xref: /linux/arch/arm64/mm/mmu.c (revision ed4bc1890b4984d0af447ad3cc1f93541623f8f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/mmu.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 
26 #include <asm/barrier.h>
27 #include <asm/cputype.h>
28 #include <asm/fixmap.h>
29 #include <asm/kasan.h>
30 #include <asm/kernel-pgtable.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <linux/sizes.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 #include <asm/ptdump.h>
37 #include <asm/tlbflush.h>
38 #include <asm/pgalloc.h>
39 
40 #define NO_BLOCK_MAPPINGS	BIT(0)
41 #define NO_CONT_MAPPINGS	BIT(1)
42 
43 u64 idmap_t0sz = TCR_T0SZ(VA_BITS);
44 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
45 
46 u64 __section(".mmuoff.data.write") vabits_actual;
47 EXPORT_SYMBOL(vabits_actual);
48 
49 u64 kimage_voffset __ro_after_init;
50 EXPORT_SYMBOL(kimage_voffset);
51 
52 /*
53  * Empty_zero_page is a special page that is used for zero-initialized data
54  * and COW.
55  */
56 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
57 EXPORT_SYMBOL(empty_zero_page);
58 
59 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
60 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
61 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
62 
63 static DEFINE_SPINLOCK(swapper_pgdir_lock);
64 
65 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
66 {
67 	pgd_t *fixmap_pgdp;
68 
69 	spin_lock(&swapper_pgdir_lock);
70 	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
71 	WRITE_ONCE(*fixmap_pgdp, pgd);
72 	/*
73 	 * We need dsb(ishst) here to ensure the page-table-walker sees
74 	 * our new entry before set_p?d() returns. The fixmap's
75 	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
76 	 */
77 	pgd_clear_fixmap();
78 	spin_unlock(&swapper_pgdir_lock);
79 }
80 
81 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
82 			      unsigned long size, pgprot_t vma_prot)
83 {
84 	if (!pfn_valid(pfn))
85 		return pgprot_noncached(vma_prot);
86 	else if (file->f_flags & O_SYNC)
87 		return pgprot_writecombine(vma_prot);
88 	return vma_prot;
89 }
90 EXPORT_SYMBOL(phys_mem_access_prot);
91 
92 static phys_addr_t __init early_pgtable_alloc(int shift)
93 {
94 	phys_addr_t phys;
95 	void *ptr;
96 
97 	phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
98 	if (!phys)
99 		panic("Failed to allocate page table page\n");
100 
101 	/*
102 	 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
103 	 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
104 	 * any level of table.
105 	 */
106 	ptr = pte_set_fixmap(phys);
107 
108 	memset(ptr, 0, PAGE_SIZE);
109 
110 	/*
111 	 * Implicit barriers also ensure the zeroed page is visible to the page
112 	 * table walker
113 	 */
114 	pte_clear_fixmap();
115 
116 	return phys;
117 }
118 
119 static bool pgattr_change_is_safe(u64 old, u64 new)
120 {
121 	/*
122 	 * The following mapping attributes may be updated in live
123 	 * kernel mappings without the need for break-before-make.
124 	 */
125 	static const pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
126 
127 	/* creating or taking down mappings is always safe */
128 	if (old == 0 || new == 0)
129 		return true;
130 
131 	/* live contiguous mappings may not be manipulated at all */
132 	if ((old | new) & PTE_CONT)
133 		return false;
134 
135 	/* Transitioning from Non-Global to Global is unsafe */
136 	if (old & ~new & PTE_NG)
137 		return false;
138 
139 	return ((old ^ new) & ~mask) == 0;
140 }
141 
142 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
143 		     phys_addr_t phys, pgprot_t prot)
144 {
145 	pte_t *ptep;
146 
147 	ptep = pte_set_fixmap_offset(pmdp, addr);
148 	do {
149 		pte_t old_pte = READ_ONCE(*ptep);
150 
151 		set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
152 
153 		/*
154 		 * After the PTE entry has been populated once, we
155 		 * only allow updates to the permission attributes.
156 		 */
157 		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
158 					      READ_ONCE(pte_val(*ptep))));
159 
160 		phys += PAGE_SIZE;
161 	} while (ptep++, addr += PAGE_SIZE, addr != end);
162 
163 	pte_clear_fixmap();
164 }
165 
166 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
167 				unsigned long end, phys_addr_t phys,
168 				pgprot_t prot,
169 				phys_addr_t (*pgtable_alloc)(int),
170 				int flags)
171 {
172 	unsigned long next;
173 	pmd_t pmd = READ_ONCE(*pmdp);
174 
175 	BUG_ON(pmd_sect(pmd));
176 	if (pmd_none(pmd)) {
177 		phys_addr_t pte_phys;
178 		BUG_ON(!pgtable_alloc);
179 		pte_phys = pgtable_alloc(PAGE_SHIFT);
180 		__pmd_populate(pmdp, pte_phys, PMD_TYPE_TABLE);
181 		pmd = READ_ONCE(*pmdp);
182 	}
183 	BUG_ON(pmd_bad(pmd));
184 
185 	do {
186 		pgprot_t __prot = prot;
187 
188 		next = pte_cont_addr_end(addr, end);
189 
190 		/* use a contiguous mapping if the range is suitably aligned */
191 		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
192 		    (flags & NO_CONT_MAPPINGS) == 0)
193 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
194 
195 		init_pte(pmdp, addr, next, phys, __prot);
196 
197 		phys += next - addr;
198 	} while (addr = next, addr != end);
199 }
200 
201 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
202 		     phys_addr_t phys, pgprot_t prot,
203 		     phys_addr_t (*pgtable_alloc)(int), int flags)
204 {
205 	unsigned long next;
206 	pmd_t *pmdp;
207 
208 	pmdp = pmd_set_fixmap_offset(pudp, addr);
209 	do {
210 		pmd_t old_pmd = READ_ONCE(*pmdp);
211 
212 		next = pmd_addr_end(addr, end);
213 
214 		/* try section mapping first */
215 		if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
216 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
217 			pmd_set_huge(pmdp, phys, prot);
218 
219 			/*
220 			 * After the PMD entry has been populated once, we
221 			 * only allow updates to the permission attributes.
222 			 */
223 			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
224 						      READ_ONCE(pmd_val(*pmdp))));
225 		} else {
226 			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
227 					    pgtable_alloc, flags);
228 
229 			BUG_ON(pmd_val(old_pmd) != 0 &&
230 			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
231 		}
232 		phys += next - addr;
233 	} while (pmdp++, addr = next, addr != end);
234 
235 	pmd_clear_fixmap();
236 }
237 
238 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
239 				unsigned long end, phys_addr_t phys,
240 				pgprot_t prot,
241 				phys_addr_t (*pgtable_alloc)(int), int flags)
242 {
243 	unsigned long next;
244 	pud_t pud = READ_ONCE(*pudp);
245 
246 	/*
247 	 * Check for initial section mappings in the pgd/pud.
248 	 */
249 	BUG_ON(pud_sect(pud));
250 	if (pud_none(pud)) {
251 		phys_addr_t pmd_phys;
252 		BUG_ON(!pgtable_alloc);
253 		pmd_phys = pgtable_alloc(PMD_SHIFT);
254 		__pud_populate(pudp, pmd_phys, PUD_TYPE_TABLE);
255 		pud = READ_ONCE(*pudp);
256 	}
257 	BUG_ON(pud_bad(pud));
258 
259 	do {
260 		pgprot_t __prot = prot;
261 
262 		next = pmd_cont_addr_end(addr, end);
263 
264 		/* use a contiguous mapping if the range is suitably aligned */
265 		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
266 		    (flags & NO_CONT_MAPPINGS) == 0)
267 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
268 
269 		init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
270 
271 		phys += next - addr;
272 	} while (addr = next, addr != end);
273 }
274 
275 static inline bool use_1G_block(unsigned long addr, unsigned long next,
276 			unsigned long phys)
277 {
278 	if (PAGE_SHIFT != 12)
279 		return false;
280 
281 	if (((addr | next | phys) & ~PUD_MASK) != 0)
282 		return false;
283 
284 	return true;
285 }
286 
287 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
288 			   phys_addr_t phys, pgprot_t prot,
289 			   phys_addr_t (*pgtable_alloc)(int),
290 			   int flags)
291 {
292 	unsigned long next;
293 	pud_t *pudp;
294 	p4d_t *p4dp = p4d_offset(pgdp, addr);
295 	p4d_t p4d = READ_ONCE(*p4dp);
296 
297 	if (p4d_none(p4d)) {
298 		phys_addr_t pud_phys;
299 		BUG_ON(!pgtable_alloc);
300 		pud_phys = pgtable_alloc(PUD_SHIFT);
301 		__p4d_populate(p4dp, pud_phys, PUD_TYPE_TABLE);
302 		p4d = READ_ONCE(*p4dp);
303 	}
304 	BUG_ON(p4d_bad(p4d));
305 
306 	pudp = pud_set_fixmap_offset(p4dp, addr);
307 	do {
308 		pud_t old_pud = READ_ONCE(*pudp);
309 
310 		next = pud_addr_end(addr, end);
311 
312 		/*
313 		 * For 4K granule only, attempt to put down a 1GB block
314 		 */
315 		if (use_1G_block(addr, next, phys) &&
316 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
317 			pud_set_huge(pudp, phys, prot);
318 
319 			/*
320 			 * After the PUD entry has been populated once, we
321 			 * only allow updates to the permission attributes.
322 			 */
323 			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
324 						      READ_ONCE(pud_val(*pudp))));
325 		} else {
326 			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
327 					    pgtable_alloc, flags);
328 
329 			BUG_ON(pud_val(old_pud) != 0 &&
330 			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
331 		}
332 		phys += next - addr;
333 	} while (pudp++, addr = next, addr != end);
334 
335 	pud_clear_fixmap();
336 }
337 
338 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
339 				 unsigned long virt, phys_addr_t size,
340 				 pgprot_t prot,
341 				 phys_addr_t (*pgtable_alloc)(int),
342 				 int flags)
343 {
344 	unsigned long addr, end, next;
345 	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
346 
347 	/*
348 	 * If the virtual and physical address don't have the same offset
349 	 * within a page, we cannot map the region as the caller expects.
350 	 */
351 	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
352 		return;
353 
354 	phys &= PAGE_MASK;
355 	addr = virt & PAGE_MASK;
356 	end = PAGE_ALIGN(virt + size);
357 
358 	do {
359 		next = pgd_addr_end(addr, end);
360 		alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
361 			       flags);
362 		phys += next - addr;
363 	} while (pgdp++, addr = next, addr != end);
364 }
365 
366 static phys_addr_t __pgd_pgtable_alloc(int shift)
367 {
368 	void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
369 	BUG_ON(!ptr);
370 
371 	/* Ensure the zeroed page is visible to the page table walker */
372 	dsb(ishst);
373 	return __pa(ptr);
374 }
375 
376 static phys_addr_t pgd_pgtable_alloc(int shift)
377 {
378 	phys_addr_t pa = __pgd_pgtable_alloc(shift);
379 
380 	/*
381 	 * Call proper page table ctor in case later we need to
382 	 * call core mm functions like apply_to_page_range() on
383 	 * this pre-allocated page table.
384 	 *
385 	 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
386 	 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
387 	 */
388 	if (shift == PAGE_SHIFT)
389 		BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
390 	else if (shift == PMD_SHIFT)
391 		BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
392 
393 	return pa;
394 }
395 
396 /*
397  * This function can only be used to modify existing table entries,
398  * without allocating new levels of table. Note that this permits the
399  * creation of new section or page entries.
400  */
401 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
402 				  phys_addr_t size, pgprot_t prot)
403 {
404 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
405 		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
406 			&phys, virt);
407 		return;
408 	}
409 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
410 			     NO_CONT_MAPPINGS);
411 }
412 
413 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
414 			       unsigned long virt, phys_addr_t size,
415 			       pgprot_t prot, bool page_mappings_only)
416 {
417 	int flags = 0;
418 
419 	BUG_ON(mm == &init_mm);
420 
421 	if (page_mappings_only)
422 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
423 
424 	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
425 			     pgd_pgtable_alloc, flags);
426 }
427 
428 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
429 				phys_addr_t size, pgprot_t prot)
430 {
431 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
432 		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
433 			&phys, virt);
434 		return;
435 	}
436 
437 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
438 			     NO_CONT_MAPPINGS);
439 
440 	/* flush the TLBs after updating live kernel mappings */
441 	flush_tlb_kernel_range(virt, virt + size);
442 }
443 
444 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
445 				  phys_addr_t end, pgprot_t prot, int flags)
446 {
447 	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
448 			     prot, early_pgtable_alloc, flags);
449 }
450 
451 void __init mark_linear_text_alias_ro(void)
452 {
453 	/*
454 	 * Remove the write permissions from the linear alias of .text/.rodata
455 	 */
456 	update_mapping_prot(__pa_symbol(_text), (unsigned long)lm_alias(_text),
457 			    (unsigned long)__init_begin - (unsigned long)_text,
458 			    PAGE_KERNEL_RO);
459 }
460 
461 static void __init map_mem(pgd_t *pgdp)
462 {
463 	phys_addr_t kernel_start = __pa_symbol(_text);
464 	phys_addr_t kernel_end = __pa_symbol(__init_begin);
465 	struct memblock_region *reg;
466 	int flags = 0;
467 
468 	if (rodata_full || debug_pagealloc_enabled())
469 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
470 
471 	/*
472 	 * Take care not to create a writable alias for the
473 	 * read-only text and rodata sections of the kernel image.
474 	 * So temporarily mark them as NOMAP to skip mappings in
475 	 * the following for-loop
476 	 */
477 	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
478 #ifdef CONFIG_KEXEC_CORE
479 	if (crashk_res.end)
480 		memblock_mark_nomap(crashk_res.start,
481 				    resource_size(&crashk_res));
482 #endif
483 
484 	/* map all the memory banks */
485 	for_each_memblock(memory, reg) {
486 		phys_addr_t start = reg->base;
487 		phys_addr_t end = start + reg->size;
488 
489 		if (start >= end)
490 			break;
491 		if (memblock_is_nomap(reg))
492 			continue;
493 
494 		__map_memblock(pgdp, start, end, PAGE_KERNEL, flags);
495 	}
496 
497 	/*
498 	 * Map the linear alias of the [_text, __init_begin) interval
499 	 * as non-executable now, and remove the write permission in
500 	 * mark_linear_text_alias_ro() below (which will be called after
501 	 * alternative patching has completed). This makes the contents
502 	 * of the region accessible to subsystems such as hibernate,
503 	 * but protects it from inadvertent modification or execution.
504 	 * Note that contiguous mappings cannot be remapped in this way,
505 	 * so we should avoid them here.
506 	 */
507 	__map_memblock(pgdp, kernel_start, kernel_end,
508 		       PAGE_KERNEL, NO_CONT_MAPPINGS);
509 	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
510 
511 #ifdef CONFIG_KEXEC_CORE
512 	/*
513 	 * Use page-level mappings here so that we can shrink the region
514 	 * in page granularity and put back unused memory to buddy system
515 	 * through /sys/kernel/kexec_crash_size interface.
516 	 */
517 	if (crashk_res.end) {
518 		__map_memblock(pgdp, crashk_res.start, crashk_res.end + 1,
519 			       PAGE_KERNEL,
520 			       NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS);
521 		memblock_clear_nomap(crashk_res.start,
522 				     resource_size(&crashk_res));
523 	}
524 #endif
525 }
526 
527 void mark_rodata_ro(void)
528 {
529 	unsigned long section_size;
530 
531 	/*
532 	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
533 	 * to cover NOTES and EXCEPTION_TABLE.
534 	 */
535 	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
536 	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
537 			    section_size, PAGE_KERNEL_RO);
538 
539 	debug_checkwx();
540 }
541 
542 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
543 				      pgprot_t prot, struct vm_struct *vma,
544 				      int flags, unsigned long vm_flags)
545 {
546 	phys_addr_t pa_start = __pa_symbol(va_start);
547 	unsigned long size = va_end - va_start;
548 
549 	BUG_ON(!PAGE_ALIGNED(pa_start));
550 	BUG_ON(!PAGE_ALIGNED(size));
551 
552 	__create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
553 			     early_pgtable_alloc, flags);
554 
555 	if (!(vm_flags & VM_NO_GUARD))
556 		size += PAGE_SIZE;
557 
558 	vma->addr	= va_start;
559 	vma->phys_addr	= pa_start;
560 	vma->size	= size;
561 	vma->flags	= VM_MAP | vm_flags;
562 	vma->caller	= __builtin_return_address(0);
563 
564 	vm_area_add_early(vma);
565 }
566 
567 static int __init parse_rodata(char *arg)
568 {
569 	int ret = strtobool(arg, &rodata_enabled);
570 	if (!ret) {
571 		rodata_full = false;
572 		return 0;
573 	}
574 
575 	/* permit 'full' in addition to boolean options */
576 	if (strcmp(arg, "full"))
577 		return -EINVAL;
578 
579 	rodata_enabled = true;
580 	rodata_full = true;
581 	return 0;
582 }
583 early_param("rodata", parse_rodata);
584 
585 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
586 static int __init map_entry_trampoline(void)
587 {
588 	pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
589 	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
590 
591 	/* The trampoline is always mapped and can therefore be global */
592 	pgprot_val(prot) &= ~PTE_NG;
593 
594 	/* Map only the text into the trampoline page table */
595 	memset(tramp_pg_dir, 0, PGD_SIZE);
596 	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
597 			     prot, __pgd_pgtable_alloc, 0);
598 
599 	/* Map both the text and data into the kernel page table */
600 	__set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
601 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
602 		extern char __entry_tramp_data_start[];
603 
604 		__set_fixmap(FIX_ENTRY_TRAMP_DATA,
605 			     __pa_symbol(__entry_tramp_data_start),
606 			     PAGE_KERNEL_RO);
607 	}
608 
609 	return 0;
610 }
611 core_initcall(map_entry_trampoline);
612 #endif
613 
614 /*
615  * Open coded check for BTI, only for use to determine configuration
616  * for early mappings for before the cpufeature code has run.
617  */
618 static bool arm64_early_this_cpu_has_bti(void)
619 {
620 	u64 pfr1;
621 
622 	if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
623 		return false;
624 
625 	pfr1 = read_sysreg_s(SYS_ID_AA64PFR1_EL1);
626 	return cpuid_feature_extract_unsigned_field(pfr1,
627 						    ID_AA64PFR1_BT_SHIFT);
628 }
629 
630 /*
631  * Create fine-grained mappings for the kernel.
632  */
633 static void __init map_kernel(pgd_t *pgdp)
634 {
635 	static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
636 				vmlinux_initdata, vmlinux_data;
637 
638 	/*
639 	 * External debuggers may need to write directly to the text
640 	 * mapping to install SW breakpoints. Allow this (only) when
641 	 * explicitly requested with rodata=off.
642 	 */
643 	pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
644 
645 	/*
646 	 * If we have a CPU that supports BTI and a kernel built for
647 	 * BTI then mark the kernel executable text as guarded pages
648 	 * now so we don't have to rewrite the page tables later.
649 	 */
650 	if (arm64_early_this_cpu_has_bti())
651 		text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
652 
653 	/*
654 	 * Only rodata will be remapped with different permissions later on,
655 	 * all other segments are allowed to use contiguous mappings.
656 	 */
657 	map_kernel_segment(pgdp, _text, _etext, text_prot, &vmlinux_text, 0,
658 			   VM_NO_GUARD);
659 	map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
660 			   &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
661 	map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
662 			   &vmlinux_inittext, 0, VM_NO_GUARD);
663 	map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
664 			   &vmlinux_initdata, 0, VM_NO_GUARD);
665 	map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
666 
667 	if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
668 		/*
669 		 * The fixmap falls in a separate pgd to the kernel, and doesn't
670 		 * live in the carveout for the swapper_pg_dir. We can simply
671 		 * re-use the existing dir for the fixmap.
672 		 */
673 		set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
674 			READ_ONCE(*pgd_offset_k(FIXADDR_START)));
675 	} else if (CONFIG_PGTABLE_LEVELS > 3) {
676 		pgd_t *bm_pgdp;
677 		p4d_t *bm_p4dp;
678 		pud_t *bm_pudp;
679 		/*
680 		 * The fixmap shares its top level pgd entry with the kernel
681 		 * mapping. This can really only occur when we are running
682 		 * with 16k/4 levels, so we can simply reuse the pud level
683 		 * entry instead.
684 		 */
685 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
686 		bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
687 		bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
688 		bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
689 		pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
690 		pud_clear_fixmap();
691 	} else {
692 		BUG();
693 	}
694 
695 	kasan_copy_shadow(pgdp);
696 }
697 
698 void __init paging_init(void)
699 {
700 	pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
701 
702 	map_kernel(pgdp);
703 	map_mem(pgdp);
704 
705 	pgd_clear_fixmap();
706 
707 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
708 	init_mm.pgd = swapper_pg_dir;
709 
710 	memblock_free(__pa_symbol(init_pg_dir),
711 		      __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
712 
713 	memblock_allow_resize();
714 }
715 
716 /*
717  * Check whether a kernel address is valid (derived from arch/x86/).
718  */
719 int kern_addr_valid(unsigned long addr)
720 {
721 	pgd_t *pgdp;
722 	p4d_t *p4dp;
723 	pud_t *pudp, pud;
724 	pmd_t *pmdp, pmd;
725 	pte_t *ptep, pte;
726 
727 	addr = arch_kasan_reset_tag(addr);
728 	if ((((long)addr) >> VA_BITS) != -1UL)
729 		return 0;
730 
731 	pgdp = pgd_offset_k(addr);
732 	if (pgd_none(READ_ONCE(*pgdp)))
733 		return 0;
734 
735 	p4dp = p4d_offset(pgdp, addr);
736 	if (p4d_none(READ_ONCE(*p4dp)))
737 		return 0;
738 
739 	pudp = pud_offset(p4dp, addr);
740 	pud = READ_ONCE(*pudp);
741 	if (pud_none(pud))
742 		return 0;
743 
744 	if (pud_sect(pud))
745 		return pfn_valid(pud_pfn(pud));
746 
747 	pmdp = pmd_offset(pudp, addr);
748 	pmd = READ_ONCE(*pmdp);
749 	if (pmd_none(pmd))
750 		return 0;
751 
752 	if (pmd_sect(pmd))
753 		return pfn_valid(pmd_pfn(pmd));
754 
755 	ptep = pte_offset_kernel(pmdp, addr);
756 	pte = READ_ONCE(*ptep);
757 	if (pte_none(pte))
758 		return 0;
759 
760 	return pfn_valid(pte_pfn(pte));
761 }
762 
763 #ifdef CONFIG_MEMORY_HOTPLUG
764 static void free_hotplug_page_range(struct page *page, size_t size,
765 				    struct vmem_altmap *altmap)
766 {
767 	if (altmap) {
768 		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
769 	} else {
770 		WARN_ON(PageReserved(page));
771 		free_pages((unsigned long)page_address(page), get_order(size));
772 	}
773 }
774 
775 static void free_hotplug_pgtable_page(struct page *page)
776 {
777 	free_hotplug_page_range(page, PAGE_SIZE, NULL);
778 }
779 
780 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
781 				  unsigned long floor, unsigned long ceiling,
782 				  unsigned long mask)
783 {
784 	start &= mask;
785 	if (start < floor)
786 		return false;
787 
788 	if (ceiling) {
789 		ceiling &= mask;
790 		if (!ceiling)
791 			return false;
792 	}
793 
794 	if (end - 1 > ceiling - 1)
795 		return false;
796 	return true;
797 }
798 
799 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
800 				    unsigned long end, bool free_mapped,
801 				    struct vmem_altmap *altmap)
802 {
803 	pte_t *ptep, pte;
804 
805 	do {
806 		ptep = pte_offset_kernel(pmdp, addr);
807 		pte = READ_ONCE(*ptep);
808 		if (pte_none(pte))
809 			continue;
810 
811 		WARN_ON(!pte_present(pte));
812 		pte_clear(&init_mm, addr, ptep);
813 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
814 		if (free_mapped)
815 			free_hotplug_page_range(pte_page(pte),
816 						PAGE_SIZE, altmap);
817 	} while (addr += PAGE_SIZE, addr < end);
818 }
819 
820 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
821 				    unsigned long end, bool free_mapped,
822 				    struct vmem_altmap *altmap)
823 {
824 	unsigned long next;
825 	pmd_t *pmdp, pmd;
826 
827 	do {
828 		next = pmd_addr_end(addr, end);
829 		pmdp = pmd_offset(pudp, addr);
830 		pmd = READ_ONCE(*pmdp);
831 		if (pmd_none(pmd))
832 			continue;
833 
834 		WARN_ON(!pmd_present(pmd));
835 		if (pmd_sect(pmd)) {
836 			pmd_clear(pmdp);
837 
838 			/*
839 			 * One TLBI should be sufficient here as the PMD_SIZE
840 			 * range is mapped with a single block entry.
841 			 */
842 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
843 			if (free_mapped)
844 				free_hotplug_page_range(pmd_page(pmd),
845 							PMD_SIZE, altmap);
846 			continue;
847 		}
848 		WARN_ON(!pmd_table(pmd));
849 		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
850 	} while (addr = next, addr < end);
851 }
852 
853 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
854 				    unsigned long end, bool free_mapped,
855 				    struct vmem_altmap *altmap)
856 {
857 	unsigned long next;
858 	pud_t *pudp, pud;
859 
860 	do {
861 		next = pud_addr_end(addr, end);
862 		pudp = pud_offset(p4dp, addr);
863 		pud = READ_ONCE(*pudp);
864 		if (pud_none(pud))
865 			continue;
866 
867 		WARN_ON(!pud_present(pud));
868 		if (pud_sect(pud)) {
869 			pud_clear(pudp);
870 
871 			/*
872 			 * One TLBI should be sufficient here as the PUD_SIZE
873 			 * range is mapped with a single block entry.
874 			 */
875 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
876 			if (free_mapped)
877 				free_hotplug_page_range(pud_page(pud),
878 							PUD_SIZE, altmap);
879 			continue;
880 		}
881 		WARN_ON(!pud_table(pud));
882 		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
883 	} while (addr = next, addr < end);
884 }
885 
886 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
887 				    unsigned long end, bool free_mapped,
888 				    struct vmem_altmap *altmap)
889 {
890 	unsigned long next;
891 	p4d_t *p4dp, p4d;
892 
893 	do {
894 		next = p4d_addr_end(addr, end);
895 		p4dp = p4d_offset(pgdp, addr);
896 		p4d = READ_ONCE(*p4dp);
897 		if (p4d_none(p4d))
898 			continue;
899 
900 		WARN_ON(!p4d_present(p4d));
901 		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
902 	} while (addr = next, addr < end);
903 }
904 
905 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
906 				bool free_mapped, struct vmem_altmap *altmap)
907 {
908 	unsigned long next;
909 	pgd_t *pgdp, pgd;
910 
911 	/*
912 	 * altmap can only be used as vmemmap mapping backing memory.
913 	 * In case the backing memory itself is not being freed, then
914 	 * altmap is irrelevant. Warn about this inconsistency when
915 	 * encountered.
916 	 */
917 	WARN_ON(!free_mapped && altmap);
918 
919 	do {
920 		next = pgd_addr_end(addr, end);
921 		pgdp = pgd_offset_k(addr);
922 		pgd = READ_ONCE(*pgdp);
923 		if (pgd_none(pgd))
924 			continue;
925 
926 		WARN_ON(!pgd_present(pgd));
927 		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
928 	} while (addr = next, addr < end);
929 }
930 
931 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
932 				 unsigned long end, unsigned long floor,
933 				 unsigned long ceiling)
934 {
935 	pte_t *ptep, pte;
936 	unsigned long i, start = addr;
937 
938 	do {
939 		ptep = pte_offset_kernel(pmdp, addr);
940 		pte = READ_ONCE(*ptep);
941 
942 		/*
943 		 * This is just a sanity check here which verifies that
944 		 * pte clearing has been done by earlier unmap loops.
945 		 */
946 		WARN_ON(!pte_none(pte));
947 	} while (addr += PAGE_SIZE, addr < end);
948 
949 	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
950 		return;
951 
952 	/*
953 	 * Check whether we can free the pte page if the rest of the
954 	 * entries are empty. Overlap with other regions have been
955 	 * handled by the floor/ceiling check.
956 	 */
957 	ptep = pte_offset_kernel(pmdp, 0UL);
958 	for (i = 0; i < PTRS_PER_PTE; i++) {
959 		if (!pte_none(READ_ONCE(ptep[i])))
960 			return;
961 	}
962 
963 	pmd_clear(pmdp);
964 	__flush_tlb_kernel_pgtable(start);
965 	free_hotplug_pgtable_page(virt_to_page(ptep));
966 }
967 
968 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
969 				 unsigned long end, unsigned long floor,
970 				 unsigned long ceiling)
971 {
972 	pmd_t *pmdp, pmd;
973 	unsigned long i, next, start = addr;
974 
975 	do {
976 		next = pmd_addr_end(addr, end);
977 		pmdp = pmd_offset(pudp, addr);
978 		pmd = READ_ONCE(*pmdp);
979 		if (pmd_none(pmd))
980 			continue;
981 
982 		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
983 		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
984 	} while (addr = next, addr < end);
985 
986 	if (CONFIG_PGTABLE_LEVELS <= 2)
987 		return;
988 
989 	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
990 		return;
991 
992 	/*
993 	 * Check whether we can free the pmd page if the rest of the
994 	 * entries are empty. Overlap with other regions have been
995 	 * handled by the floor/ceiling check.
996 	 */
997 	pmdp = pmd_offset(pudp, 0UL);
998 	for (i = 0; i < PTRS_PER_PMD; i++) {
999 		if (!pmd_none(READ_ONCE(pmdp[i])))
1000 			return;
1001 	}
1002 
1003 	pud_clear(pudp);
1004 	__flush_tlb_kernel_pgtable(start);
1005 	free_hotplug_pgtable_page(virt_to_page(pmdp));
1006 }
1007 
1008 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1009 				 unsigned long end, unsigned long floor,
1010 				 unsigned long ceiling)
1011 {
1012 	pud_t *pudp, pud;
1013 	unsigned long i, next, start = addr;
1014 
1015 	do {
1016 		next = pud_addr_end(addr, end);
1017 		pudp = pud_offset(p4dp, addr);
1018 		pud = READ_ONCE(*pudp);
1019 		if (pud_none(pud))
1020 			continue;
1021 
1022 		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1023 		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1024 	} while (addr = next, addr < end);
1025 
1026 	if (CONFIG_PGTABLE_LEVELS <= 3)
1027 		return;
1028 
1029 	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1030 		return;
1031 
1032 	/*
1033 	 * Check whether we can free the pud page if the rest of the
1034 	 * entries are empty. Overlap with other regions have been
1035 	 * handled by the floor/ceiling check.
1036 	 */
1037 	pudp = pud_offset(p4dp, 0UL);
1038 	for (i = 0; i < PTRS_PER_PUD; i++) {
1039 		if (!pud_none(READ_ONCE(pudp[i])))
1040 			return;
1041 	}
1042 
1043 	p4d_clear(p4dp);
1044 	__flush_tlb_kernel_pgtable(start);
1045 	free_hotplug_pgtable_page(virt_to_page(pudp));
1046 }
1047 
1048 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1049 				 unsigned long end, unsigned long floor,
1050 				 unsigned long ceiling)
1051 {
1052 	unsigned long next;
1053 	p4d_t *p4dp, p4d;
1054 
1055 	do {
1056 		next = p4d_addr_end(addr, end);
1057 		p4dp = p4d_offset(pgdp, addr);
1058 		p4d = READ_ONCE(*p4dp);
1059 		if (p4d_none(p4d))
1060 			continue;
1061 
1062 		WARN_ON(!p4d_present(p4d));
1063 		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1064 	} while (addr = next, addr < end);
1065 }
1066 
1067 static void free_empty_tables(unsigned long addr, unsigned long end,
1068 			      unsigned long floor, unsigned long ceiling)
1069 {
1070 	unsigned long next;
1071 	pgd_t *pgdp, pgd;
1072 
1073 	do {
1074 		next = pgd_addr_end(addr, end);
1075 		pgdp = pgd_offset_k(addr);
1076 		pgd = READ_ONCE(*pgdp);
1077 		if (pgd_none(pgd))
1078 			continue;
1079 
1080 		WARN_ON(!pgd_present(pgd));
1081 		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1082 	} while (addr = next, addr < end);
1083 }
1084 #endif
1085 
1086 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1087 #if !ARM64_SWAPPER_USES_SECTION_MAPS
1088 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1089 		struct vmem_altmap *altmap)
1090 {
1091 	return vmemmap_populate_basepages(start, end, node, altmap);
1092 }
1093 #else	/* !ARM64_SWAPPER_USES_SECTION_MAPS */
1094 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1095 		struct vmem_altmap *altmap)
1096 {
1097 	unsigned long addr = start;
1098 	unsigned long next;
1099 	pgd_t *pgdp;
1100 	p4d_t *p4dp;
1101 	pud_t *pudp;
1102 	pmd_t *pmdp;
1103 
1104 	do {
1105 		next = pmd_addr_end(addr, end);
1106 
1107 		pgdp = vmemmap_pgd_populate(addr, node);
1108 		if (!pgdp)
1109 			return -ENOMEM;
1110 
1111 		p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1112 		if (!p4dp)
1113 			return -ENOMEM;
1114 
1115 		pudp = vmemmap_pud_populate(p4dp, addr, node);
1116 		if (!pudp)
1117 			return -ENOMEM;
1118 
1119 		pmdp = pmd_offset(pudp, addr);
1120 		if (pmd_none(READ_ONCE(*pmdp))) {
1121 			void *p = NULL;
1122 
1123 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1124 			if (!p)
1125 				return -ENOMEM;
1126 
1127 			pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1128 		} else
1129 			vmemmap_verify((pte_t *)pmdp, node, addr, next);
1130 	} while (addr = next, addr != end);
1131 
1132 	return 0;
1133 }
1134 #endif	/* !ARM64_SWAPPER_USES_SECTION_MAPS */
1135 void vmemmap_free(unsigned long start, unsigned long end,
1136 		struct vmem_altmap *altmap)
1137 {
1138 #ifdef CONFIG_MEMORY_HOTPLUG
1139 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1140 
1141 	unmap_hotplug_range(start, end, true, altmap);
1142 	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1143 #endif
1144 }
1145 #endif	/* CONFIG_SPARSEMEM_VMEMMAP */
1146 
1147 static inline pud_t * fixmap_pud(unsigned long addr)
1148 {
1149 	pgd_t *pgdp = pgd_offset_k(addr);
1150 	p4d_t *p4dp = p4d_offset(pgdp, addr);
1151 	p4d_t p4d = READ_ONCE(*p4dp);
1152 
1153 	BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1154 
1155 	return pud_offset_kimg(p4dp, addr);
1156 }
1157 
1158 static inline pmd_t * fixmap_pmd(unsigned long addr)
1159 {
1160 	pud_t *pudp = fixmap_pud(addr);
1161 	pud_t pud = READ_ONCE(*pudp);
1162 
1163 	BUG_ON(pud_none(pud) || pud_bad(pud));
1164 
1165 	return pmd_offset_kimg(pudp, addr);
1166 }
1167 
1168 static inline pte_t * fixmap_pte(unsigned long addr)
1169 {
1170 	return &bm_pte[pte_index(addr)];
1171 }
1172 
1173 /*
1174  * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1175  * directly on kernel symbols (bm_p*d). This function is called too early to use
1176  * lm_alias so __p*d_populate functions must be used to populate with the
1177  * physical address from __pa_symbol.
1178  */
1179 void __init early_fixmap_init(void)
1180 {
1181 	pgd_t *pgdp;
1182 	p4d_t *p4dp, p4d;
1183 	pud_t *pudp;
1184 	pmd_t *pmdp;
1185 	unsigned long addr = FIXADDR_START;
1186 
1187 	pgdp = pgd_offset_k(addr);
1188 	p4dp = p4d_offset(pgdp, addr);
1189 	p4d = READ_ONCE(*p4dp);
1190 	if (CONFIG_PGTABLE_LEVELS > 3 &&
1191 	    !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1192 		/*
1193 		 * We only end up here if the kernel mapping and the fixmap
1194 		 * share the top level pgd entry, which should only happen on
1195 		 * 16k/4 levels configurations.
1196 		 */
1197 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1198 		pudp = pud_offset_kimg(p4dp, addr);
1199 	} else {
1200 		if (p4d_none(p4d))
1201 			__p4d_populate(p4dp, __pa_symbol(bm_pud), PUD_TYPE_TABLE);
1202 		pudp = fixmap_pud(addr);
1203 	}
1204 	if (pud_none(READ_ONCE(*pudp)))
1205 		__pud_populate(pudp, __pa_symbol(bm_pmd), PMD_TYPE_TABLE);
1206 	pmdp = fixmap_pmd(addr);
1207 	__pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1208 
1209 	/*
1210 	 * The boot-ioremap range spans multiple pmds, for which
1211 	 * we are not prepared:
1212 	 */
1213 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1214 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1215 
1216 	if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1217 	     || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1218 		WARN_ON(1);
1219 		pr_warn("pmdp %p != %p, %p\n",
1220 			pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1221 			fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1222 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1223 			fix_to_virt(FIX_BTMAP_BEGIN));
1224 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1225 			fix_to_virt(FIX_BTMAP_END));
1226 
1227 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1228 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1229 	}
1230 }
1231 
1232 /*
1233  * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1234  * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1235  */
1236 void __set_fixmap(enum fixed_addresses idx,
1237 			       phys_addr_t phys, pgprot_t flags)
1238 {
1239 	unsigned long addr = __fix_to_virt(idx);
1240 	pte_t *ptep;
1241 
1242 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1243 
1244 	ptep = fixmap_pte(addr);
1245 
1246 	if (pgprot_val(flags)) {
1247 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1248 	} else {
1249 		pte_clear(&init_mm, addr, ptep);
1250 		flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1251 	}
1252 }
1253 
1254 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1255 {
1256 	const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1257 	int offset;
1258 	void *dt_virt;
1259 
1260 	/*
1261 	 * Check whether the physical FDT address is set and meets the minimum
1262 	 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1263 	 * at least 8 bytes so that we can always access the magic and size
1264 	 * fields of the FDT header after mapping the first chunk, double check
1265 	 * here if that is indeed the case.
1266 	 */
1267 	BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1268 	if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1269 		return NULL;
1270 
1271 	/*
1272 	 * Make sure that the FDT region can be mapped without the need to
1273 	 * allocate additional translation table pages, so that it is safe
1274 	 * to call create_mapping_noalloc() this early.
1275 	 *
1276 	 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1277 	 * be in the same PMD as the rest of the fixmap.
1278 	 * On 4k pages, we'll use section mappings for the FDT so we only
1279 	 * have to be in the same PUD.
1280 	 */
1281 	BUILD_BUG_ON(dt_virt_base % SZ_2M);
1282 
1283 	BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1284 		     __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1285 
1286 	offset = dt_phys % SWAPPER_BLOCK_SIZE;
1287 	dt_virt = (void *)dt_virt_base + offset;
1288 
1289 	/* map the first chunk so we can read the size from the header */
1290 	create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1291 			dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1292 
1293 	if (fdt_magic(dt_virt) != FDT_MAGIC)
1294 		return NULL;
1295 
1296 	*size = fdt_totalsize(dt_virt);
1297 	if (*size > MAX_FDT_SIZE)
1298 		return NULL;
1299 
1300 	if (offset + *size > SWAPPER_BLOCK_SIZE)
1301 		create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1302 			       round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1303 
1304 	return dt_virt;
1305 }
1306 
1307 int __init arch_ioremap_p4d_supported(void)
1308 {
1309 	return 0;
1310 }
1311 
1312 int __init arch_ioremap_pud_supported(void)
1313 {
1314 	/*
1315 	 * Only 4k granule supports level 1 block mappings.
1316 	 * SW table walks can't handle removal of intermediate entries.
1317 	 */
1318 	return IS_ENABLED(CONFIG_ARM64_4K_PAGES) &&
1319 	       !IS_ENABLED(CONFIG_PTDUMP_DEBUGFS);
1320 }
1321 
1322 int __init arch_ioremap_pmd_supported(void)
1323 {
1324 	/* See arch_ioremap_pud_supported() */
1325 	return !IS_ENABLED(CONFIG_PTDUMP_DEBUGFS);
1326 }
1327 
1328 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1329 {
1330 	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1331 
1332 	/* Only allow permission changes for now */
1333 	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1334 				   pud_val(new_pud)))
1335 		return 0;
1336 
1337 	VM_BUG_ON(phys & ~PUD_MASK);
1338 	set_pud(pudp, new_pud);
1339 	return 1;
1340 }
1341 
1342 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1343 {
1344 	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1345 
1346 	/* Only allow permission changes for now */
1347 	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1348 				   pmd_val(new_pmd)))
1349 		return 0;
1350 
1351 	VM_BUG_ON(phys & ~PMD_MASK);
1352 	set_pmd(pmdp, new_pmd);
1353 	return 1;
1354 }
1355 
1356 int pud_clear_huge(pud_t *pudp)
1357 {
1358 	if (!pud_sect(READ_ONCE(*pudp)))
1359 		return 0;
1360 	pud_clear(pudp);
1361 	return 1;
1362 }
1363 
1364 int pmd_clear_huge(pmd_t *pmdp)
1365 {
1366 	if (!pmd_sect(READ_ONCE(*pmdp)))
1367 		return 0;
1368 	pmd_clear(pmdp);
1369 	return 1;
1370 }
1371 
1372 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1373 {
1374 	pte_t *table;
1375 	pmd_t pmd;
1376 
1377 	pmd = READ_ONCE(*pmdp);
1378 
1379 	if (!pmd_table(pmd)) {
1380 		VM_WARN_ON(1);
1381 		return 1;
1382 	}
1383 
1384 	table = pte_offset_kernel(pmdp, addr);
1385 	pmd_clear(pmdp);
1386 	__flush_tlb_kernel_pgtable(addr);
1387 	pte_free_kernel(NULL, table);
1388 	return 1;
1389 }
1390 
1391 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1392 {
1393 	pmd_t *table;
1394 	pmd_t *pmdp;
1395 	pud_t pud;
1396 	unsigned long next, end;
1397 
1398 	pud = READ_ONCE(*pudp);
1399 
1400 	if (!pud_table(pud)) {
1401 		VM_WARN_ON(1);
1402 		return 1;
1403 	}
1404 
1405 	table = pmd_offset(pudp, addr);
1406 	pmdp = table;
1407 	next = addr;
1408 	end = addr + PUD_SIZE;
1409 	do {
1410 		pmd_free_pte_page(pmdp, next);
1411 	} while (pmdp++, next += PMD_SIZE, next != end);
1412 
1413 	pud_clear(pudp);
1414 	__flush_tlb_kernel_pgtable(addr);
1415 	pmd_free(NULL, table);
1416 	return 1;
1417 }
1418 
1419 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1420 {
1421 	return 0;	/* Don't attempt a block mapping */
1422 }
1423 
1424 #ifdef CONFIG_MEMORY_HOTPLUG
1425 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1426 {
1427 	unsigned long end = start + size;
1428 
1429 	WARN_ON(pgdir != init_mm.pgd);
1430 	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1431 
1432 	unmap_hotplug_range(start, end, false, NULL);
1433 	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1434 }
1435 
1436 int arch_add_memory(int nid, u64 start, u64 size,
1437 		    struct mhp_params *params)
1438 {
1439 	int ret, flags = 0;
1440 
1441 	if (rodata_full || debug_pagealloc_enabled())
1442 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1443 
1444 	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1445 			     size, params->pgprot, __pgd_pgtable_alloc,
1446 			     flags);
1447 
1448 	memblock_clear_nomap(start, size);
1449 
1450 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1451 			   params);
1452 	if (ret)
1453 		__remove_pgd_mapping(swapper_pg_dir,
1454 				     __phys_to_virt(start), size);
1455 	return ret;
1456 }
1457 
1458 void arch_remove_memory(int nid, u64 start, u64 size,
1459 			struct vmem_altmap *altmap)
1460 {
1461 	unsigned long start_pfn = start >> PAGE_SHIFT;
1462 	unsigned long nr_pages = size >> PAGE_SHIFT;
1463 
1464 	__remove_pages(start_pfn, nr_pages, altmap);
1465 	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1466 }
1467 
1468 /*
1469  * This memory hotplug notifier helps prevent boot memory from being
1470  * inadvertently removed as it blocks pfn range offlining process in
1471  * __offline_pages(). Hence this prevents both offlining as well as
1472  * removal process for boot memory which is initially always online.
1473  * In future if and when boot memory could be removed, this notifier
1474  * should be dropped and free_hotplug_page_range() should handle any
1475  * reserved pages allocated during boot.
1476  */
1477 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1478 					   unsigned long action, void *data)
1479 {
1480 	struct mem_section *ms;
1481 	struct memory_notify *arg = data;
1482 	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1483 	unsigned long pfn = arg->start_pfn;
1484 
1485 	if (action != MEM_GOING_OFFLINE)
1486 		return NOTIFY_OK;
1487 
1488 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1489 		ms = __pfn_to_section(pfn);
1490 		if (early_section(ms))
1491 			return NOTIFY_BAD;
1492 	}
1493 	return NOTIFY_OK;
1494 }
1495 
1496 static struct notifier_block prevent_bootmem_remove_nb = {
1497 	.notifier_call = prevent_bootmem_remove_notifier,
1498 };
1499 
1500 static int __init prevent_bootmem_remove_init(void)
1501 {
1502 	return register_memory_notifier(&prevent_bootmem_remove_nb);
1503 }
1504 device_initcall(prevent_bootmem_remove_init);
1505 #endif
1506