xref: /linux/arch/arm64/mm/init.c (revision baaa68a9796ef2cadfe5caaf4c730412eda0f31c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/kmemleak.h>
34 
35 #include <asm/boot.h>
36 #include <asm/fixmap.h>
37 #include <asm/kasan.h>
38 #include <asm/kernel-pgtable.h>
39 #include <asm/kvm_host.h>
40 #include <asm/memory.h>
41 #include <asm/numa.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <linux/sizes.h>
45 #include <asm/tlb.h>
46 #include <asm/alternative.h>
47 #include <asm/xen/swiotlb-xen.h>
48 
49 /*
50  * We need to be able to catch inadvertent references to memstart_addr
51  * that occur (potentially in generic code) before arm64_memblock_init()
52  * executes, which assigns it its actual value. So use a default value
53  * that cannot be mistaken for a real physical address.
54  */
55 s64 memstart_addr __ro_after_init = -1;
56 EXPORT_SYMBOL(memstart_addr);
57 
58 /*
59  * If the corresponding config options are enabled, we create both ZONE_DMA
60  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
61  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
62  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
63  * otherwise it is empty.
64  *
65  * Memory reservation for crash kernel either done early or deferred
66  * depending on DMA memory zones configs (ZONE_DMA) --
67  *
68  * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized
69  * here instead of max_zone_phys().  This lets early reservation of
70  * crash kernel memory which has a dependency on arm64_dma_phys_limit.
71  * Reserving memory early for crash kernel allows linear creation of block
72  * mappings (greater than page-granularity) for all the memory bank rangs.
73  * In this scheme a comparatively quicker boot is observed.
74  *
75  * If ZONE_DMA configs are defined, crash kernel memory reservation
76  * is delayed until DMA zone memory range size initilazation performed in
77  * zone_sizes_init().  The defer is necessary to steer clear of DMA zone
78  * memory range to avoid overlap allocation.  So crash kernel memory boundaries
79  * are not known when mapping all bank memory ranges, which otherwise means
80  * not possible to exclude crash kernel range from creating block mappings
81  * so page-granularity mappings are created for the entire memory range.
82  * Hence a slightly slower boot is observed.
83  *
84  * Note: Page-granularity mapppings are necessary for crash kernel memory
85  * range for shrinking its size via /sys/kernel/kexec_crash_size interface.
86  */
87 #if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)
88 phys_addr_t __ro_after_init arm64_dma_phys_limit;
89 #else
90 phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
91 #endif
92 
93 #ifdef CONFIG_KEXEC_CORE
94 /*
95  * reserve_crashkernel() - reserves memory for crash kernel
96  *
97  * This function reserves memory area given in "crashkernel=" kernel command
98  * line parameter. The memory reserved is used by dump capture kernel when
99  * primary kernel is crashing.
100  */
101 static void __init reserve_crashkernel(void)
102 {
103 	unsigned long long crash_base, crash_size;
104 	unsigned long long crash_max = arm64_dma_phys_limit;
105 	int ret;
106 
107 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
108 				&crash_size, &crash_base);
109 	/* no crashkernel= or invalid value specified */
110 	if (ret || !crash_size)
111 		return;
112 
113 	crash_size = PAGE_ALIGN(crash_size);
114 
115 	/* User specifies base address explicitly. */
116 	if (crash_base)
117 		crash_max = crash_base + crash_size;
118 
119 	/* Current arm64 boot protocol requires 2MB alignment */
120 	crash_base = memblock_phys_alloc_range(crash_size, SZ_2M,
121 					       crash_base, crash_max);
122 	if (!crash_base) {
123 		pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
124 			crash_size);
125 		return;
126 	}
127 
128 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
129 		crash_base, crash_base + crash_size, crash_size >> 20);
130 
131 	/*
132 	 * The crashkernel memory will be removed from the kernel linear
133 	 * map. Inform kmemleak so that it won't try to access it.
134 	 */
135 	kmemleak_ignore_phys(crash_base);
136 	crashk_res.start = crash_base;
137 	crashk_res.end = crash_base + crash_size - 1;
138 }
139 #else
140 static void __init reserve_crashkernel(void)
141 {
142 }
143 #endif /* CONFIG_KEXEC_CORE */
144 
145 /*
146  * Return the maximum physical address for a zone accessible by the given bits
147  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
148  * available memory, otherwise cap it at 32-bit.
149  */
150 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
151 {
152 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
153 	phys_addr_t phys_start = memblock_start_of_DRAM();
154 
155 	if (phys_start > U32_MAX)
156 		zone_mask = PHYS_ADDR_MAX;
157 	else if (phys_start > zone_mask)
158 		zone_mask = U32_MAX;
159 
160 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
161 }
162 
163 static void __init zone_sizes_init(unsigned long min, unsigned long max)
164 {
165 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
166 	unsigned int __maybe_unused acpi_zone_dma_bits;
167 	unsigned int __maybe_unused dt_zone_dma_bits;
168 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
169 
170 #ifdef CONFIG_ZONE_DMA
171 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
172 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
173 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
174 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
175 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
176 #endif
177 #ifdef CONFIG_ZONE_DMA32
178 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
179 	if (!arm64_dma_phys_limit)
180 		arm64_dma_phys_limit = dma32_phys_limit;
181 #endif
182 	max_zone_pfns[ZONE_NORMAL] = max;
183 
184 	free_area_init(max_zone_pfns);
185 }
186 
187 int pfn_is_map_memory(unsigned long pfn)
188 {
189 	phys_addr_t addr = PFN_PHYS(pfn);
190 
191 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
192 	if (PHYS_PFN(addr) != pfn)
193 		return 0;
194 
195 	return memblock_is_map_memory(addr);
196 }
197 EXPORT_SYMBOL(pfn_is_map_memory);
198 
199 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
200 
201 /*
202  * Limit the memory size that was specified via FDT.
203  */
204 static int __init early_mem(char *p)
205 {
206 	if (!p)
207 		return 1;
208 
209 	memory_limit = memparse(p, &p) & PAGE_MASK;
210 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
211 
212 	return 0;
213 }
214 early_param("mem", early_mem);
215 
216 void __init arm64_memblock_init(void)
217 {
218 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
219 
220 	/*
221 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
222 	 * be limited in their ability to support a linear map that exceeds 51
223 	 * bits of VA space, depending on the placement of the ID map. Given
224 	 * that the placement of the ID map may be randomized, let's simply
225 	 * limit the kernel's linear map to 51 bits as well if we detect this
226 	 * configuration.
227 	 */
228 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
229 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
230 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
231 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
232 	}
233 
234 	/* Remove memory above our supported physical address size */
235 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
236 
237 	/*
238 	 * Select a suitable value for the base of physical memory.
239 	 */
240 	memstart_addr = round_down(memblock_start_of_DRAM(),
241 				   ARM64_MEMSTART_ALIGN);
242 
243 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
244 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
245 
246 	/*
247 	 * Remove the memory that we will not be able to cover with the
248 	 * linear mapping. Take care not to clip the kernel which may be
249 	 * high in memory.
250 	 */
251 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
252 			__pa_symbol(_end)), ULLONG_MAX);
253 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
254 		/* ensure that memstart_addr remains sufficiently aligned */
255 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
256 					 ARM64_MEMSTART_ALIGN);
257 		memblock_remove(0, memstart_addr);
258 	}
259 
260 	/*
261 	 * If we are running with a 52-bit kernel VA config on a system that
262 	 * does not support it, we have to place the available physical
263 	 * memory in the 48-bit addressable part of the linear region, i.e.,
264 	 * we have to move it upward. Since memstart_addr represents the
265 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
266 	 */
267 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
268 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
269 
270 	/*
271 	 * Apply the memory limit if it was set. Since the kernel may be loaded
272 	 * high up in memory, add back the kernel region that must be accessible
273 	 * via the linear mapping.
274 	 */
275 	if (memory_limit != PHYS_ADDR_MAX) {
276 		memblock_mem_limit_remove_map(memory_limit);
277 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
278 	}
279 
280 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
281 		/*
282 		 * Add back the memory we just removed if it results in the
283 		 * initrd to become inaccessible via the linear mapping.
284 		 * Otherwise, this is a no-op
285 		 */
286 		u64 base = phys_initrd_start & PAGE_MASK;
287 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
288 
289 		/*
290 		 * We can only add back the initrd memory if we don't end up
291 		 * with more memory than we can address via the linear mapping.
292 		 * It is up to the bootloader to position the kernel and the
293 		 * initrd reasonably close to each other (i.e., within 32 GB of
294 		 * each other) so that all granule/#levels combinations can
295 		 * always access both.
296 		 */
297 		if (WARN(base < memblock_start_of_DRAM() ||
298 			 base + size > memblock_start_of_DRAM() +
299 				       linear_region_size,
300 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
301 			phys_initrd_size = 0;
302 		} else {
303 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
304 			memblock_add(base, size);
305 			memblock_reserve(base, size);
306 		}
307 	}
308 
309 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
310 		extern u16 memstart_offset_seed;
311 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
312 		int parange = cpuid_feature_extract_unsigned_field(
313 					mmfr0, ID_AA64MMFR0_PARANGE_SHIFT);
314 		s64 range = linear_region_size -
315 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
316 
317 		/*
318 		 * If the size of the linear region exceeds, by a sufficient
319 		 * margin, the size of the region that the physical memory can
320 		 * span, randomize the linear region as well.
321 		 */
322 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
323 			range /= ARM64_MEMSTART_ALIGN;
324 			memstart_addr -= ARM64_MEMSTART_ALIGN *
325 					 ((range * memstart_offset_seed) >> 16);
326 		}
327 	}
328 
329 	/*
330 	 * Register the kernel text, kernel data, initrd, and initial
331 	 * pagetables with memblock.
332 	 */
333 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
334 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
335 		/* the generic initrd code expects virtual addresses */
336 		initrd_start = __phys_to_virt(phys_initrd_start);
337 		initrd_end = initrd_start + phys_initrd_size;
338 	}
339 
340 	early_init_fdt_scan_reserved_mem();
341 
342 	if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32))
343 		reserve_crashkernel();
344 
345 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
346 }
347 
348 void __init bootmem_init(void)
349 {
350 	unsigned long min, max;
351 
352 	min = PFN_UP(memblock_start_of_DRAM());
353 	max = PFN_DOWN(memblock_end_of_DRAM());
354 
355 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
356 
357 	max_pfn = max_low_pfn = max;
358 	min_low_pfn = min;
359 
360 	arch_numa_init();
361 
362 	/*
363 	 * must be done after arch_numa_init() which calls numa_init() to
364 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
365 	 * while allocating required CMA size across online nodes.
366 	 */
367 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
368 	arm64_hugetlb_cma_reserve();
369 #endif
370 
371 	dma_pernuma_cma_reserve();
372 
373 	kvm_hyp_reserve();
374 
375 	/*
376 	 * sparse_init() tries to allocate memory from memblock, so must be
377 	 * done after the fixed reservations
378 	 */
379 	sparse_init();
380 	zone_sizes_init(min, max);
381 
382 	/*
383 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
384 	 */
385 	dma_contiguous_reserve(arm64_dma_phys_limit);
386 
387 	/*
388 	 * request_standard_resources() depends on crashkernel's memory being
389 	 * reserved, so do it here.
390 	 */
391 	if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32))
392 		reserve_crashkernel();
393 
394 	memblock_dump_all();
395 }
396 
397 /*
398  * mem_init() marks the free areas in the mem_map and tells us how much memory
399  * is free.  This is done after various parts of the system have claimed their
400  * memory after the kernel image.
401  */
402 void __init mem_init(void)
403 {
404 	if (swiotlb_force == SWIOTLB_FORCE ||
405 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
406 		swiotlb_init(1);
407 	else if (!xen_swiotlb_detect())
408 		swiotlb_force = SWIOTLB_NO_FORCE;
409 
410 	/* this will put all unused low memory onto the freelists */
411 	memblock_free_all();
412 
413 	/*
414 	 * Check boundaries twice: Some fundamental inconsistencies can be
415 	 * detected at build time already.
416 	 */
417 #ifdef CONFIG_COMPAT
418 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
419 #endif
420 
421 	/*
422 	 * Selected page table levels should match when derived from
423 	 * scratch using the virtual address range and page size.
424 	 */
425 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
426 		     CONFIG_PGTABLE_LEVELS);
427 
428 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
429 		extern int sysctl_overcommit_memory;
430 		/*
431 		 * On a machine this small we won't get anywhere without
432 		 * overcommit, so turn it on by default.
433 		 */
434 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
435 	}
436 }
437 
438 void free_initmem(void)
439 {
440 	free_reserved_area(lm_alias(__init_begin),
441 			   lm_alias(__init_end),
442 			   POISON_FREE_INITMEM, "unused kernel");
443 	/*
444 	 * Unmap the __init region but leave the VM area in place. This
445 	 * prevents the region from being reused for kernel modules, which
446 	 * is not supported by kallsyms.
447 	 */
448 	vunmap_range((u64)__init_begin, (u64)__init_end);
449 }
450 
451 void dump_mem_limit(void)
452 {
453 	if (memory_limit != PHYS_ADDR_MAX) {
454 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
455 	} else {
456 		pr_emerg("Memory Limit: none\n");
457 	}
458 }
459