 case BPF_OR: 639 emit(A64_STSET(isdw, reg, src), ctx); 640 break; 641 case BPF_XOR: 642 emit(A64_STEOR(isdw, reg, src), ctx); 643 break; 644 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ 645 case BPF_ADD | BPF_FETCH: 646 emit(A64_LDADDAL(isdw, src, reg, src), ctx); 647 break; 648 case BPF_AND | BPF_FETCH: 649 emit(A64_MVN(isdw, tmp2, src), ctx); 650 emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx); 651 break; 652 case BPF_OR | BPF_FETCH: 653 emit(A64_LDSETAL(isdw, src, reg, src), ctx); 654 break; 655 case BPF_XOR | BPF_FETCH: 656 emit(A64_LDEORAL(isdw, src, reg, src), ctx); 657 break; 658 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 659 case BPF_XCHG: 660 emit(A64_SWPAL(isdw, src, reg, src), ctx); 661 break; 662 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 663 case BPF_CMPXCHG: 664 emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx); 665 break; 666 default: 667 pr_err_once("unknown atomic op code %02x\n", insn->imm); 668 return -EINVAL; 669 } 670 671 return 0; 672 } 673 #else 674 static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 675 { 676 return -EINVAL; 677 } 678 #endif 679 680 static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx) 681 { 682 const u8 code = insn->code; 683 const u8 dst = bpf2a64[insn->dst_reg]; 684 const u8 src = bpf2a64[insn->src_reg]; 685 const u8 tmp = bpf2a64[TMP_REG_1]; 686 const u8 tmp2 = bpf2a64[TMP_REG_2]; 687 const u8 tmp3 = bpf2a64[TMP_REG_3]; 688 const int i = insn - ctx->prog->insnsi; 689 const s32 imm = insn->imm; 690 const s16 off = insn->off; 691 const bool isdw = BPF_SIZE(code) == BPF_DW; 692 u8 reg; 693 s32 jmp_offset; 694 695 if (BPF_MODE(code) == BPF_PROBE_ATOMIC) { 696 /* ll_sc based atomics don't support unsafe pointers yet. */ 697 pr_err_once("unknown atomic opcode %02x\n", code); 698 return -EINVAL; 699 } 700 701 if (!off) { 702 reg = dst; 703 } else { 704 emit_a64_mov_i(1, tmp, off, ctx); 705 emit(A64_ADD(1, tmp, tmp, dst), ctx); 706 reg = tmp; 707 } 708 709 if (imm == BPF_ADD || imm == BPF_AND || 710 imm == BPF_OR || imm == BPF_XOR) { 711 /* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */ 712 emit(A64_LDXR(isdw, tmp2, reg), ctx); 713 if (imm == BPF_ADD) 714 emit(A64_ADD(isdw, tmp2, tmp2, src), ctx); 715 else if (imm == BPF_AND) 716 emit(A64_AND(isdw, tmp2, tmp2, src), ctx); 717 else if (imm == BPF_OR) 718 emit(A64_ORR(isdw, tmp2, tmp2, src), ctx); 719 else 720 emit(A64_EOR(isdw, tmp2, tmp2, src), ctx); 721 emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx); 722 jmp_offset = -3; 723 check_imm19(jmp_offset); 724 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 725 } else if (imm == (BPF_ADD | BPF_FETCH) || 726 imm == (BPF_AND | BPF_FETCH) || 727 imm == (BPF_OR | BPF_FETCH) || 728 imm == (BPF_XOR | BPF_FETCH)) { 729 /* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */ 730 const u8 ax = bpf2a64[BPF_REG_AX]; 731 732 emit(A64_MOV(isdw, ax, src), ctx); 733 emit(A64_LDXR(isdw, src, reg), ctx); 734 if (imm == (BPF_ADD | BPF_FETCH)) 735 emit(A64_ADD(isdw, tmp2, src, ax), ctx); 736 else if (imm == (BPF_AND | BPF_FETCH)) 737 emit(A64_AND(isdw, tmp2, src, ax), ctx); 738 else if (imm == (BPF_OR | BPF_FETCH)) 739 emit(A64_ORR(isdw, tmp2, src, ax), ctx); 740 else 741 emit(A64_EOR(isdw, tmp2, src, ax), ctx); 742 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); 743 jmp_offset = -3; 744 check_imm19(jmp_offset); 745 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 746 emit(A64_DMB_ISH, ctx); 747 } else if (imm == BPF_XCHG) { 748 /* src_reg = atomic_xchg(dst_reg + off, src_reg); */ 749 emit(A64_MOV(isdw, tmp2, src), ctx); 750 emit(A64_LDXR(isdw, src, reg), ctx); 751 emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx); 752 jmp_offset = -2; 753 check_imm19(jmp_offset); 754 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 755 emit(A64_DMB_ISH, ctx); 756 } else if (imm == BPF_CMPXCHG) { 757 /* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */ 758 const u8 r0 = bpf2a64[BPF_REG_0]; 759 760 emit(A64_MOV(isdw, tmp2, r0), ctx); 761 emit(A64_LDXR(isdw, r0, reg), ctx); 762 emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx); 763 jmp_offset = 4; 764 check_imm19(jmp_offset); 765 emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx); 766 emit(A64_STLXR(isdw, src, reg, tmp3), ctx); 767 jmp_offset = -4; 768 check_imm19(jmp_offset); 769 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 770 emit(A64_DMB_ISH, ctx); 771 } else { 772 pr_err_once("unknown atomic op code %02x\n", imm); 773 return -EINVAL; 774 } 775 776 return 0; 777 } 778 779 void dummy_tramp(void); 780 781 asm ( 782 " .pushsection .text, \"ax\", @progbits\n" 783 " .global dummy_tramp\n" 784 " .type dummy_tramp, %function\n" 785 "dummy_tramp:" 786 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) 787 " bti j\n" /* dummy_tramp is called via "br x10" */ 788 #endif 789 " mov x10, x30\n" 790 " mov x30, x9\n" 791 " ret x10\n" 792 " .size dummy_tramp, .-dummy_tramp\n" 793 " .popsection\n" 794 ); 795 796 /* build a plt initialized like this: 797 * 798 * plt: 799 * ldr tmp, target 800 * br tmp 801 * target: 802 * .quad dummy_tramp 803 * 804 * when a long jump trampoline is attached, target is filled with the 805 * trampoline address, and when the trampoline is removed, target is 806 * restored to dummy_tramp address. 807 */ 808 static void build_plt(struct jit_ctx *ctx) 809 { 810 const u8 tmp = bpf2a64[TMP_REG_1]; 811 struct bpf_plt *plt = NULL; 812 813 /* make sure target is 64-bit aligned */ 814 if ((ctx->idx + PLT_TARGET_OFFSET / AARCH64_INSN_SIZE) % 2) 815 emit(A64_NOP, ctx); 816 817 plt = (struct bpf_plt *)(ctx->image + ctx->idx); 818 /* plt is called via bl, no BTI needed here */ 819 emit(A64_LDR64LIT(tmp, 2 * AARCH64_INSN_SIZE), ctx); 820 emit(A64_BR(tmp), ctx); 821 822 if (ctx->image) 823 plt->target = (u64)&dummy_tramp; 824 } 825 826 static void build_epilogue(struct jit_ctx *ctx) 827 { 828 const u8 r0 = bpf2a64[BPF_REG_0]; 829 const u8 ptr = bpf2a64[TCCNT_PTR]; 830 831 /* We're done with BPF stack */ 832 if (ctx->stack_size) 833 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 834 835 pop_callee_regs(ctx); 836 837 emit(A64_POP(A64_ZR, ptr, A64_SP), ctx); 838 839 /* Restore FP/LR registers */ 840 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 841 842 /* Set return value */ 843 emit(A64_MOV(1, A64_R(0), r0), ctx); 844 845 /* Authenticate lr */ 846 if (IS_ENABLED(CONFIG_ARM64_PTR_AUTH_KERNEL)) 847 emit(A64_AUTIASP, ctx); 848 849 emit(A64_RET(A64_LR), ctx); 850 } 851 852 #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0) 853 #define BPF_FIXUP_REG_MASK GENMASK(31, 27) 854 #define DONT_CLEAR 5 /* Unused ARM64 register from BPF's POV */ 855 856 bool ex_handler_bpf(const struct exception_table_entry *ex, 857 struct pt_regs *regs) 858 { 859 off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup); 860 int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup); 861 862 if (dst_reg != DONT_CLEAR) 863 regs->regs[dst_reg] = 0; 864 regs->pc = (unsigned long)&ex->fixup - offset; 865 return true; 866 } 867 868 /* For accesses to BTF pointers, add an entry to the exception table */ 869 static int add_exception_handler(const struct bpf_insn *insn, 870 struct jit_ctx *ctx, 871 int dst_reg) 872 { 873 off_t ins_offset; 874 off_t fixup_offset; 875 unsigned long pc; 876 struct exception_table_entry *ex; 877 878 if (!ctx->image) 879 /* First pass */ 880 return 0; 881 882 if (BPF_MODE(insn->code) != BPF_PROBE_MEM && 883 BPF_MODE(insn->code) != BPF_PROBE_MEMSX && 884 BPF_MODE(insn->code) != BPF_PROBE_MEM32 && 885 BPF_MODE(insn->code) != BPF_PROBE_ATOMIC) 886 return 0; 887 888 if (!ctx->prog->aux->extable || 889 WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries)) 890 return -EINVAL; 891 892 ex = &ctx->prog->aux->extable[ctx->exentry_idx]; 893 pc = (unsigned long)&ctx->ro_image[ctx->idx - 1]; 894 895 /* 896 * This is the relative offset of the instruction that may fault from 897 * the exception table itself. This will be written to the exception 898 * table and if this instruction faults, the destination register will 899 * be set to '0' and the execution will jump to the next instruction. 900 */ 901 ins_offset = pc - (long)&ex->insn; 902 if (WARN_ON_ONCE(ins_offset >= 0 || ins_offset < INT_MIN)) 903 return -ERANGE; 904 905 /* 906 * Since the extable follows the program, the fixup offset is always 907 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value 908 * to keep things simple, and put the destination register in the upper 909 * bits. We don't need to worry about buildtime or runtime sort 910 * modifying the upper bits because the table is already sorted, and 911 * isn't part of the main exception table. 912 * 913 * The fixup_offset is set to the next instruction from the instruction 914 * that may fault. The execution will jump to this after handling the 915 * fault. 916 */ 917 fixup_offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE); 918 if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, fixup_offset)) 919 return -ERANGE; 920 921 /* 922 * The offsets above have been calculated using the RO buffer but we 923 * need to use the R/W buffer for writes. 924 * switch ex to rw buffer for writing. 925 */ 926 ex = (void *)ctx->image + ((void *)ex - (void *)ctx->ro_image); 927 928 ex->insn = ins_offset; 929 930 if (BPF_CLASS(insn->code) != BPF_LDX) 931 dst_reg = DONT_CLEAR; 932 933 ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, fixup_offset) | 934 FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg); 935 936 ex->type = EX_TYPE_BPF; 937 938 ctx->exentry_idx++; 939 return 0; 940 } 941 942 /* JITs an eBPF instruction. 943 * Returns: 944 * 0 - successfully JITed an 8-byte eBPF instruction. 945 * >0 - successfully JITed a 16-byte eBPF instruction. 946 * <0 - failed to JIT. 947 */ 948 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, 949 bool extra_pass) 950 { 951 const u8 code = insn->code; 952 u8 dst = bpf2a64[insn->dst_reg]; 953 u8 src = bpf2a64[insn->src_reg]; 954 const u8 tmp = bpf2a64[TMP_REG_1]; 955 const u8 tmp2 = bpf2a64[TMP_REG_2]; 956 const u8 fp = bpf2a64[BPF_REG_FP]; 957 const u8 arena_vm_base = bpf2a64[ARENA_VM_START]; 958 const s16 off = insn->off; 959 const s32 imm = insn->imm; 960 const int i = insn - ctx->prog->insnsi; 961 const bool is64 = BPF_CLASS(code) == BPF_ALU64 || 962 BPF_CLASS(code) == BPF_JMP; 963 u8 jmp_cond; 964 s32 jmp_offset; 965 u32 a64_insn; 966 u8 src_adj; 967 u8 dst_adj; 968 int off_adj; 969 int ret; 970 bool sign_extend; 971 972 switch (code) { 973 /* dst = src */ 974 case BPF_ALU | BPF_MOV | BPF_X: 975 case BPF_ALU64 | BPF_MOV | BPF_X: 976 if (insn_is_cast_user(insn)) { 977 emit(A64_MOV(0, tmp, src), ctx); // 32-bit mov clears the upper 32 bits 978 emit_a64_mov_i(0, dst, ctx->user_vm_start >> 32, ctx); 979 emit(A64_LSL(1, dst, dst, 32), ctx); 980 emit(A64_CBZ(1, tmp, 2), ctx); 981 emit(A64_ORR(1, tmp, dst, tmp), ctx); 982 emit(A64_MOV(1, dst, tmp), ctx); 983 break; 984 } else if (insn_is_mov_percpu_addr(insn)) { 985 if (dst != src) 986 emit(A64_MOV(1, dst, src), ctx); 987 if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)) 988 emit(A64_MRS_TPIDR_EL2(tmp), ctx); 989 else 990 emit(A64_MRS_TPIDR_EL1(tmp), ctx); 991 emit(A64_ADD(1, dst, dst, tmp), ctx); 992 break; 993 } 994 switch (insn->off) { 995 case 0: 996 emit(A64_MOV(is64, dst, src), ctx); 997 break; 998 case 8: 999 emit(A64_SXTB(is64, dst, src), ctx); 1000 break; 1001 case 16: 1002 emit(A64_SXTH(is64, dst, src), ctx); 1003 break; 1004 case 32: 1005 emit(A64_SXTW(is64, dst, src), ctx); 1006 break; 1007 } 1008 break; 1009 /* dst = dst OP src */ 1010 case BPF_ALU | BPF_ADD | BPF_X: 1011 case BPF_ALU64 | BPF_ADD | BPF_X: 1012 emit(A64_ADD(is64, dst, dst, src), ctx); 1013 break; 1014 case BPF_ALU | BPF_SUB | BPF_X: 1015 case BPF_ALU64 | BPF_SUB | BPF_X: 1016 emit(A64_SUB(is64, dst, dst, src), ctx); 1017 break; 1018 case BPF_ALU | BPF_AND | BPF_X: 1019 case BPF_ALU64 | BPF_AND | BPF_X: 1020 emit(A64_AND(is64, dst, dst, src), ctx); 1021 break; 1022 case BPF_ALU | BPF_OR | BPF_X: 1023 case BPF_ALU64 | BPF_OR | BPF_X: 1024 emit(A64_ORR(is64, dst, dst, src), ctx); 1025 break; 1026 case BPF_ALU | BPF_XOR | BPF_X: 1027 case BPF_ALU64 | BPF_XOR | BPF_X: 1028 emit(A64_EOR(is64, dst, dst, src), ctx); 1029 break; 1030 case BPF_ALU | BPF_MUL | BPF_X: 1031 case BPF_ALU64 | BPF_MUL | BPF_X: 1032 emit(A64_MUL(is64, dst, dst, src), ctx); 1033 break; 1034 case BPF_ALU | BPF_DIV | BPF_X: 1035 case BPF_ALU64 | BPF_DIV | BPF_X: 1036 if (!off) 1037 emit(A64_UDIV(is64, dst, dst, src), ctx); 1038 else 1039 emit(A64_SDIV(is64, dst, dst, src), ctx); 1040 break; 1041 case BPF_ALU | BPF_MOD | BPF_X: 1042 case BPF_ALU64 | BPF_MOD | BPF_X: 1043 if (!off) 1044 emit(A64_UDIV(is64, tmp, dst, src), ctx); 1045 else 1046 emit(A64_SDIV(is64, tmp, dst, src), ctx); 1047 emit(A64_MSUB(is64, dst, dst, tmp, src), ctx); 1048 break; 1049 case BPF_ALU | BPF_LSH | BPF_X: 1050 case BPF_ALU64 | BPF_LSH | BPF_X: 1051 emit(A64_LSLV(is64, dst, dst, src), ctx); 1052 break; 1053 case BPF_ALU | BPF_RSH | BPF_X: 1054 case BPF_ALU64 | BPF_RSH | BPF_X: 1055 emit(A64_LSRV(is64, dst, dst, src), ctx); 1056 break; 1057 case BPF_ALU | BPF_ARSH | BPF_X: 1058 case BPF_ALU64 | BPF_ARSH | BPF_X: 1059 emit(A64_ASRV(is64, dst, dst, src), ctx); 1060 break; 1061 /* dst = -dst */ 1062 case BPF_ALU | BPF_NEG: 1063 case BPF_ALU64 | BPF_NEG: 1064 emit(A64_NEG(is64, dst, dst), ctx); 1065 break; 1066 /* dst = BSWAP##imm(dst) */ 1067 case BPF_ALU | BPF_END | BPF_FROM_LE: 1068 case BPF_ALU | BPF_END | BPF_FROM_BE: 1069 case BPF_ALU64 | BPF_END | BPF_FROM_LE: 1070 #ifdef CONFIG_CPU_BIG_ENDIAN 1071 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_BE) 1072 goto emit_bswap_uxt; 1073 #else /* !CONFIG_CPU_BIG_ENDIAN */ 1074 if (BPF_CLASS(code) == BPF_ALU && BPF_SRC(code) == BPF_FROM_LE) 1075 goto emit_bswap_uxt; 1076 #endif 1077 switch (imm) { 1078 case 16: 1079 emit(A64_REV16(is64, dst, dst), ctx); 1080 /* zero-extend 16 bits into 64 bits */ 1081 emit(A64_UXTH(is64, dst, dst), ctx); 1082 break; 1083 case 32: 1084 emit(A64_REV32(0, dst, dst), ctx); 1085 /* upper 32 bits already cleared */ 1086 break; 1087 case 64: 1088 emit(A64_REV64(dst, dst), ctx); 1089 break; 1090 } 1091 break; 1092 emit_bswap_uxt: 1093 switch (imm) { 1094 case 16: 1095 /* zero-extend 16 bits into 64 bits */ 1096 emit(A64_UXTH(is64, dst, dst), ctx); 1097 break; 1098 case 32: 1099 /* zero-extend 32 bits into 64 bits */ 1100 emit(A64_UXTW(is64, dst, dst), ctx); 1101 break; 1102 case 64: 1103 /* nop */ 1104 break; 1105 } 1106 break; 1107 /* dst = imm */ 1108 case BPF_ALU | BPF_MOV | BPF_K: 1109 case BPF_ALU64 | BPF_MOV | BPF_K: 1110 emit_a64_mov_i(is64, dst, imm, ctx); 1111 break; 1112 /* dst = dst OP imm */ 1113 case BPF_ALU | BPF_ADD | BPF_K: 1114 case BPF_ALU64 | BPF_ADD | BPF_K: 1115 if (is_addsub_imm(imm)) { 1116 emit(A64_ADD_I(is64, dst, dst, imm), ctx); 1117 } else if (is_addsub_imm(-imm)) { 1118 emit(A64_SUB_I(is64, dst, dst, -imm), ctx); 1119 } else { 1120 emit_a64_mov_i(is64, tmp, imm, ctx); 1121 emit(A64_ADD(is64, dst, dst, tmp), ctx); 1122 } 1123 break; 1124 case BPF_ALU | BPF_SUB | BPF_K: 1125 case BPF_ALU64 | BPF_SUB | BPF_K: 1126 if (is_addsub_imm(imm)) { 1127 emit(A64_SUB_I(is64, dst, dst, imm), ctx); 1128 } else if (is_addsub_imm(-imm)) { 1129 emit(A64_ADD_I(is64, dst, dst, -imm), ctx); 1130 } else { 1131 emit_a64_mov_i(is64, tmp, imm, ctx); 1132 emit(A64_SUB(is64, dst, dst, tmp), ctx); 1133 } 1134 break; 1135 case BPF_ALU | BPF_AND | BPF_K: 1136 case BPF_ALU64 | BPF_AND | BPF_K: 1137 a64_insn = A64_AND_I(is64, dst, dst, imm); 1138 if (a64_insn != AARCH64_BREAK_FAULT) { 1139 emit(a64_insn, ctx); 1140 } else { 1141 emit_a64_mov_i(is64, tmp, imm, ctx); 1142 emit(A64_AND(is64, dst, dst, tmp), ctx); 1143 } 1144 break; 1145 case BPF_ALU | BPF_OR | BPF_K: 1146 case BPF_ALU64 | BPF_OR | BPF_K: 1147 a64_insn = A64_ORR_I(is64, dst, dst, imm); 1148 if (a64_insn != AARCH64_BREAK_FAULT) { 1149 emit(a64_insn, ctx); 1150 } else { 1151 emit_a64_mov_i(is64, tmp, imm, ctx); 1152 emit(A64_ORR(is64, dst, dst, tmp), ctx); 1153 } 1154 break; 1155 case BPF_ALU | BPF_XOR | BPF_K: 1156 case BPF_ALU64 | BPF_XOR | BPF_K: 1157 a64_insn = A64_EOR_I(is64, dst, dst, imm); 1158 if (a64_insn != AARCH64_BREAK_FAULT) { 1159 emit(a64_insn, ctx); 1160 } else { 1161 emit_a64_mov_i(is64, tmp, imm, ctx); 1162 emit(A64_EOR(is64, dst, dst, tmp), ctx); 1163 } 1164 break; 1165 case BPF_ALU | BPF_MUL | BPF_K: 1166 case BPF_ALU64 | BPF_MUL | BPF_K: 1167 emit_a64_mov_i(is64, tmp, imm, ctx); 1168 emit(A64_MUL(is64, dst, dst, tmp), ctx); 1169 break; 1170 case BPF_ALU | BPF_DIV | BPF_K: 1171 case BPF_ALU64 | BPF_DIV | BPF_K: 1172 emit_a64_mov_i(is64, tmp, imm, ctx); 1173 if (!off) 1174 emit(A64_UDIV(is64, dst, dst, tmp), ctx); 1175 else 1176 emit(A64_SDIV(is64, dst, dst, tmp), ctx); 1177 break; 1178 case BPF_ALU | BPF_MOD | BPF_K: 1179 case BPF_ALU64 | BPF_MOD | BPF_K: 1180 emit_a64_mov_i(is64, tmp2, imm, ctx); 1181 if (!off) 1182 emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); 1183 else 1184 emit(A64_SDIV(is64, tmp, dst, tmp2), ctx); 1185 emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx); 1186 break; 1187 case BPF_ALU | BPF_LSH | BPF_K: 1188 case BPF_ALU64 | BPF_LSH | BPF_K: 1189 emit(A64_LSL(is64, dst, dst, imm), ctx); 1190 break; 1191 case BPF_ALU | BPF_RSH | BPF_K: 1192 case BPF_ALU64 | BPF_RSH | BPF_K: 1193 emit(A64_LSR(is64, dst, dst, imm), ctx); 1194 break; 1195 case BPF_ALU | BPF_ARSH | BPF_K: 1196 case BPF_ALU64 | BPF_ARSH | BPF_K: 1197 emit(A64_ASR(is64, dst, dst, imm), ctx); 1198 break; 1199 1200 /* JUMP off */ 1201 case BPF_JMP | BPF_JA: 1202 case BPF_JMP32 | BPF_JA: 1203 if (BPF_CLASS(code) == BPF_JMP) 1204 jmp_offset = bpf2a64_offset(i, off, ctx); 1205 else 1206 jmp_offset = bpf2a64_offset(i, imm, ctx); 1207 check_imm26(jmp_offset); 1208 emit(A64_B(jmp_offset), ctx); 1209 break; 1210 /* IF (dst COND src) JUMP off */ 1211 case BPF_JMP | BPF_JEQ | BPF_X: 1212 case BPF_JMP | BPF_JGT | BPF_X: 1213 case BPF_JMP | BPF_JLT | BPF_X: 1214 case BPF_JMP | BPF_JGE | BPF_X: 1215 case BPF_JMP | BPF_JLE | BPF_X: 1216 case BPF_JMP | BPF_JNE | BPF_X: 1217 case BPF_JMP | BPF_JSGT | BPF_X: 1218 case BPF_JMP | BPF_JSLT | BPF_X: 1219 case BPF_JMP | BPF_JSGE | BPF_X: 1220 case BPF_JMP | BPF_JSLE | BPF_X: 1221 case BPF_JMP32 | BPF_JEQ | BPF_X: 1222 case BPF_JMP32 | BPF_JGT | BPF_X: 1223 case BPF_JMP32 | BPF_JLT | BPF_X: 1224 case BPF_JMP32 | BPF_JGE | BPF_X: 1225 case BPF_JMP32 | BPF_JLE | BPF_X: 1226 case BPF_JMP32 | BPF_JNE | BPF_X: 1227 case BPF_JMP32 | BPF_JSGT | BPF_X: 1228 case BPF_JMP32 | BPF_JSLT | BPF_X: 1229 case BPF_JMP32 | BPF_JSGE | BPF_X: 1230 case BPF_JMP32 | BPF_JSLE | BPF_X: 1231 emit(A64_CMP(is64, dst, src), ctx); 1232 emit_cond_jmp: 1233 jmp_offset = bpf2a64_offset(i, off, ctx); 1234 check_imm19(jmp_offset); 1235 switch (BPF_OP(code)) { 1236 case BPF_JEQ: 1237 jmp_cond = A64_COND_EQ; 1238 break; 1239 case BPF_JGT: 1240 jmp_cond = A64_COND_HI; 1241 break; 1242 case BPF_JLT: 1243 jmp_cond = A64_COND_CC; 1244 break; 1245 case BPF_JGE: 1246 jmp_cond = A64_COND_CS; 1247 break; 1248 case BPF_JLE: 1249 jmp_cond = A64_COND_LS; 1250 break; 1251 case BPF_JSET: 1252 case BPF_JNE: 1253 jmp_cond = A64_COND_NE; 1254 break; 1255 case BPF_JSGT: 1256 jmp_cond = A64_COND_GT; 1257 break; 1258 case BPF_JSLT: 1259 jmp_cond = A64_COND_LT; 1260 break; 1261 case BPF_JSGE: 1262 jmp_cond = A64_COND_GE; 1263 break; 1264 case BPF_JSLE: 1265 jmp_cond = A64_COND_LE; 1266 break; 1267 default: 1268 return -EFAULT; 1269 } 1270 emit(A64_B_(jmp_cond, jmp_offset), ctx); 1271 break; 1272 case BPF_JMP | BPF_JSET | BPF_X: 1273 case BPF_JMP32 | BPF_JSET | BPF_X: 1274 emit(A64_TST(is64, dst, src), ctx); 1275 goto emit_cond_jmp; 1276 /* IF (dst COND imm) JUMP off */ 1277 case BPF_JMP | BPF_JEQ | BPF_K: 1278 case BPF_JMP | BPF_JGT | BPF_K: 1279 case BPF_JMP | BPF_JLT | BPF_K: 1280 case BPF_JMP | BPF_JGE | BPF_K: 1281 case BPF_JMP | BPF_JLE | BPF_K: 1282 case BPF_JMP | BPF_JNE | BPF_K: 1283 case BPF_JMP | BPF_JSGT | BPF_K: 1284 case BPF_JMP | BPF_JSLT | BPF_K: 1285 case BPF_JMP | BPF_JSGE | BPF_K: 1286 case BPF_JMP | BPF_JSLE | BPF_K: 1287 case BPF_JMP32 | BPF_JEQ | BPF_K: 1288 case BPF_JMP32 | BPF_JGT | BPF_K: 1289 case BPF_JMP32 | BPF_JLT | BPF_K: 1290 case BPF_JMP32 | BPF_JGE | BPF_K: 1291 case BPF_JMP32 | BPF_JLE | BPF_K: 1292 case BPF_JMP32 | BPF_JNE | BPF_K: 1293 case BPF_JMP32 | BPF_JSGT | BPF_K: 1294 case BPF_JMP32 | BPF_JSLT | BPF_K: 1295 case BPF_JMP32 | BPF_JSGE | BPF_K: 1296 case BPF_JMP32 | BPF_JSLE | BPF_K: 1297 if (is_addsub_imm(imm)) { 1298 emit(A64_CMP_I(is64, dst, imm), ctx); 1299 } else if (is_addsub_imm(-imm)) { 1300 emit(A64_CMN_I(is64, dst, -imm), ctx); 1301 } else { 1302 emit_a64_mov_i(is64, tmp, imm, ctx); 1303 emit(A64_CMP(is64, dst, tmp), ctx); 1304 } 1305 goto emit_cond_jmp; 1306 case BPF_JMP | BPF_JSET | BPF_K: 1307 case BPF_JMP32 | BPF_JSET | BPF_K: 1308 a64_insn = A64_TST_I(is64, dst, imm); 1309 if (a64_insn != AARCH64_BREAK_FAULT) { 1310 emit(a64_insn, ctx); 1311 } else { 1312 emit_a64_mov_i(is64, tmp, imm, ctx); 1313 emit(A64_TST(is64, dst, tmp), ctx); 1314 } 1315 goto emit_cond_jmp; 1316 /* function call */ 1317 case BPF_JMP | BPF_CALL: 1318 { 1319 const u8 r0 = bpf2a64[BPF_REG_0]; 1320 bool func_addr_fixed; 1321 u64 func_addr; 1322 u32 cpu_offset; 1323 1324 /* Implement helper call to bpf_get_smp_processor_id() inline */ 1325 if (insn->src_reg == 0 && insn->imm == BPF_FUNC_get_smp_processor_id) { 1326 cpu_offset = offsetof(struct thread_info, cpu); 1327 1328 emit(A64_MRS_SP_EL0(tmp), ctx); 1329 if (is_lsi_offset(cpu_offset, 2)) { 1330 emit(A64_LDR32I(r0, tmp, cpu_offset), ctx); 1331 } else { 1332 emit_a64_mov_i(1, tmp2, cpu_offset, ctx); 1333 emit(A64_LDR32(r0, tmp, tmp2), ctx); 1334 } 1335 break; 1336 } 1337 1338 /* Implement helper call to bpf_get_current_task/_btf() inline */ 1339 if (insn->src_reg == 0 && (insn->imm == BPF_FUNC_get_current_task || 1340 insn->imm == BPF_FUNC_get_current_task_btf)) { 1341 emit(A64_MRS_SP_EL0(r0), ctx); 1342 break; 1343 } 1344 1345 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, 1346 &func_addr, &func_addr_fixed); 1347 if (ret < 0) 1348 return ret; 1349 emit_call(func_addr, ctx); 1350 emit(A64_MOV(1, r0, A64_R(0)), ctx); 1351 break; 1352 } 1353 /* tail call */ 1354 case BPF_JMP | BPF_TAIL_CALL: 1355 if (emit_bpf_tail_call(ctx)) 1356 return -EFAULT; 1357 break; 1358 /* function return */ 1359 case BPF_JMP | BPF_EXIT: 1360 /* Optimization: when last instruction is EXIT, 1361 simply fallthrough to epilogue. */ 1362 if (i == ctx->prog->len - 1) 1363 break; 1364 jmp_offset = epilogue_offset(ctx); 1365 check_imm26(jmp_offset); 1366 emit(A64_B(jmp_offset), ctx); 1367 break; 1368 1369 /* dst = imm64 */ 1370 case BPF_LD | BPF_IMM | BPF_DW: 1371 { 1372 const struct bpf_insn insn1 = insn[1]; 1373 u64 imm64; 1374 1375 imm64 = (u64)insn1.imm << 32 | (u32)imm; 1376 if (bpf_pseudo_func(insn)) 1377 emit_addr_mov_i64(dst, imm64, ctx); 1378 else 1379 emit_a64_mov_i64(dst, imm64, ctx); 1380 1381 return 1; 1382 } 1383 1384 /* LDX: dst = (u64)*(unsigned size *)(src + off) */ 1385 case BPF_LDX | BPF_MEM | BPF_W: 1386 case BPF_LDX | BPF_MEM | BPF_H: 1387 case BPF_LDX | BPF_MEM | BPF_B: 1388 case BPF_LDX | BPF_MEM | BPF_DW: 1389 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 1390 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 1391 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 1392 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 1393 /* LDXS: dst_reg = (s64)*(signed size *)(src_reg + off) */ 1394 case BPF_LDX | BPF_MEMSX | BPF_B: 1395 case BPF_LDX | BPF_MEMSX | BPF_H: 1396 case BPF_LDX | BPF_MEMSX | BPF_W: 1397 case BPF_LDX | BPF_PROBE_MEMSX | BPF_B: 1398 case BPF_LDX | BPF_PROBE_MEMSX | BPF_H: 1399 case BPF_LDX | BPF_PROBE_MEMSX | BPF_W: 1400 case BPF_LDX | BPF_PROBE_MEM32 | BPF_B: 1401 case BPF_LDX | BPF_PROBE_MEM32 | BPF_H: 1402 case BPF_LDX | BPF_PROBE_MEM32 | BPF_W: 1403 case BPF_LDX | BPF_PROBE_MEM32 | BPF_DW: 1404 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1405 emit(A64_ADD(1, tmp2, src, arena_vm_base), ctx); 1406 src = tmp2; 1407 } 1408 if (src == fp) { 1409 src_adj = A64_SP; 1410 off_adj = off + ctx->stack_size; 1411 } else { 1412 src_adj = src; 1413 off_adj = off; 1414 } 1415 sign_extend = (BPF_MODE(insn->code) == BPF_MEMSX || 1416 BPF_MODE(insn->code) == BPF_PROBE_MEMSX); 1417 switch (BPF_SIZE(code)) { 1418 case BPF_W: 1419 if (is_lsi_offset(off_adj, 2)) { 1420 if (sign_extend) 1421 emit(A64_LDRSWI(dst, src_adj, off_adj), ctx); 1422 else 1423 emit(A64_LDR32I(dst, src_adj, off_adj), ctx); 1424 } else { 1425 emit_a64_mov_i(1, tmp, off, ctx); 1426 if (sign_extend) 1427 emit(A64_LDRSW(dst, src, tmp), ctx); 1428 else 1429 emit(A64_LDR32(dst, src, tmp), ctx); 1430 } 1431 break; 1432 case BPF_H: 1433 if (is_lsi_offset(off_adj, 1)) { 1434 if (sign_extend) 1435 emit(A64_LDRSHI(dst, src_adj, off_adj), ctx); 1436 else 1437 emit(A64_LDRHI(dst, src_adj, off_adj), ctx); 1438 } else { 1439 emit_a64_mov_i(1, tmp, off, ctx); 1440 if (sign_extend) 1441 emit(A64_LDRSH(dst, src, tmp), ctx); 1442 else 1443 emit(A64_LDRH(dst, src, tmp), ctx); 1444 } 1445 break; 1446 case BPF_B: 1447 if (is_lsi_offset(off_adj, 0)) { 1448 if (sign_extend) 1449 emit(A64_LDRSBI(dst, src_adj, off_adj), ctx); 1450 else 1451 emit(A64_LDRBI(dst, src_adj, off_adj), ctx); 1452 } else { 1453 emit_a64_mov_i(1, tmp, off, ctx); 1454 if (sign_extend) 1455 emit(A64_LDRSB(dst, src, tmp), ctx); 1456 else 1457 emit(A64_LDRB(dst, src, tmp), ctx); 1458 } 1459 break; 1460 case BPF_DW: 1461 if (is_lsi_offset(off_adj, 3)) { 1462 emit(A64_LDR64I(dst, src_adj, off_adj), ctx); 1463 } else { 1464 emit_a64_mov_i(1, tmp, off, ctx); 1465 emit(A64_LDR64(dst, src, tmp), ctx); 1466 } 1467 break; 1468 } 1469 1470 ret = add_exception_handler(insn, ctx, dst); 1471 if (ret) 1472 return ret; 1473 break; 1474 1475 /* speculation barrier */ 1476 case BPF_ST | BPF_NOSPEC: 1477 /* 1478 * Nothing required here. 1479 * 1480 * In case of arm64, we rely on the firmware mitigation of 1481 * Speculative Store Bypass as controlled via the ssbd kernel 1482 * parameter. Whenever the mitigation is enabled, it works 1483 * for all of the kernel code with no need to provide any 1484 * additional instructions. 1485 */ 1486 break; 1487 1488 /* ST: *(size *)(dst + off) = imm */ 1489 case BPF_ST | BPF_MEM | BPF_W: 1490 case BPF_ST | BPF_MEM | BPF_H: 1491 case BPF_ST | BPF_MEM | BPF_B: 1492 case BPF_ST | BPF_MEM | BPF_DW: 1493 case BPF_ST | BPF_PROBE_MEM32 | BPF_B: 1494 case BPF_ST | BPF_PROBE_MEM32 | BPF_H: 1495 case BPF_ST | BPF_PROBE_MEM32 | BPF_W: 1496 case BPF_ST | BPF_PROBE_MEM32 | BPF_DW: 1497 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1498 emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx); 1499 dst = tmp2; 1500 } 1501 if (dst == fp) { 1502 dst_adj = A64_SP; 1503 off_adj = off + ctx->stack_size; 1504 } else { 1505 dst_adj = dst; 1506 off_adj = off; 1507 } 1508 /* Load imm to a register then store it */ 1509 emit_a64_mov_i(1, tmp, imm, ctx); 1510 switch (BPF_SIZE(code)) { 1511 case BPF_W: 1512 if (is_lsi_offset(off_adj, 2)) { 1513 emit(A64_STR32I(tmp, dst_adj, off_adj), ctx); 1514 } else { 1515 emit_a64_mov_i(1, tmp2, off, ctx); 1516 emit(A64_STR32(tmp, dst, tmp2), ctx); 1517 } 1518 break; 1519 case BPF_H: 1520 if (is_lsi_offset(off_adj, 1)) { 1521 emit(A64_STRHI(tmp, dst_adj, off_adj), ctx); 1522 } else { 1523 emit_a64_mov_i(1, tmp2, off, ctx); 1524 emit(A64_STRH(tmp, dst, tmp2), ctx); 1525 } 1526 break; 1527 case BPF_B: 1528 if (is_lsi_offset(off_adj, 0)) { 1529 emit(A64_STRBI(tmp, dst_adj, off_adj), ctx); 1530 } else { 1531 emit_a64_mov_i(1, tmp2, off, ctx); 1532 emit(A64_STRB(tmp, dst, tmp2), ctx); 1533 } 1534 break; 1535 case BPF_DW: 1536 if (is_lsi_offset(off_adj, 3)) { 1537 emit(A64_STR64I(tmp, dst_adj, off_adj), ctx); 1538 } else { 1539 emit_a64_mov_i(1, tmp2, off, ctx); 1540 emit(A64_STR64(tmp, dst, tmp2), ctx); 1541 } 1542 break; 1543 } 1544 1545 ret = add_exception_handler(insn, ctx, dst); 1546 if (ret) 1547 return ret; 1548 break; 1549 1550 /* STX: *(size *)(dst + off) = src */ 1551 case BPF_STX | BPF_MEM | BPF_W: 1552 case BPF_STX | BPF_MEM | BPF_H: 1553 case BPF_STX | BPF_MEM | BPF_B: 1554 case BPF_STX | BPF_MEM | BPF_DW: 1555 case BPF_STX | BPF_PROBE_MEM32 | BPF_B: 1556 case BPF_STX | BPF_PROBE_MEM32 | BPF_H: 1557 case BPF_STX | BPF_PROBE_MEM32 | BPF_W: 1558 case BPF_STX | BPF_PROBE_MEM32 | BPF_DW: 1559 if (BPF_MODE(insn->code) == BPF_PROBE_MEM32) { 1560 emit(A64_ADD(1, tmp2, dst, arena_vm_base), ctx); 1561 dst = tmp2; 1562 } 1563 if (dst == fp) { 1564 dst_adj = A64_SP; 1565 off_adj = off + ctx->stack_size; 1566 } else { 1567 dst_adj = dst; 1568 off_adj = off; 1569 } 1570 switch (BPF_SIZE(code)) { 1571 case BPF_W: 1572 if (is_lsi_offset(off_adj, 2)) { 1573 emit(A64_STR32I(src, dst_adj, off_adj), ctx); 1574 } else { 1575 emit_a64_mov_i(1, tmp, off, ctx); 1576 emit(A64_STR32(src, dst, tmp), ctx); 1577 } 1578 break; 1579 case BPF_H: 1580 if (is_lsi_offset(off_adj, 1)) { 1581 emit(A64_STRHI(src, dst_adj, off_adj), ctx); 1582 } else { 1583 emit_a64_mov_i(1, tmp, off, ctx); 1584 emit(A64_STRH(src, dst, tmp), ctx); 1585 } 1586 break; 1587 case BPF_B: 1588 if (is_lsi_offset(off_adj, 0)) { 1589 emit(A64_STRBI(src, dst_adj, off_adj), ctx); 1590 } else { 1591 emit_a64_mov_i(1, tmp, off, ctx); 1592 emit(A64_STRB(src, dst, tmp), ctx); 1593 } 1594 break; 1595 case BPF_DW: 1596 if (is_lsi_offset(off_adj, 3)) { 1597 emit(A64_STR64I(src, dst_adj, off_adj), ctx); 1598 } else { 1599 emit_a64_mov_i(1, tmp, off, ctx); 1600 emit(A64_STR64(src, dst, tmp), ctx); 1601 } 1602 break; 1603 } 1604 1605 ret = add_exception_handler(insn, ctx, dst); 1606 if (ret) 1607 return ret; 1608 break; 1609 1610 case BPF_STX | BPF_ATOMIC | BPF_W: 1611 case BPF_STX | BPF_ATOMIC | BPF_DW: 1612 case BPF_STX | BPF_PROBE_ATOMIC | BPF_W: 1613 case BPF_STX | BPF_PROBE_ATOMIC | BPF_DW: 1614 if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) 1615 ret = emit_lse_atomic(insn, ctx); 1616 else 1617 ret = emit_ll_sc_atomic(insn, ctx); 1618 if (ret) 1619 return ret; 1620 1621 ret = add_exception_handler(insn, ctx, dst); 1622 if (ret) 1623 return ret; 1624 break; 1625 1626 default: 1627 pr_err_once("unknown opcode %02x\n", code); 1628 return -EINVAL; 1629 } 1630 1631 return 0; 1632 } 1633 1634 static int build_body(struct jit_ctx *ctx, bool extra_pass) 1635 { 1636 const struct bpf_prog *prog = ctx->prog; 1637 int i; 1638 1639 /* 1640 * - offset[0] offset of the end of prologue, 1641 * start of the 1st instruction. 1642 * - offset[1] - offset of the end of 1st instruction, 1643 * start of the 2nd instruction 1644 * [....] 1645 * - offset[3] - offset of the end of 3rd instruction, 1646 * start of 4th instruction 1647 */ 1648 for (i = 0; i < prog->len; i++) { 1649 const struct bpf_insn *insn = &prog->insnsi[i]; 1650 int ret; 1651 1652 if (ctx->image == NULL) 1653 ctx->offset[i] = ctx->idx; 1654 ret = build_insn(insn, ctx, extra_pass); 1655 if (ret > 0) { 1656 i++; 1657 if (ctx->image == NULL) 1658 ctx->offset[i] = ctx->idx; 1659 continue; 1660 } 1661 if (ret) 1662 return ret; 1663 } 1664 /* 1665 * offset is allocated with prog->len + 1 so fill in 1666 * the last element with the offset after the last 1667 * instruction (end of program) 1668 */ 1669 if (ctx->image == NULL) 1670 ctx->offset[i] = ctx->idx; 1671 1672 return 0; 1673 } 1674 1675 static int validate_code(struct jit_ctx *ctx) 1676 { 1677 int i; 1678 1679 for (i = 0; i < ctx->idx; i++) { 1680 u32 a64_insn = le32_to_cpu(ctx->image[i]); 1681 1682 if (a64_insn == AARCH64_BREAK_FAULT) 1683 return -1; 1684 } 1685 return 0; 1686 } 1687 1688 static int validate_ctx(struct jit_ctx *ctx) 1689 { 1690 if (validate_code(ctx)) 1691 return -1; 1692 1693 if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries)) 1694 return -1; 1695 1696 return 0; 1697 } 1698 1699 static inline void bpf_flush_icache(void *start, void *end) 1700 { 1701 flush_icache_range((unsigned long)start, (unsigned long)end); 1702 } 1703 1704 struct arm64_jit_data { 1705 struct bpf_binary_header *header; 1706 u8 *ro_image; 1707 struct bpf_binary_header *ro_header; 1708 struct jit_ctx ctx; 1709 }; 1710 1711 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 1712 { 1713 int image_size, prog_size, extable_size, extable_align, extable_offset; 1714 struct bpf_prog *tmp, *orig_prog = prog; 1715 struct bpf_binary_header *header; 1716 struct bpf_binary_header *ro_header; 1717 struct arm64_jit_data *jit_data; 1718 bool was_classic = bpf_prog_was_classic(prog); 1719 bool tmp_blinded = false; 1720 bool extra_pass = false; 1721 struct jit_ctx ctx; 1722 u8 *image_ptr; 1723 u8 *ro_image_ptr; 1724 1725 if (!prog->jit_requested) 1726 return orig_prog; 1727 1728 tmp = bpf_jit_blind_constants(prog); 1729 /* If blinding was requested and we failed during blinding, 1730 * we must fall back to the interpreter. 1731 */ 1732 if (IS_ERR(tmp)) 1733 return orig_prog; 1734 if (tmp != prog) { 1735 tmp_blinded = true; 1736 prog = tmp; 1737 } 1738 1739 jit_data = prog->aux->jit_data; 1740 if (!jit_data) { 1741 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 1742 if (!jit_data) { 1743 prog = orig_prog; 1744 goto out; 1745 } 1746 prog->aux->jit_data = jit_data; 1747 } 1748 if (jit_data->ctx.offset) { 1749 ctx = jit_data->ctx; 1750 ro_image_ptr = jit_data->ro_image; 1751 ro_header = jit_data->ro_header; 1752 header = jit_data->header; 1753 image_ptr = (void *)header + ((void *)ro_image_ptr 1754 - (void *)ro_header); 1755 extra_pass = true; 1756 prog_size = sizeof(u32) * ctx.idx; 1757 goto skip_init_ctx; 1758 } 1759 memset(&ctx, 0, sizeof(ctx)); 1760 ctx.prog = prog; 1761 1762 ctx.offset = kvcalloc(prog->len + 1, sizeof(int), GFP_KERNEL); 1763 if (ctx.offset == NULL) { 1764 prog = orig_prog; 1765 goto out_off; 1766 } 1767 1768 ctx.user_vm_start = bpf_arena_get_user_vm_start(prog->aux->arena); 1769 ctx.arena_vm_start = bpf_arena_get_kern_vm_start(prog->aux->arena); 1770 1771 /* 1772 * 1. Initial fake pass to compute ctx->idx and ctx->offset. 1773 * 1774 * BPF line info needs ctx->offset[i] to be the offset of 1775 * instruction[i] in jited image, so build prologue first. 1776 */ 1777 if (build_prologue(&ctx, was_classic)) { 1778 prog = orig_prog; 1779 goto out_off; 1780 } 1781 1782 if (build_body(&ctx, extra_pass)) { 1783 prog = orig_prog; 1784 goto out_off; 1785 } 1786 1787 ctx.epilogue_offset = ctx.idx; 1788 build_epilogue(&ctx); 1789 build_plt(&ctx); 1790 1791 extable_align = __alignof__(struct exception_table_entry); 1792 extable_size = prog->aux->num_exentries * 1793 sizeof(struct exception_table_entry); 1794 1795 /* Now we know the actual image size. */ 1796 prog_size = sizeof(u32) * ctx.idx; 1797 /* also allocate space for plt target */ 1798 extable_offset = round_up(prog_size + PLT_TARGET_SIZE, extable_align); 1799 image_size = extable_offset + extable_size; 1800 ro_header = bpf_jit_binary_pack_alloc(image_size, &ro_image_ptr, 1801 sizeof(u32), &header, &image_ptr, 1802 jit_fill_hole); 1803 if (!ro_header) { 1804 prog = orig_prog; 1805 goto out_off; 1806 } 1807 1808 /* 2. Now, the actual pass. */ 1809 1810 /* 1811 * Use the image(RW) for writing the JITed instructions. But also save 1812 * the ro_image(RX) for calculating the offsets in the image. The RW 1813 * image will be later copied to the RX image from where the program 1814 * will run. The bpf_jit_binary_pack_finalize() will do this copy in the 1815 * final step. 1816 */ 1817 ctx.image = (__le32 *)image_ptr; 1818 ctx.ro_image = (__le32 *)ro_image_ptr; 1819 if (extable_size) 1820 prog->aux->extable = (void *)ro_image_ptr + extable_offset; 1821 skip_init_ctx: 1822 ctx.idx = 0; 1823 ctx.exentry_idx = 0; 1824 1825 build_prologue(&ctx, was_classic); 1826 1827 if (build_body(&ctx, extra_pass)) { 1828 prog = orig_prog; 1829 goto out_free_hdr; 1830 } 1831 1832 build_epilogue(&ctx); 1833 build_plt(&ctx); 1834 1835 /* 3. Extra pass to validate JITed code. */ 1836 if (validate_ctx(&ctx)) { 1837 prog = orig_prog; 1838 goto out_free_hdr; 1839 } 1840 1841 /* And we're done. */ 1842 if (bpf_jit_enable > 1) 1843 bpf_jit_dump(prog->len, prog_size, 2, ctx.image); 1844 1845 if (!prog->is_func || extra_pass) { 1846 if (extra_pass && ctx.idx != jit_data->ctx.idx) { 1847 pr_err_once("multi-func JIT bug %d != %d\n", 1848 ctx.idx, jit_data->ctx.idx); 1849 prog->bpf_func = NULL; 1850 prog->jited = 0; 1851 prog->jited_len = 0; 1852 goto out_free_hdr; 1853 } 1854 if (WARN_ON(bpf_jit_binary_pack_finalize(ro_header, header))) { 1855 /* ro_header has been freed */ 1856 ro_header = NULL; 1857 prog = orig_prog; 1858 goto out_off; 1859 } 1860 /* 1861 * The instructions have now been copied to the ROX region from 1862 * where they will execute. Now the data cache has to be cleaned to 1863 * the PoU and the I-cache has to be invalidated for the VAs. 1864 */ 1865 bpf_flush_icache(ro_header, ctx.ro_image + ctx.idx); 1866 } else { 1867 jit_data->ctx = ctx; 1868 jit_data->ro_image = ro_image_ptr; 1869 jit_data->header = header; 1870 jit_data->ro_header = ro_header; 1871 } 1872 1873 prog->bpf_func = (void *)ctx.ro_image; 1874 prog->jited = 1; 1875 prog->jited_len = prog_size; 1876 1877 if (!prog->is_func || extra_pass) { 1878 int i; 1879 1880 /* offset[prog->len] is the size of program */ 1881 for (i = 0; i <= prog->len; i++) 1882 ctx.offset[i] *= AARCH64_INSN_SIZE; 1883 bpf_prog_fill_jited_linfo(prog, ctx.offset + 1); 1884 out_off: 1885 kvfree(ctx.offset); 1886 kfree(jit_data); 1887 prog->aux->jit_data = NULL; 1888 } 1889 out: 1890 if (tmp_blinded) 1891 bpf_jit_prog_release_other(prog, prog == orig_prog ? 1892 tmp : orig_prog); 1893 return prog; 1894 1895 out_free_hdr: 1896 if (header) { 1897 bpf_arch_text_copy(&ro_header->size, &header->size, 1898 sizeof(header->size)); 1899 bpf_jit_binary_pack_free(ro_header, header); 1900 } 1901 goto out_off; 1902 } 1903 1904 bool bpf_jit_supports_kfunc_call(void) 1905 { 1906 return true; 1907 } 1908 1909 void *bpf_arch_text_copy(void *dst, void *src, size_t len) 1910 { 1911 if (!aarch64_insn_copy(dst, src, len)) 1912 return ERR_PTR(-EINVAL); 1913 return dst; 1914 } 1915 1916 u64 bpf_jit_alloc_exec_limit(void) 1917 { 1918 return VMALLOC_END - VMALLOC_START; 1919 } 1920 1921 /* Indicate the JIT backend supports mixing bpf2bpf and tailcalls. */ 1922 bool bpf_jit_supports_subprog_tailcalls(void) 1923 { 1924 return true; 1925 } 1926 1927 static void invoke_bpf_prog(struct jit_ctx *ctx, struct bpf_tramp_link *l, 1928 int args_off, int retval_off, int run_ctx_off, 1929 bool save_ret) 1930 { 1931 __le32 *branch; 1932 u64 enter_prog; 1933 u64 exit_prog; 1934 struct bpf_prog *p = l->link.prog; 1935 int cookie_off = offsetof(struct bpf_tramp_run_ctx, bpf_cookie); 1936 1937 enter_prog = (u64)bpf_trampoline_enter(p); 1938 exit_prog = (u64)bpf_trampoline_exit(p); 1939 1940 if (l->cookie == 0) { 1941 /* if cookie is zero, one instruction is enough to store it */ 1942 emit(A64_STR64I(A64_ZR, A64_SP, run_ctx_off + cookie_off), ctx); 1943 } else { 1944 emit_a64_mov_i64(A64_R(10), l->cookie, ctx); 1945 emit(A64_STR64I(A64_R(10), A64_SP, run_ctx_off + cookie_off), 1946 ctx); 1947 } 1948 1949 /* save p to callee saved register x19 to avoid loading p with mov_i64 1950 * each time. 1951 */ 1952 emit_addr_mov_i64(A64_R(19), (const u64)p, ctx); 1953 1954 /* arg1: prog */ 1955 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); 1956 /* arg2: &run_ctx */ 1957 emit(A64_ADD_I(1, A64_R(1), A64_SP, run_ctx_off), ctx); 1958 1959 emit_call(enter_prog, ctx); 1960 1961 /* save return value to callee saved register x20 */ 1962 emit(A64_MOV(1, A64_R(20), A64_R(0)), ctx); 1963 1964 /* if (__bpf_prog_enter(prog) == 0) 1965 * goto skip_exec_of_prog; 1966 */ 1967 branch = ctx->image + ctx->idx; 1968 emit(A64_NOP, ctx); 1969 1970 emit(A64_ADD_I(1, A64_R(0), A64_SP, args_off), ctx); 1971 if (!p->jited) 1972 emit_addr_mov_i64(A64_R(1), (const u64)p->insnsi, ctx); 1973 1974 emit_call((const u64)p->bpf_func, ctx); 1975 1976 if (save_ret) 1977 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); 1978 1979 if (ctx->image) { 1980 int offset = &ctx->image[ctx->idx] - branch; 1981 *branch = cpu_to_le32(A64_CBZ(1, A64_R(0), offset)); 1982 } 1983 1984 /* arg1: prog */ 1985 emit(A64_MOV(1, A64_R(0), A64_R(19)), ctx); 1986 /* arg2: start time */ 1987 emit(A64_MOV(1, A64_R(1), A64_R(20)), ctx); 1988 /* arg3: &run_ctx */ 1989 emit(A64_ADD_I(1, A64_R(2), A64_SP, run_ctx_off), ctx); 1990 1991 emit_call(exit_prog, ctx); 1992 } 1993 1994 static void invoke_bpf_mod_ret(struct jit_ctx *ctx, struct bpf_tramp_links *tl, 1995 int args_off, int retval_off, int run_ctx_off, 1996 __le32 **branches) 1997 { 1998 int i; 1999 2000 /* The first fmod_ret program will receive a garbage return value. 2001 * Set this to 0 to avoid confusing the program. 2002 */ 2003 emit(A64_STR64I(A64_ZR, A64_SP, retval_off), ctx); 2004 for (i = 0; i < tl->nr_links; i++) { 2005 invoke_bpf_prog(ctx, tl->links[i], args_off, retval_off, 2006 run_ctx_off, true); 2007 /* if (*(u64 *)(sp + retval_off) != 0) 2008 * goto do_fexit; 2009 */ 2010 emit(A64_LDR64I(A64_R(10), A64_SP, retval_off), ctx); 2011 /* Save the location of branch, and generate a nop. 2012 * This nop will be replaced with a cbnz later. 2013 */ 2014 branches[i] = ctx->image + ctx->idx; 2015 emit(A64_NOP, ctx); 2016 } 2017 } 2018 2019 static void save_args(struct jit_ctx *ctx, int args_off, int nregs) 2020 { 2021 int i; 2022 2023 for (i = 0; i < nregs; i++) { 2024 emit(A64_STR64I(i, A64_SP, args_off), ctx); 2025 args_off += 8; 2026 } 2027 } 2028 2029 static void restore_args(struct jit_ctx *ctx, int args_off, int nregs) 2030 { 2031 int i; 2032 2033 for (i = 0; i < nregs; i++) { 2034 emit(A64_LDR64I(i, A64_SP, args_off), ctx); 2035 args_off += 8; 2036 } 2037 } 2038 2039 /* Based on the x86's implementation of arch_prepare_bpf_trampoline(). 2040 * 2041 * bpf prog and function entry before bpf trampoline hooked: 2042 * mov x9, lr 2043 * nop 2044 * 2045 * bpf prog and function entry after bpf trampoline hooked: 2046 * mov x9, lr 2047 * bl <bpf_trampoline or plt> 2048 * 2049 */ 2050 static int prepare_trampoline(struct jit_ctx *ctx, struct bpf_tramp_image *im, 2051 struct bpf_tramp_links *tlinks, void *func_addr, 2052 int nregs, u32 flags) 2053 { 2054 int i; 2055 int stack_size; 2056 int retaddr_off; 2057 int regs_off; 2058 int retval_off; 2059 int args_off; 2060 int nregs_off; 2061 int ip_off; 2062 int run_ctx_off; 2063 struct bpf_tramp_links *fentry = &tlinks[BPF_TRAMP_FENTRY]; 2064 struct bpf_tramp_links *fexit = &tlinks[BPF_TRAMP_FEXIT]; 2065 struct bpf_tramp_links *fmod_ret = &tlinks[BPF_TRAMP_MODIFY_RETURN]; 2066 bool save_ret; 2067 __le32 **branches = NULL; 2068 2069 /* trampoline stack layout: 2070 * [ parent ip ] 2071 * [ FP ] 2072 * SP + retaddr_off [ self ip ] 2073 * [ FP ] 2074 * 2075 * [ padding ] align SP to multiples of 16 2076 * 2077 * [ x20 ] callee saved reg x20 2078 * SP + regs_off [ x19 ] callee saved reg x19 2079 * 2080 * SP + retval_off [ return value ] BPF_TRAMP_F_CALL_ORIG or 2081 * BPF_TRAMP_F_RET_FENTRY_RET 2082 * 2083 * [ arg reg N ] 2084 * [ ... ] 2085 * SP + args_off [ arg reg 1 ] 2086 * 2087 * SP + nregs_off [ arg regs count ] 2088 * 2089 * SP + ip_off [ traced function ] BPF_TRAMP_F_IP_ARG flag 2090 * 2091 * SP + run_ctx_off [ bpf_tramp_run_ctx ] 2092 */ 2093 2094 stack_size = 0; 2095 run_ctx_off = stack_size; 2096 /* room for bpf_tramp_run_ctx */ 2097 stack_size += round_up(sizeof(struct bpf_tramp_run_ctx), 8); 2098 2099 ip_off = stack_size; 2100 /* room for IP address argument */ 2101 if (flags & BPF_TRAMP_F_IP_ARG) 2102 stack_size += 8; 2103 2104 nregs_off = stack_size; 2105 /* room for args count */ 2106 stack_size += 8; 2107 2108 args_off = stack_size; 2109 /* room for args */ 2110 stack_size += nregs * 8; 2111 2112 /* room for return value */ 2113 retval_off = stack_size; 2114 save_ret = flags & (BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_RET_FENTRY_RET); 2115 if (save_ret) 2116 stack_size += 8; 2117 2118 /* room for callee saved registers, currently x19 and x20 are used */ 2119 regs_off = stack_size; 2120 stack_size += 16; 2121 2122 /* round up to multiples of 16 to avoid SPAlignmentFault */ 2123 stack_size = round_up(stack_size, 16); 2124 2125 /* return address locates above FP */ 2126 retaddr_off = stack_size + 8; 2127 2128 /* bpf trampoline may be invoked by 3 instruction types: 2129 * 1. bl, attached to bpf prog or kernel function via short jump 2130 * 2. br, attached to bpf prog or kernel function via long jump 2131 * 3. blr, working as a function pointer, used by struct_ops. 2132 * So BTI_JC should used here to support both br and blr. 2133 */ 2134 emit_bti(A64_BTI_JC, ctx); 2135 2136 /* frame for parent function */ 2137 emit(A64_PUSH(A64_FP, A64_R(9), A64_SP), ctx); 2138 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 2139 2140 /* frame for patched function */ 2141 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 2142 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 2143 2144 /* allocate stack space */ 2145 emit(A64_SUB_I(1, A64_SP, A64_SP, stack_size), ctx); 2146 2147 if (flags & BPF_TRAMP_F_IP_ARG) { 2148 /* save ip address of the traced function */ 2149 emit_addr_mov_i64(A64_R(10), (const u64)func_addr, ctx); 2150 emit(A64_STR64I(A64_R(10), A64_SP, ip_off), ctx); 2151 } 2152 2153 /* save arg regs count*/ 2154 emit(A64_MOVZ(1, A64_R(10), nregs, 0), ctx); 2155 emit(A64_STR64I(A64_R(10), A64_SP, nregs_off), ctx); 2156 2157 /* save arg regs */ 2158 save_args(ctx, args_off, nregs); 2159 2160 /* save callee saved registers */ 2161 emit(A64_STR64I(A64_R(19), A64_SP, regs_off), ctx); 2162 emit(A64_STR64I(A64_R(20), A64_SP, regs_off + 8), ctx); 2163 2164 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2165 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx); 2166 emit_call((const u64)__bpf_tramp_enter, ctx); 2167 } 2168 2169 for (i = 0; i < fentry->nr_links; i++) 2170 invoke_bpf_prog(ctx, fentry->links[i], args_off, 2171 retval_off, run_ctx_off, 2172 flags & BPF_TRAMP_F_RET_FENTRY_RET); 2173 2174 if (fmod_ret->nr_links) { 2175 branches = kcalloc(fmod_ret->nr_links, sizeof(__le32 *), 2176 GFP_KERNEL); 2177 if (!branches) 2178 return -ENOMEM; 2179 2180 invoke_bpf_mod_ret(ctx, fmod_ret, args_off, retval_off, 2181 run_ctx_off, branches); 2182 } 2183 2184 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2185 restore_args(ctx, args_off, nregs); 2186 /* call original func */ 2187 emit(A64_LDR64I(A64_R(10), A64_SP, retaddr_off), ctx); 2188 emit(A64_ADR(A64_LR, AARCH64_INSN_SIZE * 2), ctx); 2189 emit(A64_RET(A64_R(10)), ctx); 2190 /* store return value */ 2191 emit(A64_STR64I(A64_R(0), A64_SP, retval_off), ctx); 2192 /* reserve a nop for bpf_tramp_image_put */ 2193 im->ip_after_call = ctx->ro_image + ctx->idx; 2194 emit(A64_NOP, ctx); 2195 } 2196 2197 /* update the branches saved in invoke_bpf_mod_ret with cbnz */ 2198 for (i = 0; i < fmod_ret->nr_links && ctx->image != NULL; i++) { 2199 int offset = &ctx->image[ctx->idx] - branches[i]; 2200 *branches[i] = cpu_to_le32(A64_CBNZ(1, A64_R(10), offset)); 2201 } 2202 2203 for (i = 0; i < fexit->nr_links; i++) 2204 invoke_bpf_prog(ctx, fexit->links[i], args_off, retval_off, 2205 run_ctx_off, false); 2206 2207 if (flags & BPF_TRAMP_F_CALL_ORIG) { 2208 im->ip_epilogue = ctx->ro_image + ctx->idx; 2209 emit_a64_mov_i64(A64_R(0), (const u64)im, ctx); 2210 emit_call((const u64)__bpf_tramp_exit, ctx); 2211 } 2212 2213 if (flags & BPF_TRAMP_F_RESTORE_REGS) 2214 restore_args(ctx, args_off, nregs); 2215 2216 /* restore callee saved register x19 and x20 */ 2217 emit(A64_LDR64I(A64_R(19), A64_SP, regs_off), ctx); 2218 emit(A64_LDR64I(A64_R(20), A64_SP, regs_off + 8), ctx); 2219 2220 if (save_ret) 2221 emit(A64_LDR64I(A64_R(0), A64_SP, retval_off), ctx); 2222 2223 /* reset SP */ 2224 emit(A64_MOV(1, A64_SP, A64_FP), ctx); 2225 2226 /* pop frames */ 2227 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 2228 emit(A64_POP(A64_FP, A64_R(9), A64_SP), ctx); 2229 2230 if (flags & BPF_TRAMP_F_SKIP_FRAME) { 2231 /* skip patched function, return to parent */ 2232 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); 2233 emit(A64_RET(A64_R(9)), ctx); 2234 } else { 2235 /* return to patched function */ 2236 emit(A64_MOV(1, A64_R(10), A64_LR), ctx); 2237 emit(A64_MOV(1, A64_LR, A64_R(9)), ctx); 2238 emit(A64_RET(A64_R(10)), ctx); 2239 } 2240 2241 kfree(branches); 2242 2243 return ctx->idx; 2244 } 2245 2246 static int btf_func_model_nregs(const struct btf_func_model *m) 2247 { 2248 int nregs = m->nr_args; 2249 int i; 2250 2251 /* extra registers needed for struct argument */ 2252 for (i = 0; i < MAX_BPF_FUNC_ARGS; i++) { 2253 /* The arg_size is at most 16 bytes, enforced by the verifier. */ 2254 if (m->arg_flags[i] & BTF_FMODEL_STRUCT_ARG) 2255 nregs += (m->arg_size[i] + 7) / 8 - 1; 2256 } 2257 2258 return nregs; 2259 } 2260 2261 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags, 2262 struct bpf_tramp_links *tlinks, void *func_addr) 2263 { 2264 struct jit_ctx ctx = { 2265 .image = NULL, 2266 .idx = 0, 2267 }; 2268 struct bpf_tramp_image im; 2269 int nregs, ret; 2270 2271 nregs = btf_func_model_nregs(m); 2272 /* the first 8 registers are used for arguments */ 2273 if (nregs > 8) 2274 return -ENOTSUPP; 2275 2276 ret = prepare_trampoline(&ctx, &im, tlinks, func_addr, nregs, flags); 2277 if (ret < 0) 2278 return ret; 2279 2280 return ret < 0 ? ret : ret * AARCH64_INSN_SIZE; 2281 } 2282 2283 void *arch_alloc_bpf_trampoline(unsigned int size) 2284 { 2285 return bpf_prog_pack_alloc(size, jit_fill_hole); 2286 } 2287 2288 void arch_free_bpf_trampoline(void *image, unsigned int size) 2289 { 2290 bpf_prog_pack_free(image, size); 2291 } 2292 2293 int arch_protect_bpf_trampoline(void *image, unsigned int size) 2294 { 2295 return 0; 2296 } 2297 2298 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *ro_image, 2299 void *ro_image_end, const struct btf_func_model *m, 2300 u32 flags, struct bpf_tramp_links *tlinks, 2301 void *func_addr) 2302 { 2303 int ret, nregs; 2304 void *image, *tmp; 2305 u32 size = ro_image_end - ro_image; 2306 2307 /* image doesn't need to be in module memory range, so we can 2308 * use kvmalloc. 2309 */ 2310 image = kvmalloc(size, GFP_KERNEL); 2311 if (!image) 2312 return -ENOMEM; 2313 2314 struct jit_ctx ctx = { 2315 .image = image, 2316 .ro_image = ro_image, 2317 .idx = 0, 2318 }; 2319 2320 nregs = btf_func_model_nregs(m); 2321 /* the first 8 registers are used for arguments */ 2322 if (nregs > 8) 2323 return -ENOTSUPP; 2324 2325 jit_fill_hole(image, (unsigned int)(ro_image_end - ro_image)); 2326 ret = prepare_trampoline(&ctx, im, tlinks, func_addr, nregs, flags); 2327 2328 if (ret > 0 && validate_code(&ctx) < 0) { 2329 ret = -EINVAL; 2330 goto out; 2331 } 2332 2333 if (ret > 0) 2334 ret *= AARCH64_INSN_SIZE; 2335 2336 tmp = bpf_arch_text_copy(ro_image, image, size); 2337 if (IS_ERR(tmp)) { 2338 ret = PTR_ERR(tmp); 2339 goto out; 2340 } 2341 2342 bpf_flush_icache(ro_image, ro_image + size); 2343 out: 2344 kvfree(image); 2345 return ret; 2346 } 2347 2348 static bool is_long_jump(void *ip, void *target) 2349 { 2350 long offset; 2351 2352 /* NULL target means this is a NOP */ 2353 if (!target) 2354 return false; 2355 2356 offset = (long)target - (long)ip; 2357 return offset < -SZ_128M || offset >= SZ_128M; 2358 } 2359 2360 static int gen_branch_or_nop(enum aarch64_insn_branch_type type, void *ip, 2361 void *addr, void *plt, u32 *insn) 2362 { 2363 void *target; 2364 2365 if (!addr) { 2366 *insn = aarch64_insn_gen_nop(); 2367 return 0; 2368 } 2369 2370 if (is_long_jump(ip, addr)) 2371 target = plt; 2372 else 2373 target = addr; 2374 2375 *insn = aarch64_insn_gen_branch_imm((unsigned long)ip, 2376 (unsigned long)target, 2377 type); 2378 2379 return *insn != AARCH64_BREAK_FAULT ? 0 : -EFAULT; 2380 } 2381 2382 /* Replace the branch instruction from @ip to @old_addr in a bpf prog or a bpf 2383 * trampoline with the branch instruction from @ip to @new_addr. If @old_addr 2384 * or @new_addr is NULL, the old or new instruction is NOP. 2385 * 2386 * When @ip is the bpf prog entry, a bpf trampoline is being attached or 2387 * detached. Since bpf trampoline and bpf prog are allocated separately with 2388 * vmalloc, the address distance may exceed 128MB, the maximum branch range. 2389 * So long jump should be handled. 2390 * 2391 * When a bpf prog is constructed, a plt pointing to empty trampoline 2392 * dummy_tramp is placed at the end: 2393 * 2394 * bpf_prog: 2395 * mov x9, lr 2396 * nop // patchsite 2397 * ... 2398 * ret 2399 * 2400 * plt: 2401 * ldr x10, target 2402 * br x10 2403 * target: 2404 * .quad dummy_tramp // plt target 2405 * 2406 * This is also the state when no trampoline is attached. 2407 * 2408 * When a short-jump bpf trampoline is attached, the patchsite is patched 2409 * to a bl instruction to the trampoline directly: 2410 * 2411 * bpf_prog: 2412 * mov x9, lr 2413 * bl <short-jump bpf trampoline address> // patchsite 2414 * ... 2415 * ret 2416 * 2417 * plt: 2418 * ldr x10, target 2419 * br x10 2420 * target: 2421 * .quad dummy_tramp // plt target 2422 * 2423 * When a long-jump bpf trampoline is attached, the plt target is filled with 2424 * the trampoline address and the patchsite is patched to a bl instruction to 2425 * the plt: 2426 * 2427 * bpf_prog: 2428 * mov x9, lr 2429 * bl plt // patchsite 2430 * ... 2431 * ret 2432 * 2433 * plt: 2434 * ldr x10, target 2435 * br x10 2436 * target: 2437 * .quad <long-jump bpf trampoline address> // plt target 2438 * 2439 * The dummy_tramp is used to prevent another CPU from jumping to unknown 2440 * locations during the patching process, making the patching process easier. 2441 */ 2442 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type poke_type, 2443 void *old_addr, void *new_addr) 2444 { 2445 int ret; 2446 u32 old_insn; 2447 u32 new_insn; 2448 u32 replaced; 2449 struct bpf_plt *plt = NULL; 2450 unsigned long size = 0UL; 2451 unsigned long offset = ~0UL; 2452 enum aarch64_insn_branch_type branch_type; 2453 char namebuf[KSYM_NAME_LEN]; 2454 void *image = NULL; 2455 u64 plt_target = 0ULL; 2456 bool poking_bpf_entry; 2457 2458 if (!__bpf_address_lookup((unsigned long)ip, &size, &offset, namebuf)) 2459 /* Only poking bpf text is supported. Since kernel function 2460 * entry is set up by ftrace, we reply on ftrace to poke kernel 2461 * functions. 2462 */ 2463 return -ENOTSUPP; 2464 2465 image = ip - offset; 2466 /* zero offset means we're poking bpf prog entry */ 2467 poking_bpf_entry = (offset == 0UL); 2468 2469 /* bpf prog entry, find plt and the real patchsite */ 2470 if (poking_bpf_entry) { 2471 /* plt locates at the end of bpf prog */ 2472 plt = image + size - PLT_TARGET_OFFSET; 2473 2474 /* skip to the nop instruction in bpf prog entry: 2475 * bti c // if BTI enabled 2476 * mov x9, x30 2477 * nop 2478 */ 2479 ip = image + POKE_OFFSET * AARCH64_INSN_SIZE; 2480 } 2481 2482 /* long jump is only possible at bpf prog entry */ 2483 if (WARN_ON((is_long_jump(ip, new_addr) || is_long_jump(ip, old_addr)) && 2484 !poking_bpf_entry)) 2485 return -EINVAL; 2486 2487 if (poke_type == BPF_MOD_CALL) 2488 branch_type = AARCH64_INSN_BRANCH_LINK; 2489 else 2490 branch_type = AARCH64_INSN_BRANCH_NOLINK; 2491 2492 if (gen_branch_or_nop(branch_type, ip, old_addr, plt, &old_insn) < 0) 2493 return -EFAULT; 2494 2495 if (gen_branch_or_nop(branch_type, ip, new_addr, plt, &new_insn) < 0) 2496 return -EFAULT; 2497 2498 if (is_long_jump(ip, new_addr)) 2499 plt_target = (u64)new_addr; 2500 else if (is_long_jump(ip, old_addr)) 2501 /* if the old target is a long jump and the new target is not, 2502 * restore the plt target to dummy_tramp, so there is always a 2503 * legal and harmless address stored in plt target, and we'll 2504 * never jump from plt to an unknown place. 2505 */ 2506 plt_target = (u64)&dummy_tramp; 2507 2508 if (plt_target) { 2509 /* non-zero plt_target indicates we're patching a bpf prog, 2510 * which is read only. 2511 */ 2512 if (set_memory_rw(PAGE_MASK & ((uintptr_t)&plt->target), 1)) 2513 return -EFAULT; 2514 WRITE_ONCE(plt->target, plt_target); 2515 set_memory_ro(PAGE_MASK & ((uintptr_t)&plt->target), 1); 2516 /* since plt target points to either the new trampoline 2517 * or dummy_tramp, even if another CPU reads the old plt 2518 * target value before fetching the bl instruction to plt, 2519 * it will be brought back by dummy_tramp, so no barrier is 2520 * required here. 2521 */ 2522 } 2523 2524 /* if the old target and the new target are both long jumps, no 2525 * patching is required 2526 */ 2527 if (old_insn == new_insn) 2528 return 0; 2529 2530 mutex_lock(&text_mutex); 2531 if (aarch64_insn_read(ip, &replaced)) { 2532 ret = -EFAULT; 2533 goto out; 2534 } 2535 2536 if (replaced != old_insn) { 2537 ret = -EFAULT; 2538 goto out; 2539 } 2540 2541 /* We call aarch64_insn_patch_text_nosync() to replace instruction 2542 * atomically, so no other CPUs will fetch a half-new and half-old 2543 * instruction. But there is chance that another CPU executes the 2544 * old instruction after the patching operation finishes (e.g., 2545 * pipeline not flushed, or icache not synchronized yet). 2546 * 2547 * 1. when a new trampoline is attached, it is not a problem for 2548 * different CPUs to jump to different trampolines temporarily. 2549 * 2550 * 2. when an old trampoline is freed, we should wait for all other 2551 * CPUs to exit the trampoline and make sure the trampoline is no 2552 * longer reachable, since bpf_tramp_image_put() function already 2553 * uses percpu_ref and task-based rcu to do the sync, no need to call 2554 * the sync version here, see bpf_tramp_image_put() for details. 2555 */ 2556 ret = aarch64_insn_patch_text_nosync(ip, new_insn); 2557 out: 2558 mutex_unlock(&text_mutex); 2559 2560 return ret; 2561 } 2562 2563 bool bpf_jit_supports_ptr_xchg(void) 2564 { 2565 return true; 2566 } 2567 2568 bool bpf_jit_supports_exceptions(void) 2569 { 2570 /* We unwind through both kernel frames starting from within bpf_throw 2571 * call and BPF frames. Therefore we require FP unwinder to be enabled 2572 * to walk kernel frames and reach BPF frames in the stack trace. 2573 * ARM64 kernel is aways compiled with CONFIG_FRAME_POINTER=y 2574 */ 2575 return true; 2576 } 2577 2578 bool bpf_jit_supports_arena(void) 2579 { 2580 return true; 2581 } 2582 2583 bool bpf_jit_supports_insn(struct bpf_insn *insn, bool in_arena) 2584 { 2585 if (!in_arena) 2586 return true; 2587 switch (insn->code) { 2588 case BPF_STX | BPF_ATOMIC | BPF_W: 2589 case BPF_STX | BPF_ATOMIC | BPF_DW: 2590 if (!cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) 2591 return false; 2592 } 2593 return true; 2594 } 2595 2596 bool bpf_jit_supports_percpu_insn(void) 2597 { 2598 return true; 2599 } 2600 2601 bool bpf_jit_inlines_helper_call(s32 imm) 2602 { 2603 switch (imm) { 2604 case BPF_FUNC_get_smp_processor_id: 2605 case BPF_FUNC_get_current_task: 2606 case BPF_FUNC_get_current_task_btf: 2607 return true; 2608 default: 2609 return false; 2610 } 2611 } 2612 2613 void bpf_jit_free(struct bpf_prog *prog) 2614 { 2615 if (prog->jited) { 2616 struct arm64_jit_data *jit_data = prog->aux->jit_data; 2617 struct bpf_binary_header *hdr; 2618 2619 /* 2620 * If we fail the final pass of JIT (from jit_subprogs), 2621 * the program may not be finalized yet. Call finalize here 2622 * before freeing it. 2623 */ 2624 if (jit_data) { 2625 bpf_arch_text_copy(&jit_data->ro_header->size, &jit_data->header->size, 2626 sizeof(jit_data->header->size)); 2627 kfree(jit_data); 2628 } 2629 hdr = bpf_jit_binary_pack_hdr(prog); 2630 bpf_jit_binary_pack_free(hdr, NULL); 2631 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(prog)); 2632 } 2633 2634 bpf_prog_unlock_free(prog); 2635 } 2636