xref: /linux/arch/arm64/mm/init.c (revision c635813fef0b2327ffecbfbd642f0009e186b3a5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 
34 #include <asm/boot.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/kvm_host.h>
39 #include <asm/memory.h>
40 #include <asm/numa.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <linux/sizes.h>
44 #include <asm/tlb.h>
45 #include <asm/alternative.h>
46 #include <asm/xen/swiotlb-xen.h>
47 
48 /*
49  * We need to be able to catch inadvertent references to memstart_addr
50  * that occur (potentially in generic code) before arm64_memblock_init()
51  * executes, which assigns it its actual value. So use a default value
52  * that cannot be mistaken for a real physical address.
53  */
54 s64 memstart_addr __ro_after_init = -1;
55 EXPORT_SYMBOL(memstart_addr);
56 
57 /*
58  * If the corresponding config options are enabled, we create both ZONE_DMA
59  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
60  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
61  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
62  * otherwise it is empty.
63  */
64 phys_addr_t arm64_dma_phys_limit __ro_after_init;
65 
66 #ifdef CONFIG_KEXEC_CORE
67 /*
68  * reserve_crashkernel() - reserves memory for crash kernel
69  *
70  * This function reserves memory area given in "crashkernel=" kernel command
71  * line parameter. The memory reserved is used by dump capture kernel when
72  * primary kernel is crashing.
73  */
74 static void __init reserve_crashkernel(void)
75 {
76 	unsigned long long crash_base, crash_size;
77 	int ret;
78 
79 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
80 				&crash_size, &crash_base);
81 	/* no crashkernel= or invalid value specified */
82 	if (ret || !crash_size)
83 		return;
84 
85 	crash_size = PAGE_ALIGN(crash_size);
86 
87 	if (crash_base == 0) {
88 		/* Current arm64 boot protocol requires 2MB alignment */
89 		crash_base = memblock_find_in_range(0, arm64_dma_phys_limit,
90 				crash_size, SZ_2M);
91 		if (crash_base == 0) {
92 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
93 				crash_size);
94 			return;
95 		}
96 	} else {
97 		/* User specifies base address explicitly. */
98 		if (!memblock_is_region_memory(crash_base, crash_size)) {
99 			pr_warn("cannot reserve crashkernel: region is not memory\n");
100 			return;
101 		}
102 
103 		if (memblock_is_region_reserved(crash_base, crash_size)) {
104 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
105 			return;
106 		}
107 
108 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
109 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
110 			return;
111 		}
112 	}
113 	memblock_reserve(crash_base, crash_size);
114 
115 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
116 		crash_base, crash_base + crash_size, crash_size >> 20);
117 
118 	crashk_res.start = crash_base;
119 	crashk_res.end = crash_base + crash_size - 1;
120 }
121 #else
122 static void __init reserve_crashkernel(void)
123 {
124 }
125 #endif /* CONFIG_KEXEC_CORE */
126 
127 #ifdef CONFIG_CRASH_DUMP
128 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
129 		const char *uname, int depth, void *data)
130 {
131 	const __be32 *reg;
132 	int len;
133 
134 	if (depth != 1 || strcmp(uname, "chosen") != 0)
135 		return 0;
136 
137 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
138 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
139 		return 1;
140 
141 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
142 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
143 
144 	return 1;
145 }
146 
147 /*
148  * reserve_elfcorehdr() - reserves memory for elf core header
149  *
150  * This function reserves the memory occupied by an elf core header
151  * described in the device tree. This region contains all the
152  * information about primary kernel's core image and is used by a dump
153  * capture kernel to access the system memory on primary kernel.
154  */
155 static void __init reserve_elfcorehdr(void)
156 {
157 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
158 
159 	if (!elfcorehdr_size)
160 		return;
161 
162 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
163 		pr_warn("elfcorehdr is overlapped\n");
164 		return;
165 	}
166 
167 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
168 
169 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
170 		elfcorehdr_size >> 10, elfcorehdr_addr);
171 }
172 #else
173 static void __init reserve_elfcorehdr(void)
174 {
175 }
176 #endif /* CONFIG_CRASH_DUMP */
177 
178 /*
179  * Return the maximum physical address for a zone accessible by the given bits
180  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
181  * available memory, otherwise cap it at 32-bit.
182  */
183 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
184 {
185 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
186 	phys_addr_t phys_start = memblock_start_of_DRAM();
187 
188 	if (phys_start > U32_MAX)
189 		zone_mask = PHYS_ADDR_MAX;
190 	else if (phys_start > zone_mask)
191 		zone_mask = U32_MAX;
192 
193 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
194 }
195 
196 static void __init zone_sizes_init(unsigned long min, unsigned long max)
197 {
198 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
199 	unsigned int __maybe_unused acpi_zone_dma_bits;
200 	unsigned int __maybe_unused dt_zone_dma_bits;
201 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
202 
203 #ifdef CONFIG_ZONE_DMA
204 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
205 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
206 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
207 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
208 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
212 	if (!arm64_dma_phys_limit)
213 		arm64_dma_phys_limit = dma32_phys_limit;
214 #endif
215 	if (!arm64_dma_phys_limit)
216 		arm64_dma_phys_limit = PHYS_MASK + 1;
217 	max_zone_pfns[ZONE_NORMAL] = max;
218 
219 	free_area_init(max_zone_pfns);
220 }
221 
222 int pfn_valid(unsigned long pfn)
223 {
224 	phys_addr_t addr = PFN_PHYS(pfn);
225 	struct mem_section *ms;
226 
227 	/*
228 	 * Ensure the upper PAGE_SHIFT bits are clear in the
229 	 * pfn. Else it might lead to false positives when
230 	 * some of the upper bits are set, but the lower bits
231 	 * match a valid pfn.
232 	 */
233 	if (PHYS_PFN(addr) != pfn)
234 		return 0;
235 
236 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
237 		return 0;
238 
239 	ms = __pfn_to_section(pfn);
240 	if (!valid_section(ms))
241 		return 0;
242 
243 	/*
244 	 * ZONE_DEVICE memory does not have the memblock entries.
245 	 * memblock_is_map_memory() check for ZONE_DEVICE based
246 	 * addresses will always fail. Even the normal hotplugged
247 	 * memory will never have MEMBLOCK_NOMAP flag set in their
248 	 * memblock entries. Skip memblock search for all non early
249 	 * memory sections covering all of hotplug memory including
250 	 * both normal and ZONE_DEVICE based.
251 	 */
252 	if (!early_section(ms))
253 		return pfn_section_valid(ms, pfn);
254 
255 	return memblock_is_memory(addr);
256 }
257 EXPORT_SYMBOL(pfn_valid);
258 
259 int pfn_is_map_memory(unsigned long pfn)
260 {
261 	phys_addr_t addr = PFN_PHYS(pfn);
262 
263 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
264 	if (PHYS_PFN(addr) != pfn)
265 		return 0;
266 
267 	return memblock_is_map_memory(addr);
268 }
269 EXPORT_SYMBOL(pfn_is_map_memory);
270 
271 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
272 
273 /*
274  * Limit the memory size that was specified via FDT.
275  */
276 static int __init early_mem(char *p)
277 {
278 	if (!p)
279 		return 1;
280 
281 	memory_limit = memparse(p, &p) & PAGE_MASK;
282 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
283 
284 	return 0;
285 }
286 early_param("mem", early_mem);
287 
288 static int __init early_init_dt_scan_usablemem(unsigned long node,
289 		const char *uname, int depth, void *data)
290 {
291 	struct memblock_region *usablemem = data;
292 	const __be32 *reg;
293 	int len;
294 
295 	if (depth != 1 || strcmp(uname, "chosen") != 0)
296 		return 0;
297 
298 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
299 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
300 		return 1;
301 
302 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
303 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
304 
305 	return 1;
306 }
307 
308 static void __init fdt_enforce_memory_region(void)
309 {
310 	struct memblock_region reg = {
311 		.size = 0,
312 	};
313 
314 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
315 
316 	if (reg.size)
317 		memblock_cap_memory_range(reg.base, reg.size);
318 }
319 
320 void __init arm64_memblock_init(void)
321 {
322 	const s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
323 
324 	/* Handle linux,usable-memory-range property */
325 	fdt_enforce_memory_region();
326 
327 	/* Remove memory above our supported physical address size */
328 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
329 
330 	/*
331 	 * Select a suitable value for the base of physical memory.
332 	 */
333 	memstart_addr = round_down(memblock_start_of_DRAM(),
334 				   ARM64_MEMSTART_ALIGN);
335 
336 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
337 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
338 
339 	/*
340 	 * Remove the memory that we will not be able to cover with the
341 	 * linear mapping. Take care not to clip the kernel which may be
342 	 * high in memory.
343 	 */
344 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
345 			__pa_symbol(_end)), ULLONG_MAX);
346 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
347 		/* ensure that memstart_addr remains sufficiently aligned */
348 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
349 					 ARM64_MEMSTART_ALIGN);
350 		memblock_remove(0, memstart_addr);
351 	}
352 
353 	/*
354 	 * If we are running with a 52-bit kernel VA config on a system that
355 	 * does not support it, we have to place the available physical
356 	 * memory in the 48-bit addressable part of the linear region, i.e.,
357 	 * we have to move it upward. Since memstart_addr represents the
358 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
359 	 */
360 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
361 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
362 
363 	/*
364 	 * Apply the memory limit if it was set. Since the kernel may be loaded
365 	 * high up in memory, add back the kernel region that must be accessible
366 	 * via the linear mapping.
367 	 */
368 	if (memory_limit != PHYS_ADDR_MAX) {
369 		memblock_mem_limit_remove_map(memory_limit);
370 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
371 	}
372 
373 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
374 		/*
375 		 * Add back the memory we just removed if it results in the
376 		 * initrd to become inaccessible via the linear mapping.
377 		 * Otherwise, this is a no-op
378 		 */
379 		u64 base = phys_initrd_start & PAGE_MASK;
380 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
381 
382 		/*
383 		 * We can only add back the initrd memory if we don't end up
384 		 * with more memory than we can address via the linear mapping.
385 		 * It is up to the bootloader to position the kernel and the
386 		 * initrd reasonably close to each other (i.e., within 32 GB of
387 		 * each other) so that all granule/#levels combinations can
388 		 * always access both.
389 		 */
390 		if (WARN(base < memblock_start_of_DRAM() ||
391 			 base + size > memblock_start_of_DRAM() +
392 				       linear_region_size,
393 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
394 			phys_initrd_size = 0;
395 		} else {
396 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
397 			memblock_add(base, size);
398 			memblock_reserve(base, size);
399 		}
400 	}
401 
402 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
403 		extern u16 memstart_offset_seed;
404 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
405 		int parange = cpuid_feature_extract_unsigned_field(
406 					mmfr0, ID_AA64MMFR0_PARANGE_SHIFT);
407 		s64 range = linear_region_size -
408 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
409 
410 		/*
411 		 * If the size of the linear region exceeds, by a sufficient
412 		 * margin, the size of the region that the physical memory can
413 		 * span, randomize the linear region as well.
414 		 */
415 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
416 			range /= ARM64_MEMSTART_ALIGN;
417 			memstart_addr -= ARM64_MEMSTART_ALIGN *
418 					 ((range * memstart_offset_seed) >> 16);
419 		}
420 	}
421 
422 	/*
423 	 * Register the kernel text, kernel data, initrd, and initial
424 	 * pagetables with memblock.
425 	 */
426 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
427 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
428 		/* the generic initrd code expects virtual addresses */
429 		initrd_start = __phys_to_virt(phys_initrd_start);
430 		initrd_end = initrd_start + phys_initrd_size;
431 	}
432 
433 	early_init_fdt_scan_reserved_mem();
434 
435 	reserve_elfcorehdr();
436 
437 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
438 }
439 
440 void __init bootmem_init(void)
441 {
442 	unsigned long min, max;
443 
444 	min = PFN_UP(memblock_start_of_DRAM());
445 	max = PFN_DOWN(memblock_end_of_DRAM());
446 
447 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
448 
449 	max_pfn = max_low_pfn = max;
450 	min_low_pfn = min;
451 
452 	arch_numa_init();
453 
454 	/*
455 	 * must be done after arch_numa_init() which calls numa_init() to
456 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
457 	 * while allocating required CMA size across online nodes.
458 	 */
459 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
460 	arm64_hugetlb_cma_reserve();
461 #endif
462 
463 	dma_pernuma_cma_reserve();
464 
465 	kvm_hyp_reserve();
466 
467 	/*
468 	 * sparse_init() tries to allocate memory from memblock, so must be
469 	 * done after the fixed reservations
470 	 */
471 	sparse_init();
472 	zone_sizes_init(min, max);
473 
474 	/*
475 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
476 	 */
477 	dma_contiguous_reserve(arm64_dma_phys_limit);
478 
479 	/*
480 	 * request_standard_resources() depends on crashkernel's memory being
481 	 * reserved, so do it here.
482 	 */
483 	reserve_crashkernel();
484 
485 	memblock_dump_all();
486 }
487 
488 /*
489  * mem_init() marks the free areas in the mem_map and tells us how much memory
490  * is free.  This is done after various parts of the system have claimed their
491  * memory after the kernel image.
492  */
493 void __init mem_init(void)
494 {
495 	if (swiotlb_force == SWIOTLB_FORCE ||
496 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
497 		swiotlb_init(1);
498 	else if (!xen_swiotlb_detect())
499 		swiotlb_force = SWIOTLB_NO_FORCE;
500 
501 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
502 
503 	/* this will put all unused low memory onto the freelists */
504 	memblock_free_all();
505 
506 	/*
507 	 * Check boundaries twice: Some fundamental inconsistencies can be
508 	 * detected at build time already.
509 	 */
510 #ifdef CONFIG_COMPAT
511 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
512 #endif
513 
514 	/*
515 	 * Selected page table levels should match when derived from
516 	 * scratch using the virtual address range and page size.
517 	 */
518 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
519 		     CONFIG_PGTABLE_LEVELS);
520 
521 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
522 		extern int sysctl_overcommit_memory;
523 		/*
524 		 * On a machine this small we won't get anywhere without
525 		 * overcommit, so turn it on by default.
526 		 */
527 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
528 	}
529 }
530 
531 void free_initmem(void)
532 {
533 	free_reserved_area(lm_alias(__init_begin),
534 			   lm_alias(__init_end),
535 			   POISON_FREE_INITMEM, "unused kernel");
536 	/*
537 	 * Unmap the __init region but leave the VM area in place. This
538 	 * prevents the region from being reused for kernel modules, which
539 	 * is not supported by kallsyms.
540 	 */
541 	vunmap_range((u64)__init_begin, (u64)__init_end);
542 }
543 
544 void dump_mem_limit(void)
545 {
546 	if (memory_limit != PHYS_ADDR_MAX) {
547 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
548 	} else {
549 		pr_emerg("Memory Limit: none\n");
550 	}
551 }
552