1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-map-ops.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 #include <linux/hugetlb.h> 32 #include <linux/acpi_iort.h> 33 #include <linux/kmemleak.h> 34 35 #include <asm/boot.h> 36 #include <asm/fixmap.h> 37 #include <asm/kasan.h> 38 #include <asm/kernel-pgtable.h> 39 #include <asm/kvm_host.h> 40 #include <asm/memory.h> 41 #include <asm/numa.h> 42 #include <asm/sections.h> 43 #include <asm/setup.h> 44 #include <linux/sizes.h> 45 #include <asm/tlb.h> 46 #include <asm/alternative.h> 47 #include <asm/xen/swiotlb-xen.h> 48 49 /* 50 * We need to be able to catch inadvertent references to memstart_addr 51 * that occur (potentially in generic code) before arm64_memblock_init() 52 * executes, which assigns it its actual value. So use a default value 53 * that cannot be mistaken for a real physical address. 54 */ 55 s64 memstart_addr __ro_after_init = -1; 56 EXPORT_SYMBOL(memstart_addr); 57 58 /* 59 * If the corresponding config options are enabled, we create both ZONE_DMA 60 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory 61 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). 62 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, 63 * otherwise it is empty. 64 * 65 * Memory reservation for crash kernel either done early or deferred 66 * depending on DMA memory zones configs (ZONE_DMA) -- 67 * 68 * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized 69 * here instead of max_zone_phys(). This lets early reservation of 70 * crash kernel memory which has a dependency on arm64_dma_phys_limit. 71 * Reserving memory early for crash kernel allows linear creation of block 72 * mappings (greater than page-granularity) for all the memory bank rangs. 73 * In this scheme a comparatively quicker boot is observed. 74 * 75 * If ZONE_DMA configs are defined, crash kernel memory reservation 76 * is delayed until DMA zone memory range size initilazation performed in 77 * zone_sizes_init(). The defer is necessary to steer clear of DMA zone 78 * memory range to avoid overlap allocation. So crash kernel memory boundaries 79 * are not known when mapping all bank memory ranges, which otherwise means 80 * not possible to exclude crash kernel range from creating block mappings 81 * so page-granularity mappings are created for the entire memory range. 82 * Hence a slightly slower boot is observed. 83 * 84 * Note: Page-granularity mapppings are necessary for crash kernel memory 85 * range for shrinking its size via /sys/kernel/kexec_crash_size interface. 86 */ 87 #if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32) 88 phys_addr_t __ro_after_init arm64_dma_phys_limit; 89 #else 90 phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1; 91 #endif 92 93 #ifdef CONFIG_KEXEC_CORE 94 /* 95 * reserve_crashkernel() - reserves memory for crash kernel 96 * 97 * This function reserves memory area given in "crashkernel=" kernel command 98 * line parameter. The memory reserved is used by dump capture kernel when 99 * primary kernel is crashing. 100 */ 101 static void __init reserve_crashkernel(void) 102 { 103 unsigned long long crash_base, crash_size; 104 unsigned long long crash_max = arm64_dma_phys_limit; 105 int ret; 106 107 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 108 &crash_size, &crash_base); 109 /* no crashkernel= or invalid value specified */ 110 if (ret || !crash_size) 111 return; 112 113 crash_size = PAGE_ALIGN(crash_size); 114 115 /* User specifies base address explicitly. */ 116 if (crash_base) 117 crash_max = crash_base + crash_size; 118 119 /* Current arm64 boot protocol requires 2MB alignment */ 120 crash_base = memblock_phys_alloc_range(crash_size, SZ_2M, 121 crash_base, crash_max); 122 if (!crash_base) { 123 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 124 crash_size); 125 return; 126 } 127 128 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 129 crash_base, crash_base + crash_size, crash_size >> 20); 130 131 /* 132 * The crashkernel memory will be removed from the kernel linear 133 * map. Inform kmemleak so that it won't try to access it. 134 */ 135 kmemleak_ignore_phys(crash_base); 136 crashk_res.start = crash_base; 137 crashk_res.end = crash_base + crash_size - 1; 138 } 139 #else 140 static void __init reserve_crashkernel(void) 141 { 142 } 143 #endif /* CONFIG_KEXEC_CORE */ 144 145 /* 146 * Return the maximum physical address for a zone accessible by the given bits 147 * limit. If DRAM starts above 32-bit, expand the zone to the maximum 148 * available memory, otherwise cap it at 32-bit. 149 */ 150 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 151 { 152 phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits); 153 phys_addr_t phys_start = memblock_start_of_DRAM(); 154 155 if (phys_start > U32_MAX) 156 zone_mask = PHYS_ADDR_MAX; 157 else if (phys_start > zone_mask) 158 zone_mask = U32_MAX; 159 160 return min(zone_mask, memblock_end_of_DRAM() - 1) + 1; 161 } 162 163 static void __init zone_sizes_init(unsigned long min, unsigned long max) 164 { 165 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 166 unsigned int __maybe_unused acpi_zone_dma_bits; 167 unsigned int __maybe_unused dt_zone_dma_bits; 168 phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32); 169 170 #ifdef CONFIG_ZONE_DMA 171 acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address()); 172 dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL)); 173 zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits); 174 arm64_dma_phys_limit = max_zone_phys(zone_dma_bits); 175 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 176 #endif 177 #ifdef CONFIG_ZONE_DMA32 178 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 179 if (!arm64_dma_phys_limit) 180 arm64_dma_phys_limit = dma32_phys_limit; 181 #endif 182 max_zone_pfns[ZONE_NORMAL] = max; 183 184 free_area_init(max_zone_pfns); 185 } 186 187 int pfn_is_map_memory(unsigned long pfn) 188 { 189 phys_addr_t addr = PFN_PHYS(pfn); 190 191 /* avoid false positives for bogus PFNs, see comment in pfn_valid() */ 192 if (PHYS_PFN(addr) != pfn) 193 return 0; 194 195 return memblock_is_map_memory(addr); 196 } 197 EXPORT_SYMBOL(pfn_is_map_memory); 198 199 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX; 200 201 /* 202 * Limit the memory size that was specified via FDT. 203 */ 204 static int __init early_mem(char *p) 205 { 206 if (!p) 207 return 1; 208 209 memory_limit = memparse(p, &p) & PAGE_MASK; 210 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 211 212 return 0; 213 } 214 early_param("mem", early_mem); 215 216 void __init arm64_memblock_init(void) 217 { 218 s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual); 219 220 /* 221 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may 222 * be limited in their ability to support a linear map that exceeds 51 223 * bits of VA space, depending on the placement of the ID map. Given 224 * that the placement of the ID map may be randomized, let's simply 225 * limit the kernel's linear map to 51 bits as well if we detect this 226 * configuration. 227 */ 228 if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 && 229 is_hyp_mode_available() && !is_kernel_in_hyp_mode()) { 230 pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n"); 231 linear_region_size = min_t(u64, linear_region_size, BIT(51)); 232 } 233 234 /* Remove memory above our supported physical address size */ 235 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 236 237 /* 238 * Select a suitable value for the base of physical memory. 239 */ 240 memstart_addr = round_down(memblock_start_of_DRAM(), 241 ARM64_MEMSTART_ALIGN); 242 243 if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size) 244 pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n"); 245 246 /* 247 * Remove the memory that we will not be able to cover with the 248 * linear mapping. Take care not to clip the kernel which may be 249 * high in memory. 250 */ 251 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 252 __pa_symbol(_end)), ULLONG_MAX); 253 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 254 /* ensure that memstart_addr remains sufficiently aligned */ 255 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 256 ARM64_MEMSTART_ALIGN); 257 memblock_remove(0, memstart_addr); 258 } 259 260 /* 261 * If we are running with a 52-bit kernel VA config on a system that 262 * does not support it, we have to place the available physical 263 * memory in the 48-bit addressable part of the linear region, i.e., 264 * we have to move it upward. Since memstart_addr represents the 265 * physical address of PAGE_OFFSET, we have to *subtract* from it. 266 */ 267 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) 268 memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52); 269 270 /* 271 * Apply the memory limit if it was set. Since the kernel may be loaded 272 * high up in memory, add back the kernel region that must be accessible 273 * via the linear mapping. 274 */ 275 if (memory_limit != PHYS_ADDR_MAX) { 276 memblock_mem_limit_remove_map(memory_limit); 277 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 278 } 279 280 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 281 /* 282 * Add back the memory we just removed if it results in the 283 * initrd to become inaccessible via the linear mapping. 284 * Otherwise, this is a no-op 285 */ 286 u64 base = phys_initrd_start & PAGE_MASK; 287 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 288 289 /* 290 * We can only add back the initrd memory if we don't end up 291 * with more memory than we can address via the linear mapping. 292 * It is up to the bootloader to position the kernel and the 293 * initrd reasonably close to each other (i.e., within 32 GB of 294 * each other) so that all granule/#levels combinations can 295 * always access both. 296 */ 297 if (WARN(base < memblock_start_of_DRAM() || 298 base + size > memblock_start_of_DRAM() + 299 linear_region_size, 300 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 301 phys_initrd_size = 0; 302 } else { 303 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 304 memblock_add(base, size); 305 memblock_reserve(base, size); 306 } 307 } 308 309 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 310 extern u16 memstart_offset_seed; 311 u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 312 int parange = cpuid_feature_extract_unsigned_field( 313 mmfr0, ID_AA64MMFR0_PARANGE_SHIFT); 314 s64 range = linear_region_size - 315 BIT(id_aa64mmfr0_parange_to_phys_shift(parange)); 316 317 /* 318 * If the size of the linear region exceeds, by a sufficient 319 * margin, the size of the region that the physical memory can 320 * span, randomize the linear region as well. 321 */ 322 if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) { 323 range /= ARM64_MEMSTART_ALIGN; 324 memstart_addr -= ARM64_MEMSTART_ALIGN * 325 ((range * memstart_offset_seed) >> 16); 326 } 327 } 328 329 /* 330 * Register the kernel text, kernel data, initrd, and initial 331 * pagetables with memblock. 332 */ 333 memblock_reserve(__pa_symbol(_stext), _end - _stext); 334 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 335 /* the generic initrd code expects virtual addresses */ 336 initrd_start = __phys_to_virt(phys_initrd_start); 337 initrd_end = initrd_start + phys_initrd_size; 338 } 339 340 early_init_fdt_scan_reserved_mem(); 341 342 if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32)) 343 reserve_crashkernel(); 344 345 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 346 } 347 348 void __init bootmem_init(void) 349 { 350 unsigned long min, max; 351 352 min = PFN_UP(memblock_start_of_DRAM()); 353 max = PFN_DOWN(memblock_end_of_DRAM()); 354 355 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 356 357 max_pfn = max_low_pfn = max; 358 min_low_pfn = min; 359 360 arch_numa_init(); 361 362 /* 363 * must be done after arch_numa_init() which calls numa_init() to 364 * initialize node_online_map that gets used in hugetlb_cma_reserve() 365 * while allocating required CMA size across online nodes. 366 */ 367 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 368 arm64_hugetlb_cma_reserve(); 369 #endif 370 371 dma_pernuma_cma_reserve(); 372 373 kvm_hyp_reserve(); 374 375 /* 376 * sparse_init() tries to allocate memory from memblock, so must be 377 * done after the fixed reservations 378 */ 379 sparse_init(); 380 zone_sizes_init(min, max); 381 382 /* 383 * Reserve the CMA area after arm64_dma_phys_limit was initialised. 384 */ 385 dma_contiguous_reserve(arm64_dma_phys_limit); 386 387 /* 388 * request_standard_resources() depends on crashkernel's memory being 389 * reserved, so do it here. 390 */ 391 if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)) 392 reserve_crashkernel(); 393 394 memblock_dump_all(); 395 } 396 397 /* 398 * mem_init() marks the free areas in the mem_map and tells us how much memory 399 * is free. This is done after various parts of the system have claimed their 400 * memory after the kernel image. 401 */ 402 void __init mem_init(void) 403 { 404 if (swiotlb_force == SWIOTLB_FORCE || 405 max_pfn > PFN_DOWN(arm64_dma_phys_limit)) 406 swiotlb_init(1); 407 else if (!xen_swiotlb_detect()) 408 swiotlb_force = SWIOTLB_NO_FORCE; 409 410 /* this will put all unused low memory onto the freelists */ 411 memblock_free_all(); 412 413 /* 414 * Check boundaries twice: Some fundamental inconsistencies can be 415 * detected at build time already. 416 */ 417 #ifdef CONFIG_COMPAT 418 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 419 #endif 420 421 /* 422 * Selected page table levels should match when derived from 423 * scratch using the virtual address range and page size. 424 */ 425 BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) != 426 CONFIG_PGTABLE_LEVELS); 427 428 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 429 extern int sysctl_overcommit_memory; 430 /* 431 * On a machine this small we won't get anywhere without 432 * overcommit, so turn it on by default. 433 */ 434 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 435 } 436 } 437 438 void free_initmem(void) 439 { 440 free_reserved_area(lm_alias(__init_begin), 441 lm_alias(__init_end), 442 POISON_FREE_INITMEM, "unused kernel"); 443 /* 444 * Unmap the __init region but leave the VM area in place. This 445 * prevents the region from being reused for kernel modules, which 446 * is not supported by kallsyms. 447 */ 448 vunmap_range((u64)__init_begin, (u64)__init_end); 449 } 450 451 void dump_mem_limit(void) 452 { 453 if (memory_limit != PHYS_ADDR_MAX) { 454 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 455 } else { 456 pr_emerg("Memory Limit: none\n"); 457 } 458 } 459