1 /* 2 * Based on arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/errno.h> 23 #include <linux/swap.h> 24 #include <linux/init.h> 25 #include <linux/cache.h> 26 #include <linux/mman.h> 27 #include <linux/nodemask.h> 28 #include <linux/initrd.h> 29 #include <linux/gfp.h> 30 #include <linux/memblock.h> 31 #include <linux/sort.h> 32 #include <linux/of.h> 33 #include <linux/of_fdt.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dma-contiguous.h> 36 #include <linux/efi.h> 37 #include <linux/swiotlb.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mm.h> 40 #include <linux/kexec.h> 41 #include <linux/crash_dump.h> 42 43 #include <asm/boot.h> 44 #include <asm/fixmap.h> 45 #include <asm/kasan.h> 46 #include <asm/kernel-pgtable.h> 47 #include <asm/memory.h> 48 #include <asm/numa.h> 49 #include <asm/sections.h> 50 #include <asm/setup.h> 51 #include <asm/sizes.h> 52 #include <asm/tlb.h> 53 #include <asm/alternative.h> 54 55 /* 56 * We need to be able to catch inadvertent references to memstart_addr 57 * that occur (potentially in generic code) before arm64_memblock_init() 58 * executes, which assigns it its actual value. So use a default value 59 * that cannot be mistaken for a real physical address. 60 */ 61 s64 memstart_addr __ro_after_init = -1; 62 phys_addr_t arm64_dma_phys_limit __ro_after_init; 63 64 #ifdef CONFIG_BLK_DEV_INITRD 65 static int __init early_initrd(char *p) 66 { 67 unsigned long start, size; 68 char *endp; 69 70 start = memparse(p, &endp); 71 if (*endp == ',') { 72 size = memparse(endp + 1, NULL); 73 74 initrd_start = start; 75 initrd_end = start + size; 76 } 77 return 0; 78 } 79 early_param("initrd", early_initrd); 80 #endif 81 82 #ifdef CONFIG_KEXEC_CORE 83 /* 84 * reserve_crashkernel() - reserves memory for crash kernel 85 * 86 * This function reserves memory area given in "crashkernel=" kernel command 87 * line parameter. The memory reserved is used by dump capture kernel when 88 * primary kernel is crashing. 89 */ 90 static void __init reserve_crashkernel(void) 91 { 92 unsigned long long crash_base, crash_size; 93 int ret; 94 95 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 96 &crash_size, &crash_base); 97 /* no crashkernel= or invalid value specified */ 98 if (ret || !crash_size) 99 return; 100 101 crash_size = PAGE_ALIGN(crash_size); 102 103 if (crash_base == 0) { 104 /* Current arm64 boot protocol requires 2MB alignment */ 105 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, 106 crash_size, SZ_2M); 107 if (crash_base == 0) { 108 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 109 crash_size); 110 return; 111 } 112 } else { 113 /* User specifies base address explicitly. */ 114 if (!memblock_is_region_memory(crash_base, crash_size)) { 115 pr_warn("cannot reserve crashkernel: region is not memory\n"); 116 return; 117 } 118 119 if (memblock_is_region_reserved(crash_base, crash_size)) { 120 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 121 return; 122 } 123 124 if (!IS_ALIGNED(crash_base, SZ_2M)) { 125 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 126 return; 127 } 128 } 129 memblock_reserve(crash_base, crash_size); 130 131 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 132 crash_base, crash_base + crash_size, crash_size >> 20); 133 134 crashk_res.start = crash_base; 135 crashk_res.end = crash_base + crash_size - 1; 136 } 137 138 static void __init kexec_reserve_crashkres_pages(void) 139 { 140 #ifdef CONFIG_HIBERNATION 141 phys_addr_t addr; 142 struct page *page; 143 144 if (!crashk_res.end) 145 return; 146 147 /* 148 * To reduce the size of hibernation image, all the pages are 149 * marked as Reserved initially. 150 */ 151 for (addr = crashk_res.start; addr < (crashk_res.end + 1); 152 addr += PAGE_SIZE) { 153 page = phys_to_page(addr); 154 SetPageReserved(page); 155 } 156 #endif 157 } 158 #else 159 static void __init reserve_crashkernel(void) 160 { 161 } 162 163 static void __init kexec_reserve_crashkres_pages(void) 164 { 165 } 166 #endif /* CONFIG_KEXEC_CORE */ 167 168 #ifdef CONFIG_CRASH_DUMP 169 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 170 const char *uname, int depth, void *data) 171 { 172 const __be32 *reg; 173 int len; 174 175 if (depth != 1 || strcmp(uname, "chosen") != 0) 176 return 0; 177 178 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 179 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 180 return 1; 181 182 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 183 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 184 185 return 1; 186 } 187 188 /* 189 * reserve_elfcorehdr() - reserves memory for elf core header 190 * 191 * This function reserves the memory occupied by an elf core header 192 * described in the device tree. This region contains all the 193 * information about primary kernel's core image and is used by a dump 194 * capture kernel to access the system memory on primary kernel. 195 */ 196 static void __init reserve_elfcorehdr(void) 197 { 198 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 199 200 if (!elfcorehdr_size) 201 return; 202 203 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 204 pr_warn("elfcorehdr is overlapped\n"); 205 return; 206 } 207 208 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 209 210 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 211 elfcorehdr_size >> 10, elfcorehdr_addr); 212 } 213 #else 214 static void __init reserve_elfcorehdr(void) 215 { 216 } 217 #endif /* CONFIG_CRASH_DUMP */ 218 /* 219 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It 220 * currently assumes that for memory starting above 4G, 32-bit devices will 221 * use a DMA offset. 222 */ 223 static phys_addr_t __init max_zone_dma_phys(void) 224 { 225 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); 226 return min(offset + (1ULL << 32), memblock_end_of_DRAM()); 227 } 228 229 #ifdef CONFIG_NUMA 230 231 static void __init zone_sizes_init(unsigned long min, unsigned long max) 232 { 233 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 234 235 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 236 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); 237 max_zone_pfns[ZONE_NORMAL] = max; 238 239 free_area_init_nodes(max_zone_pfns); 240 } 241 242 #else 243 244 static void __init zone_sizes_init(unsigned long min, unsigned long max) 245 { 246 struct memblock_region *reg; 247 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 248 unsigned long max_dma = min; 249 250 memset(zone_size, 0, sizeof(zone_size)); 251 252 /* 4GB maximum for 32-bit only capable devices */ 253 #ifdef CONFIG_ZONE_DMA32 254 max_dma = PFN_DOWN(arm64_dma_phys_limit); 255 zone_size[ZONE_DMA32] = max_dma - min; 256 #endif 257 zone_size[ZONE_NORMAL] = max - max_dma; 258 259 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 260 261 for_each_memblock(memory, reg) { 262 unsigned long start = memblock_region_memory_base_pfn(reg); 263 unsigned long end = memblock_region_memory_end_pfn(reg); 264 265 if (start >= max) 266 continue; 267 268 #ifdef CONFIG_ZONE_DMA32 269 if (start < max_dma) { 270 unsigned long dma_end = min(end, max_dma); 271 zhole_size[ZONE_DMA32] -= dma_end - start; 272 } 273 #endif 274 if (end > max_dma) { 275 unsigned long normal_end = min(end, max); 276 unsigned long normal_start = max(start, max_dma); 277 zhole_size[ZONE_NORMAL] -= normal_end - normal_start; 278 } 279 } 280 281 free_area_init_node(0, zone_size, min, zhole_size); 282 } 283 284 #endif /* CONFIG_NUMA */ 285 286 int pfn_valid(unsigned long pfn) 287 { 288 phys_addr_t addr = pfn << PAGE_SHIFT; 289 290 if ((addr >> PAGE_SHIFT) != pfn) 291 return 0; 292 return memblock_is_map_memory(addr); 293 } 294 EXPORT_SYMBOL(pfn_valid); 295 296 #ifndef CONFIG_SPARSEMEM 297 static void __init arm64_memory_present(void) 298 { 299 } 300 #else 301 static void __init arm64_memory_present(void) 302 { 303 struct memblock_region *reg; 304 305 for_each_memblock(memory, reg) { 306 int nid = memblock_get_region_node(reg); 307 308 memory_present(nid, memblock_region_memory_base_pfn(reg), 309 memblock_region_memory_end_pfn(reg)); 310 } 311 } 312 #endif 313 314 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 315 316 /* 317 * Limit the memory size that was specified via FDT. 318 */ 319 static int __init early_mem(char *p) 320 { 321 if (!p) 322 return 1; 323 324 memory_limit = memparse(p, &p) & PAGE_MASK; 325 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 326 327 return 0; 328 } 329 early_param("mem", early_mem); 330 331 static int __init early_init_dt_scan_usablemem(unsigned long node, 332 const char *uname, int depth, void *data) 333 { 334 struct memblock_region *usablemem = data; 335 const __be32 *reg; 336 int len; 337 338 if (depth != 1 || strcmp(uname, "chosen") != 0) 339 return 0; 340 341 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 342 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 343 return 1; 344 345 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 346 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 347 348 return 1; 349 } 350 351 static void __init fdt_enforce_memory_region(void) 352 { 353 struct memblock_region reg = { 354 .size = 0, 355 }; 356 357 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 358 359 if (reg.size) 360 memblock_cap_memory_range(reg.base, reg.size); 361 } 362 363 void __init arm64_memblock_init(void) 364 { 365 const s64 linear_region_size = -(s64)PAGE_OFFSET; 366 367 /* Handle linux,usable-memory-range property */ 368 fdt_enforce_memory_region(); 369 370 /* Remove memory above our supported physical address size */ 371 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 372 373 /* 374 * Ensure that the linear region takes up exactly half of the kernel 375 * virtual address space. This way, we can distinguish a linear address 376 * from a kernel/module/vmalloc address by testing a single bit. 377 */ 378 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); 379 380 /* 381 * Select a suitable value for the base of physical memory. 382 */ 383 memstart_addr = round_down(memblock_start_of_DRAM(), 384 ARM64_MEMSTART_ALIGN); 385 386 /* 387 * Remove the memory that we will not be able to cover with the 388 * linear mapping. Take care not to clip the kernel which may be 389 * high in memory. 390 */ 391 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 392 __pa_symbol(_end)), ULLONG_MAX); 393 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 394 /* ensure that memstart_addr remains sufficiently aligned */ 395 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 396 ARM64_MEMSTART_ALIGN); 397 memblock_remove(0, memstart_addr); 398 } 399 400 /* 401 * Apply the memory limit if it was set. Since the kernel may be loaded 402 * high up in memory, add back the kernel region that must be accessible 403 * via the linear mapping. 404 */ 405 if (memory_limit != PHYS_ADDR_MAX) { 406 memblock_mem_limit_remove_map(memory_limit); 407 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 408 } 409 410 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) { 411 /* 412 * Add back the memory we just removed if it results in the 413 * initrd to become inaccessible via the linear mapping. 414 * Otherwise, this is a no-op 415 */ 416 u64 base = initrd_start & PAGE_MASK; 417 u64 size = PAGE_ALIGN(initrd_end) - base; 418 419 /* 420 * We can only add back the initrd memory if we don't end up 421 * with more memory than we can address via the linear mapping. 422 * It is up to the bootloader to position the kernel and the 423 * initrd reasonably close to each other (i.e., within 32 GB of 424 * each other) so that all granule/#levels combinations can 425 * always access both. 426 */ 427 if (WARN(base < memblock_start_of_DRAM() || 428 base + size > memblock_start_of_DRAM() + 429 linear_region_size, 430 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 431 initrd_start = 0; 432 } else { 433 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 434 memblock_add(base, size); 435 memblock_reserve(base, size); 436 } 437 } 438 439 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 440 extern u16 memstart_offset_seed; 441 u64 range = linear_region_size - 442 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 443 444 /* 445 * If the size of the linear region exceeds, by a sufficient 446 * margin, the size of the region that the available physical 447 * memory spans, randomize the linear region as well. 448 */ 449 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 450 range = range / ARM64_MEMSTART_ALIGN + 1; 451 memstart_addr -= ARM64_MEMSTART_ALIGN * 452 ((range * memstart_offset_seed) >> 16); 453 } 454 } 455 456 /* 457 * Register the kernel text, kernel data, initrd, and initial 458 * pagetables with memblock. 459 */ 460 memblock_reserve(__pa_symbol(_text), _end - _text); 461 #ifdef CONFIG_BLK_DEV_INITRD 462 if (initrd_start) { 463 memblock_reserve(initrd_start, initrd_end - initrd_start); 464 465 /* the generic initrd code expects virtual addresses */ 466 initrd_start = __phys_to_virt(initrd_start); 467 initrd_end = __phys_to_virt(initrd_end); 468 } 469 #endif 470 471 early_init_fdt_scan_reserved_mem(); 472 473 /* 4GB maximum for 32-bit only capable devices */ 474 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 475 arm64_dma_phys_limit = max_zone_dma_phys(); 476 else 477 arm64_dma_phys_limit = PHYS_MASK + 1; 478 479 reserve_crashkernel(); 480 481 reserve_elfcorehdr(); 482 483 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 484 485 dma_contiguous_reserve(arm64_dma_phys_limit); 486 } 487 488 void __init bootmem_init(void) 489 { 490 unsigned long min, max; 491 492 min = PFN_UP(memblock_start_of_DRAM()); 493 max = PFN_DOWN(memblock_end_of_DRAM()); 494 495 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 496 497 max_pfn = max_low_pfn = max; 498 499 arm64_numa_init(); 500 /* 501 * Sparsemem tries to allocate bootmem in memory_present(), so must be 502 * done after the fixed reservations. 503 */ 504 arm64_memory_present(); 505 506 sparse_init(); 507 zone_sizes_init(min, max); 508 509 memblock_dump_all(); 510 } 511 512 #ifndef CONFIG_SPARSEMEM_VMEMMAP 513 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 514 { 515 struct page *start_pg, *end_pg; 516 unsigned long pg, pgend; 517 518 /* 519 * Convert start_pfn/end_pfn to a struct page pointer. 520 */ 521 start_pg = pfn_to_page(start_pfn - 1) + 1; 522 end_pg = pfn_to_page(end_pfn - 1) + 1; 523 524 /* 525 * Convert to physical addresses, and round start upwards and end 526 * downwards. 527 */ 528 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 529 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 530 531 /* 532 * If there are free pages between these, free the section of the 533 * memmap array. 534 */ 535 if (pg < pgend) 536 memblock_free(pg, pgend - pg); 537 } 538 539 /* 540 * The mem_map array can get very big. Free the unused area of the memory map. 541 */ 542 static void __init free_unused_memmap(void) 543 { 544 unsigned long start, prev_end = 0; 545 struct memblock_region *reg; 546 547 for_each_memblock(memory, reg) { 548 start = __phys_to_pfn(reg->base); 549 550 #ifdef CONFIG_SPARSEMEM 551 /* 552 * Take care not to free memmap entries that don't exist due 553 * to SPARSEMEM sections which aren't present. 554 */ 555 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 556 #endif 557 /* 558 * If we had a previous bank, and there is a space between the 559 * current bank and the previous, free it. 560 */ 561 if (prev_end && prev_end < start) 562 free_memmap(prev_end, start); 563 564 /* 565 * Align up here since the VM subsystem insists that the 566 * memmap entries are valid from the bank end aligned to 567 * MAX_ORDER_NR_PAGES. 568 */ 569 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 570 MAX_ORDER_NR_PAGES); 571 } 572 573 #ifdef CONFIG_SPARSEMEM 574 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 575 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 576 #endif 577 } 578 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 579 580 /* 581 * mem_init() marks the free areas in the mem_map and tells us how much memory 582 * is free. This is done after various parts of the system have claimed their 583 * memory after the kernel image. 584 */ 585 void __init mem_init(void) 586 { 587 if (swiotlb_force == SWIOTLB_FORCE || 588 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 589 swiotlb_init(1); 590 else 591 swiotlb_force = SWIOTLB_NO_FORCE; 592 593 set_max_mapnr(pfn_to_page(max_pfn) - mem_map); 594 595 #ifndef CONFIG_SPARSEMEM_VMEMMAP 596 free_unused_memmap(); 597 #endif 598 /* this will put all unused low memory onto the freelists */ 599 memblock_free_all(); 600 601 kexec_reserve_crashkres_pages(); 602 603 mem_init_print_info(NULL); 604 605 /* 606 * Check boundaries twice: Some fundamental inconsistencies can be 607 * detected at build time already. 608 */ 609 #ifdef CONFIG_COMPAT 610 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64); 611 #endif 612 613 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 614 extern int sysctl_overcommit_memory; 615 /* 616 * On a machine this small we won't get anywhere without 617 * overcommit, so turn it on by default. 618 */ 619 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 620 } 621 } 622 623 void free_initmem(void) 624 { 625 free_reserved_area(lm_alias(__init_begin), 626 lm_alias(__init_end), 627 0, "unused kernel"); 628 /* 629 * Unmap the __init region but leave the VM area in place. This 630 * prevents the region from being reused for kernel modules, which 631 * is not supported by kallsyms. 632 */ 633 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 634 } 635 636 #ifdef CONFIG_BLK_DEV_INITRD 637 638 static int keep_initrd __initdata; 639 640 void __init free_initrd_mem(unsigned long start, unsigned long end) 641 { 642 if (!keep_initrd) { 643 free_reserved_area((void *)start, (void *)end, 0, "initrd"); 644 memblock_free(__virt_to_phys(start), end - start); 645 } 646 } 647 648 static int __init keepinitrd_setup(char *__unused) 649 { 650 keep_initrd = 1; 651 return 1; 652 } 653 654 __setup("keepinitrd", keepinitrd_setup); 655 #endif 656 657 /* 658 * Dump out memory limit information on panic. 659 */ 660 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 661 { 662 if (memory_limit != PHYS_ADDR_MAX) { 663 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 664 } else { 665 pr_emerg("Memory Limit: none\n"); 666 } 667 return 0; 668 } 669 670 static struct notifier_block mem_limit_notifier = { 671 .notifier_call = dump_mem_limit, 672 }; 673 674 static int __init register_mem_limit_dumper(void) 675 { 676 atomic_notifier_chain_register(&panic_notifier_list, 677 &mem_limit_notifier); 678 return 0; 679 } 680 __initcall(register_mem_limit_dumper); 681