1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014, The Linux Foundation. All rights reserved. 4 */ 5 #include <linux/kernel.h> 6 #include <linux/mm.h> 7 #include <linux/module.h> 8 #include <linux/sched.h> 9 #include <linux/vmalloc.h> 10 11 #include <asm/set_memory.h> 12 #include <asm/tlbflush.h> 13 14 struct page_change_data { 15 pgprot_t set_mask; 16 pgprot_t clear_mask; 17 }; 18 19 bool rodata_full __ro_after_init = IS_ENABLED(CONFIG_RODATA_FULL_DEFAULT_ENABLED); 20 21 static int change_page_range(pte_t *ptep, unsigned long addr, void *data) 22 { 23 struct page_change_data *cdata = data; 24 pte_t pte = READ_ONCE(*ptep); 25 26 pte = clear_pte_bit(pte, cdata->clear_mask); 27 pte = set_pte_bit(pte, cdata->set_mask); 28 29 set_pte(ptep, pte); 30 return 0; 31 } 32 33 /* 34 * This function assumes that the range is mapped with PAGE_SIZE pages. 35 */ 36 static int __change_memory_common(unsigned long start, unsigned long size, 37 pgprot_t set_mask, pgprot_t clear_mask) 38 { 39 struct page_change_data data; 40 int ret; 41 42 data.set_mask = set_mask; 43 data.clear_mask = clear_mask; 44 45 ret = apply_to_page_range(&init_mm, start, size, change_page_range, 46 &data); 47 48 flush_tlb_kernel_range(start, start + size); 49 return ret; 50 } 51 52 static int change_memory_common(unsigned long addr, int numpages, 53 pgprot_t set_mask, pgprot_t clear_mask) 54 { 55 unsigned long start = addr; 56 unsigned long size = PAGE_SIZE * numpages; 57 unsigned long end = start + size; 58 struct vm_struct *area; 59 int i; 60 61 if (!PAGE_ALIGNED(addr)) { 62 start &= PAGE_MASK; 63 end = start + size; 64 WARN_ON_ONCE(1); 65 } 66 67 /* 68 * Kernel VA mappings are always live, and splitting live section 69 * mappings into page mappings may cause TLB conflicts. This means 70 * we have to ensure that changing the permission bits of the range 71 * we are operating on does not result in such splitting. 72 * 73 * Let's restrict ourselves to mappings created by vmalloc (or vmap). 74 * Those are guaranteed to consist entirely of page mappings, and 75 * splitting is never needed. 76 * 77 * So check whether the [addr, addr + size) interval is entirely 78 * covered by precisely one VM area that has the VM_ALLOC flag set. 79 */ 80 area = find_vm_area((void *)addr); 81 if (!area || 82 end > (unsigned long)area->addr + area->size || 83 !(area->flags & VM_ALLOC)) 84 return -EINVAL; 85 86 if (!numpages) 87 return 0; 88 89 /* 90 * If we are manipulating read-only permissions, apply the same 91 * change to the linear mapping of the pages that back this VM area. 92 */ 93 if (rodata_full && (pgprot_val(set_mask) == PTE_RDONLY || 94 pgprot_val(clear_mask) == PTE_RDONLY)) { 95 for (i = 0; i < area->nr_pages; i++) { 96 __change_memory_common((u64)page_address(area->pages[i]), 97 PAGE_SIZE, set_mask, clear_mask); 98 } 99 } 100 101 /* 102 * Get rid of potentially aliasing lazily unmapped vm areas that may 103 * have permissions set that deviate from the ones we are setting here. 104 */ 105 vm_unmap_aliases(); 106 107 return __change_memory_common(start, size, set_mask, clear_mask); 108 } 109 110 int set_memory_ro(unsigned long addr, int numpages) 111 { 112 return change_memory_common(addr, numpages, 113 __pgprot(PTE_RDONLY), 114 __pgprot(PTE_WRITE)); 115 } 116 117 int set_memory_rw(unsigned long addr, int numpages) 118 { 119 return change_memory_common(addr, numpages, 120 __pgprot(PTE_WRITE), 121 __pgprot(PTE_RDONLY)); 122 } 123 124 int set_memory_nx(unsigned long addr, int numpages) 125 { 126 return change_memory_common(addr, numpages, 127 __pgprot(PTE_PXN), 128 __pgprot(PTE_MAYBE_GP)); 129 } 130 131 int set_memory_x(unsigned long addr, int numpages) 132 { 133 return change_memory_common(addr, numpages, 134 __pgprot(PTE_MAYBE_GP), 135 __pgprot(PTE_PXN)); 136 } 137 138 int set_memory_valid(unsigned long addr, int numpages, int enable) 139 { 140 if (enable) 141 return __change_memory_common(addr, PAGE_SIZE * numpages, 142 __pgprot(PTE_VALID), 143 __pgprot(0)); 144 else 145 return __change_memory_common(addr, PAGE_SIZE * numpages, 146 __pgprot(0), 147 __pgprot(PTE_VALID)); 148 } 149 150 int set_direct_map_invalid_noflush(struct page *page) 151 { 152 struct page_change_data data = { 153 .set_mask = __pgprot(0), 154 .clear_mask = __pgprot(PTE_VALID), 155 }; 156 157 if (!rodata_full) 158 return 0; 159 160 return apply_to_page_range(&init_mm, 161 (unsigned long)page_address(page), 162 PAGE_SIZE, change_page_range, &data); 163 } 164 165 int set_direct_map_default_noflush(struct page *page) 166 { 167 struct page_change_data data = { 168 .set_mask = __pgprot(PTE_VALID | PTE_WRITE), 169 .clear_mask = __pgprot(PTE_RDONLY), 170 }; 171 172 if (!rodata_full) 173 return 0; 174 175 return apply_to_page_range(&init_mm, 176 (unsigned long)page_address(page), 177 PAGE_SIZE, change_page_range, &data); 178 } 179 180 void __kernel_map_pages(struct page *page, int numpages, int enable) 181 { 182 if (!debug_pagealloc_enabled() && !rodata_full) 183 return; 184 185 set_memory_valid((unsigned long)page_address(page), numpages, enable); 186 } 187 188 /* 189 * This function is used to determine if a linear map page has been marked as 190 * not-valid. Walk the page table and check the PTE_VALID bit. This is based 191 * on kern_addr_valid(), which almost does what we need. 192 * 193 * Because this is only called on the kernel linear map, p?d_sect() implies 194 * p?d_present(). When debug_pagealloc is enabled, sections mappings are 195 * disabled. 196 */ 197 bool kernel_page_present(struct page *page) 198 { 199 pgd_t *pgdp; 200 p4d_t *p4dp; 201 pud_t *pudp, pud; 202 pmd_t *pmdp, pmd; 203 pte_t *ptep; 204 unsigned long addr = (unsigned long)page_address(page); 205 206 if (!debug_pagealloc_enabled() && !rodata_full) 207 return true; 208 209 pgdp = pgd_offset_k(addr); 210 if (pgd_none(READ_ONCE(*pgdp))) 211 return false; 212 213 p4dp = p4d_offset(pgdp, addr); 214 if (p4d_none(READ_ONCE(*p4dp))) 215 return false; 216 217 pudp = pud_offset(p4dp, addr); 218 pud = READ_ONCE(*pudp); 219 if (pud_none(pud)) 220 return false; 221 if (pud_sect(pud)) 222 return true; 223 224 pmdp = pmd_offset(pudp, addr); 225 pmd = READ_ONCE(*pmdp); 226 if (pmd_none(pmd)) 227 return false; 228 if (pmd_sect(pmd)) 229 return true; 230 231 ptep = pte_offset_kernel(pmdp, addr); 232 return pte_valid(READ_ONCE(*ptep)); 233 } 234