xref: /linux/arch/arm64/mm/init.c (revision e7602bb4f3a1234df8b75728ac3260bcb8242612)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36 
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/rsi.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <linux/sizes.h>
48 #include <asm/tlb.h>
49 #include <asm/alternative.h>
50 #include <asm/xen/swiotlb-xen.h>
51 
52 /*
53  * We need to be able to catch inadvertent references to memstart_addr
54  * that occur (potentially in generic code) before arm64_memblock_init()
55  * executes, which assigns it its actual value. So use a default value
56  * that cannot be mistaken for a real physical address.
57  */
58 s64 memstart_addr __ro_after_init = -1;
59 EXPORT_SYMBOL(memstart_addr);
60 
61 /*
62  * If the corresponding config options are enabled, we create both ZONE_DMA
63  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
64  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
65  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
66  * otherwise it is empty.
67  */
68 phys_addr_t __ro_after_init arm64_dma_phys_limit;
69 
70 /*
71  * To make optimal use of block mappings when laying out the linear
72  * mapping, round down the base of physical memory to a size that can
73  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
74  * (64k granule), or a multiple that can be mapped using contiguous bits
75  * in the page tables: 32 * PMD_SIZE (16k granule)
76  */
77 #if defined(CONFIG_ARM64_4K_PAGES)
78 #define ARM64_MEMSTART_SHIFT		PUD_SHIFT
79 #elif defined(CONFIG_ARM64_16K_PAGES)
80 #define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
81 #else
82 #define ARM64_MEMSTART_SHIFT		PMD_SHIFT
83 #endif
84 
85 /*
86  * sparsemem vmemmap imposes an additional requirement on the alignment of
87  * memstart_addr, due to the fact that the base of the vmemmap region
88  * has a direct correspondence, and needs to appear sufficiently aligned
89  * in the virtual address space.
90  */
91 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
92 #define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
93 #else
94 #define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
95 #endif
96 
97 static void __init arch_reserve_crashkernel(void)
98 {
99 	unsigned long long low_size = 0;
100 	unsigned long long crash_base, crash_size;
101 	char *cmdline = boot_command_line;
102 	bool high = false;
103 	int ret;
104 
105 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
106 		return;
107 
108 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
109 				&crash_size, &crash_base,
110 				&low_size, &high);
111 	if (ret)
112 		return;
113 
114 	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
115 				    low_size, high);
116 }
117 
118 static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
119 {
120 	return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
121 }
122 
123 static void __init zone_sizes_init(void)
124 {
125 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
126 	phys_addr_t __maybe_unused acpi_zone_dma_limit;
127 	phys_addr_t __maybe_unused dt_zone_dma_limit;
128 	phys_addr_t __maybe_unused dma32_phys_limit =
129 		max_zone_phys(DMA_BIT_MASK(32));
130 
131 #ifdef CONFIG_ZONE_DMA
132 	acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
133 	dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
134 	zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
135 	/*
136 	 * Information we get from firmware (e.g. DT dma-ranges) describe DMA
137 	 * bus constraints. Devices using DMA might have their own limitations.
138 	 * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
139 	 * DMA zone on platforms that have RAM there.
140 	 */
141 	if (memblock_start_of_DRAM() < U32_MAX)
142 		zone_dma_limit = min(zone_dma_limit, U32_MAX);
143 	arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
144 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
145 #endif
146 #ifdef CONFIG_ZONE_DMA32
147 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
148 	if (!arm64_dma_phys_limit)
149 		arm64_dma_phys_limit = dma32_phys_limit;
150 #endif
151 	if (!arm64_dma_phys_limit)
152 		arm64_dma_phys_limit = PHYS_MASK + 1;
153 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
154 
155 	free_area_init(max_zone_pfns);
156 }
157 
158 int pfn_is_map_memory(unsigned long pfn)
159 {
160 	phys_addr_t addr = PFN_PHYS(pfn);
161 
162 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
163 	if (PHYS_PFN(addr) != pfn)
164 		return 0;
165 
166 	return memblock_is_map_memory(addr);
167 }
168 EXPORT_SYMBOL(pfn_is_map_memory);
169 
170 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
171 
172 /*
173  * Limit the memory size that was specified via FDT.
174  */
175 static int __init early_mem(char *p)
176 {
177 	if (!p)
178 		return 1;
179 
180 	memory_limit = memparse(p, &p) & PAGE_MASK;
181 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
182 
183 	return 0;
184 }
185 early_param("mem", early_mem);
186 
187 void __init arm64_memblock_init(void)
188 {
189 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
190 
191 	/*
192 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
193 	 * be limited in their ability to support a linear map that exceeds 51
194 	 * bits of VA space, depending on the placement of the ID map. Given
195 	 * that the placement of the ID map may be randomized, let's simply
196 	 * limit the kernel's linear map to 51 bits as well if we detect this
197 	 * configuration.
198 	 */
199 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
200 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
201 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
202 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
203 	}
204 
205 	/* Remove memory above our supported physical address size */
206 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
207 
208 	/*
209 	 * Select a suitable value for the base of physical memory.
210 	 */
211 	memstart_addr = round_down(memblock_start_of_DRAM(),
212 				   ARM64_MEMSTART_ALIGN);
213 
214 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
215 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
216 
217 	/*
218 	 * Remove the memory that we will not be able to cover with the
219 	 * linear mapping. Take care not to clip the kernel which may be
220 	 * high in memory.
221 	 */
222 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
223 			__pa_symbol(_end)), ULLONG_MAX);
224 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
225 		/* ensure that memstart_addr remains sufficiently aligned */
226 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
227 					 ARM64_MEMSTART_ALIGN);
228 		memblock_remove(0, memstart_addr);
229 	}
230 
231 	/*
232 	 * If we are running with a 52-bit kernel VA config on a system that
233 	 * does not support it, we have to place the available physical
234 	 * memory in the 48-bit addressable part of the linear region, i.e.,
235 	 * we have to move it upward. Since memstart_addr represents the
236 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
237 	 */
238 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
239 		memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
240 
241 	/*
242 	 * Apply the memory limit if it was set. Since the kernel may be loaded
243 	 * high up in memory, add back the kernel region that must be accessible
244 	 * via the linear mapping.
245 	 */
246 	if (memory_limit != PHYS_ADDR_MAX) {
247 		memblock_mem_limit_remove_map(memory_limit);
248 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
249 	}
250 
251 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
252 		/*
253 		 * Add back the memory we just removed if it results in the
254 		 * initrd to become inaccessible via the linear mapping.
255 		 * Otherwise, this is a no-op
256 		 */
257 		u64 base = phys_initrd_start & PAGE_MASK;
258 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
259 
260 		/*
261 		 * We can only add back the initrd memory if we don't end up
262 		 * with more memory than we can address via the linear mapping.
263 		 * It is up to the bootloader to position the kernel and the
264 		 * initrd reasonably close to each other (i.e., within 32 GB of
265 		 * each other) so that all granule/#levels combinations can
266 		 * always access both.
267 		 */
268 		if (WARN(base < memblock_start_of_DRAM() ||
269 			 base + size > memblock_start_of_DRAM() +
270 				       linear_region_size,
271 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
272 			phys_initrd_size = 0;
273 		} else {
274 			memblock_add(base, size);
275 			memblock_clear_nomap(base, size);
276 			memblock_reserve(base, size);
277 		}
278 	}
279 
280 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
281 		extern u16 memstart_offset_seed;
282 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
283 		int parange = cpuid_feature_extract_unsigned_field(
284 					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
285 		s64 range = linear_region_size -
286 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
287 
288 		/*
289 		 * If the size of the linear region exceeds, by a sufficient
290 		 * margin, the size of the region that the physical memory can
291 		 * span, randomize the linear region as well.
292 		 */
293 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
294 			range /= ARM64_MEMSTART_ALIGN;
295 			memstart_addr -= ARM64_MEMSTART_ALIGN *
296 					 ((range * memstart_offset_seed) >> 16);
297 		}
298 	}
299 
300 	/*
301 	 * Register the kernel text, kernel data, initrd, and initial
302 	 * pagetables with memblock.
303 	 */
304 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
305 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
306 		/* the generic initrd code expects virtual addresses */
307 		initrd_start = __phys_to_virt(phys_initrd_start);
308 		initrd_end = initrd_start + phys_initrd_size;
309 	}
310 
311 	early_init_fdt_scan_reserved_mem();
312 
313 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
314 }
315 
316 void __init bootmem_init(void)
317 {
318 	unsigned long min, max;
319 
320 	min = PFN_UP(memblock_start_of_DRAM());
321 	max = PFN_DOWN(memblock_end_of_DRAM());
322 
323 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
324 
325 	max_pfn = max_low_pfn = max;
326 	min_low_pfn = min;
327 
328 	arch_numa_init();
329 
330 	/*
331 	 * must be done after arch_numa_init() which calls numa_init() to
332 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
333 	 * while allocating required CMA size across online nodes.
334 	 */
335 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
336 	arm64_hugetlb_cma_reserve();
337 #endif
338 
339 	kvm_hyp_reserve();
340 
341 	/*
342 	 * sparse_init() tries to allocate memory from memblock, so must be
343 	 * done after the fixed reservations
344 	 */
345 	sparse_init();
346 	zone_sizes_init();
347 
348 	/*
349 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
350 	 */
351 	dma_contiguous_reserve(arm64_dma_phys_limit);
352 
353 	/*
354 	 * request_standard_resources() depends on crashkernel's memory being
355 	 * reserved, so do it here.
356 	 */
357 	arch_reserve_crashkernel();
358 
359 	memblock_dump_all();
360 }
361 
362 /*
363  * mem_init() marks the free areas in the mem_map and tells us how much memory
364  * is free.  This is done after various parts of the system have claimed their
365  * memory after the kernel image.
366  */
367 void __init mem_init(void)
368 {
369 	unsigned int flags = SWIOTLB_VERBOSE;
370 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
371 
372 	if (is_realm_world()) {
373 		swiotlb = true;
374 		flags |= SWIOTLB_FORCE;
375 	}
376 
377 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
378 		/*
379 		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
380 		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
381 		 */
382 		unsigned long size =
383 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
384 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
385 		swiotlb = true;
386 	}
387 
388 	swiotlb_init(swiotlb, flags);
389 	swiotlb_update_mem_attributes();
390 
391 	/* this will put all unused low memory onto the freelists */
392 	memblock_free_all();
393 
394 	/*
395 	 * Check boundaries twice: Some fundamental inconsistencies can be
396 	 * detected at build time already.
397 	 */
398 #ifdef CONFIG_COMPAT
399 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
400 #endif
401 
402 	/*
403 	 * Selected page table levels should match when derived from
404 	 * scratch using the virtual address range and page size.
405 	 */
406 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
407 		     CONFIG_PGTABLE_LEVELS);
408 
409 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
410 		extern int sysctl_overcommit_memory;
411 		/*
412 		 * On a machine this small we won't get anywhere without
413 		 * overcommit, so turn it on by default.
414 		 */
415 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
416 	}
417 }
418 
419 void free_initmem(void)
420 {
421 	void *lm_init_begin = lm_alias(__init_begin);
422 	void *lm_init_end = lm_alias(__init_end);
423 
424 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
425 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
426 
427 	/* Delete __init region from memblock.reserved. */
428 	memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
429 
430 	free_reserved_area(lm_init_begin, lm_init_end,
431 			   POISON_FREE_INITMEM, "unused kernel");
432 	/*
433 	 * Unmap the __init region but leave the VM area in place. This
434 	 * prevents the region from being reused for kernel modules, which
435 	 * is not supported by kallsyms.
436 	 */
437 	vunmap_range((u64)__init_begin, (u64)__init_end);
438 }
439 
440 void dump_mem_limit(void)
441 {
442 	if (memory_limit != PHYS_ADDR_MAX) {
443 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
444 	} else {
445 		pr_emerg("Memory Limit: none\n");
446 	}
447 }
448 
449 #ifdef CONFIG_EXECMEM
450 static u64 module_direct_base __ro_after_init = 0;
451 static u64 module_plt_base __ro_after_init = 0;
452 
453 /*
454  * Choose a random page-aligned base address for a window of 'size' bytes which
455  * entirely contains the interval [start, end - 1].
456  */
457 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
458 {
459 	u64 max_pgoff, pgoff;
460 
461 	if ((end - start) >= size)
462 		return 0;
463 
464 	max_pgoff = (size - (end - start)) / PAGE_SIZE;
465 	pgoff = get_random_u32_inclusive(0, max_pgoff);
466 
467 	return start - pgoff * PAGE_SIZE;
468 }
469 
470 /*
471  * Modules may directly reference data and text anywhere within the kernel
472  * image and other modules. References using PREL32 relocations have a +/-2G
473  * range, and so we need to ensure that the entire kernel image and all modules
474  * fall within a 2G window such that these are always within range.
475  *
476  * Modules may directly branch to functions and code within the kernel text,
477  * and to functions and code within other modules. These branches will use
478  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
479  * that the entire kernel text and all module text falls within a 128M window
480  * such that these are always within range. With PLTs, we can expand this to a
481  * 2G window.
482  *
483  * We chose the 128M region to surround the entire kernel image (rather than
484  * just the text) as using the same bounds for the 128M and 2G regions ensures
485  * by construction that we never select a 128M region that is not a subset of
486  * the 2G region. For very large and unusual kernel configurations this means
487  * we may fall back to PLTs where they could have been avoided, but this keeps
488  * the logic significantly simpler.
489  */
490 static int __init module_init_limits(void)
491 {
492 	u64 kernel_end = (u64)_end;
493 	u64 kernel_start = (u64)_text;
494 	u64 kernel_size = kernel_end - kernel_start;
495 
496 	/*
497 	 * The default modules region is placed immediately below the kernel
498 	 * image, and is large enough to use the full 2G relocation range.
499 	 */
500 	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
501 	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
502 
503 	if (!kaslr_enabled()) {
504 		if (kernel_size < SZ_128M)
505 			module_direct_base = kernel_end - SZ_128M;
506 		if (kernel_size < SZ_2G)
507 			module_plt_base = kernel_end - SZ_2G;
508 	} else {
509 		u64 min = kernel_start;
510 		u64 max = kernel_end;
511 
512 		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
513 			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
514 		} else {
515 			module_direct_base = random_bounding_box(SZ_128M, min, max);
516 			if (module_direct_base) {
517 				min = module_direct_base;
518 				max = module_direct_base + SZ_128M;
519 			}
520 		}
521 
522 		module_plt_base = random_bounding_box(SZ_2G, min, max);
523 	}
524 
525 	pr_info("%llu pages in range for non-PLT usage",
526 		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
527 	pr_info("%llu pages in range for PLT usage",
528 		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
529 
530 	return 0;
531 }
532 
533 static struct execmem_info execmem_info __ro_after_init;
534 
535 struct execmem_info __init *execmem_arch_setup(void)
536 {
537 	unsigned long fallback_start = 0, fallback_end = 0;
538 	unsigned long start = 0, end = 0;
539 
540 	module_init_limits();
541 
542 	/*
543 	 * Where possible, prefer to allocate within direct branch range of the
544 	 * kernel such that no PLTs are necessary.
545 	 */
546 	if (module_direct_base) {
547 		start = module_direct_base;
548 		end = module_direct_base + SZ_128M;
549 
550 		if (module_plt_base) {
551 			fallback_start = module_plt_base;
552 			fallback_end = module_plt_base + SZ_2G;
553 		}
554 	} else if (module_plt_base) {
555 		start = module_plt_base;
556 		end = module_plt_base + SZ_2G;
557 	}
558 
559 	execmem_info = (struct execmem_info){
560 		.ranges = {
561 			[EXECMEM_DEFAULT] = {
562 				.start	= start,
563 				.end	= end,
564 				.pgprot	= PAGE_KERNEL,
565 				.alignment = 1,
566 				.fallback_start	= fallback_start,
567 				.fallback_end	= fallback_end,
568 			},
569 			[EXECMEM_KPROBES] = {
570 				.start	= VMALLOC_START,
571 				.end	= VMALLOC_END,
572 				.pgprot	= PAGE_KERNEL_ROX,
573 				.alignment = 1,
574 			},
575 			[EXECMEM_BPF] = {
576 				.start	= VMALLOC_START,
577 				.end	= VMALLOC_END,
578 				.pgprot	= PAGE_KERNEL,
579 				.alignment = 1,
580 			},
581 		},
582 	};
583 
584 	return &execmem_info;
585 }
586 #endif /* CONFIG_EXECMEM */
587