xref: /linux/arch/arm64/mm/init.c (revision a3a4a816b4b194c45d0217e8b9e08b2639802cda)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/bootmem.h>
26 #include <linux/cache.h>
27 #include <linux/mman.h>
28 #include <linux/nodemask.h>
29 #include <linux/initrd.h>
30 #include <linux/gfp.h>
31 #include <linux/memblock.h>
32 #include <linux/sort.h>
33 #include <linux/of_fdt.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dma-contiguous.h>
36 #include <linux/efi.h>
37 #include <linux/swiotlb.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm.h>
40 
41 #include <asm/boot.h>
42 #include <asm/fixmap.h>
43 #include <asm/kasan.h>
44 #include <asm/kernel-pgtable.h>
45 #include <asm/memory.h>
46 #include <asm/numa.h>
47 #include <asm/sections.h>
48 #include <asm/setup.h>
49 #include <asm/sizes.h>
50 #include <asm/tlb.h>
51 #include <asm/alternative.h>
52 
53 /*
54  * We need to be able to catch inadvertent references to memstart_addr
55  * that occur (potentially in generic code) before arm64_memblock_init()
56  * executes, which assigns it its actual value. So use a default value
57  * that cannot be mistaken for a real physical address.
58  */
59 s64 memstart_addr __ro_after_init = -1;
60 phys_addr_t arm64_dma_phys_limit __ro_after_init;
61 
62 #ifdef CONFIG_BLK_DEV_INITRD
63 static int __init early_initrd(char *p)
64 {
65 	unsigned long start, size;
66 	char *endp;
67 
68 	start = memparse(p, &endp);
69 	if (*endp == ',') {
70 		size = memparse(endp + 1, NULL);
71 
72 		initrd_start = start;
73 		initrd_end = start + size;
74 	}
75 	return 0;
76 }
77 early_param("initrd", early_initrd);
78 #endif
79 
80 /*
81  * Return the maximum physical address for ZONE_DMA (DMA_BIT_MASK(32)). It
82  * currently assumes that for memory starting above 4G, 32-bit devices will
83  * use a DMA offset.
84  */
85 static phys_addr_t __init max_zone_dma_phys(void)
86 {
87 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
88 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
89 }
90 
91 #ifdef CONFIG_NUMA
92 
93 static void __init zone_sizes_init(unsigned long min, unsigned long max)
94 {
95 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
96 
97 	if (IS_ENABLED(CONFIG_ZONE_DMA))
98 		max_zone_pfns[ZONE_DMA] = PFN_DOWN(max_zone_dma_phys());
99 	max_zone_pfns[ZONE_NORMAL] = max;
100 
101 	free_area_init_nodes(max_zone_pfns);
102 }
103 
104 #else
105 
106 static void __init zone_sizes_init(unsigned long min, unsigned long max)
107 {
108 	struct memblock_region *reg;
109 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
110 	unsigned long max_dma = min;
111 
112 	memset(zone_size, 0, sizeof(zone_size));
113 
114 	/* 4GB maximum for 32-bit only capable devices */
115 #ifdef CONFIG_ZONE_DMA
116 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
117 	zone_size[ZONE_DMA] = max_dma - min;
118 #endif
119 	zone_size[ZONE_NORMAL] = max - max_dma;
120 
121 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
122 
123 	for_each_memblock(memory, reg) {
124 		unsigned long start = memblock_region_memory_base_pfn(reg);
125 		unsigned long end = memblock_region_memory_end_pfn(reg);
126 
127 		if (start >= max)
128 			continue;
129 
130 #ifdef CONFIG_ZONE_DMA
131 		if (start < max_dma) {
132 			unsigned long dma_end = min(end, max_dma);
133 			zhole_size[ZONE_DMA] -= dma_end - start;
134 		}
135 #endif
136 		if (end > max_dma) {
137 			unsigned long normal_end = min(end, max);
138 			unsigned long normal_start = max(start, max_dma);
139 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
140 		}
141 	}
142 
143 	free_area_init_node(0, zone_size, min, zhole_size);
144 }
145 
146 #endif /* CONFIG_NUMA */
147 
148 #ifdef CONFIG_HAVE_ARCH_PFN_VALID
149 int pfn_valid(unsigned long pfn)
150 {
151 	return memblock_is_map_memory(pfn << PAGE_SHIFT);
152 }
153 EXPORT_SYMBOL(pfn_valid);
154 #endif
155 
156 #ifndef CONFIG_SPARSEMEM
157 static void __init arm64_memory_present(void)
158 {
159 }
160 #else
161 static void __init arm64_memory_present(void)
162 {
163 	struct memblock_region *reg;
164 
165 	for_each_memblock(memory, reg) {
166 		int nid = memblock_get_region_node(reg);
167 
168 		memory_present(nid, memblock_region_memory_base_pfn(reg),
169 				memblock_region_memory_end_pfn(reg));
170 	}
171 }
172 #endif
173 
174 static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
175 
176 /*
177  * Limit the memory size that was specified via FDT.
178  */
179 static int __init early_mem(char *p)
180 {
181 	if (!p)
182 		return 1;
183 
184 	memory_limit = memparse(p, &p) & PAGE_MASK;
185 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
186 
187 	return 0;
188 }
189 early_param("mem", early_mem);
190 
191 void __init arm64_memblock_init(void)
192 {
193 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
194 
195 	/*
196 	 * Ensure that the linear region takes up exactly half of the kernel
197 	 * virtual address space. This way, we can distinguish a linear address
198 	 * from a kernel/module/vmalloc address by testing a single bit.
199 	 */
200 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
201 
202 	/*
203 	 * Select a suitable value for the base of physical memory.
204 	 */
205 	memstart_addr = round_down(memblock_start_of_DRAM(),
206 				   ARM64_MEMSTART_ALIGN);
207 
208 	/*
209 	 * Remove the memory that we will not be able to cover with the
210 	 * linear mapping. Take care not to clip the kernel which may be
211 	 * high in memory.
212 	 */
213 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
214 			__pa_symbol(_end)), ULLONG_MAX);
215 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
216 		/* ensure that memstart_addr remains sufficiently aligned */
217 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
218 					 ARM64_MEMSTART_ALIGN);
219 		memblock_remove(0, memstart_addr);
220 	}
221 
222 	/*
223 	 * Apply the memory limit if it was set. Since the kernel may be loaded
224 	 * high up in memory, add back the kernel region that must be accessible
225 	 * via the linear mapping.
226 	 */
227 	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
228 		memblock_mem_limit_remove_map(memory_limit);
229 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
230 	}
231 
232 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
233 		/*
234 		 * Add back the memory we just removed if it results in the
235 		 * initrd to become inaccessible via the linear mapping.
236 		 * Otherwise, this is a no-op
237 		 */
238 		u64 base = initrd_start & PAGE_MASK;
239 		u64 size = PAGE_ALIGN(initrd_end) - base;
240 
241 		/*
242 		 * We can only add back the initrd memory if we don't end up
243 		 * with more memory than we can address via the linear mapping.
244 		 * It is up to the bootloader to position the kernel and the
245 		 * initrd reasonably close to each other (i.e., within 32 GB of
246 		 * each other) so that all granule/#levels combinations can
247 		 * always access both.
248 		 */
249 		if (WARN(base < memblock_start_of_DRAM() ||
250 			 base + size > memblock_start_of_DRAM() +
251 				       linear_region_size,
252 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
253 			initrd_start = 0;
254 		} else {
255 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
256 			memblock_add(base, size);
257 			memblock_reserve(base, size);
258 		}
259 	}
260 
261 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
262 		extern u16 memstart_offset_seed;
263 		u64 range = linear_region_size -
264 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
265 
266 		/*
267 		 * If the size of the linear region exceeds, by a sufficient
268 		 * margin, the size of the region that the available physical
269 		 * memory spans, randomize the linear region as well.
270 		 */
271 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
272 			range = range / ARM64_MEMSTART_ALIGN + 1;
273 			memstart_addr -= ARM64_MEMSTART_ALIGN *
274 					 ((range * memstart_offset_seed) >> 16);
275 		}
276 	}
277 
278 	/*
279 	 * Register the kernel text, kernel data, initrd, and initial
280 	 * pagetables with memblock.
281 	 */
282 	memblock_reserve(__pa_symbol(_text), _end - _text);
283 #ifdef CONFIG_BLK_DEV_INITRD
284 	if (initrd_start) {
285 		memblock_reserve(initrd_start, initrd_end - initrd_start);
286 
287 		/* the generic initrd code expects virtual addresses */
288 		initrd_start = __phys_to_virt(initrd_start);
289 		initrd_end = __phys_to_virt(initrd_end);
290 	}
291 #endif
292 
293 	early_init_fdt_scan_reserved_mem();
294 
295 	/* 4GB maximum for 32-bit only capable devices */
296 	if (IS_ENABLED(CONFIG_ZONE_DMA))
297 		arm64_dma_phys_limit = max_zone_dma_phys();
298 	else
299 		arm64_dma_phys_limit = PHYS_MASK + 1;
300 	dma_contiguous_reserve(arm64_dma_phys_limit);
301 
302 	memblock_allow_resize();
303 }
304 
305 void __init bootmem_init(void)
306 {
307 	unsigned long min, max;
308 
309 	min = PFN_UP(memblock_start_of_DRAM());
310 	max = PFN_DOWN(memblock_end_of_DRAM());
311 
312 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
313 
314 	max_pfn = max_low_pfn = max;
315 
316 	arm64_numa_init();
317 	/*
318 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
319 	 * done after the fixed reservations.
320 	 */
321 	arm64_memory_present();
322 
323 	sparse_init();
324 	zone_sizes_init(min, max);
325 
326 	high_memory = __va((max << PAGE_SHIFT) - 1) + 1;
327 	memblock_dump_all();
328 }
329 
330 #ifndef CONFIG_SPARSEMEM_VMEMMAP
331 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
332 {
333 	struct page *start_pg, *end_pg;
334 	unsigned long pg, pgend;
335 
336 	/*
337 	 * Convert start_pfn/end_pfn to a struct page pointer.
338 	 */
339 	start_pg = pfn_to_page(start_pfn - 1) + 1;
340 	end_pg = pfn_to_page(end_pfn - 1) + 1;
341 
342 	/*
343 	 * Convert to physical addresses, and round start upwards and end
344 	 * downwards.
345 	 */
346 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
347 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
348 
349 	/*
350 	 * If there are free pages between these, free the section of the
351 	 * memmap array.
352 	 */
353 	if (pg < pgend)
354 		free_bootmem(pg, pgend - pg);
355 }
356 
357 /*
358  * The mem_map array can get very big. Free the unused area of the memory map.
359  */
360 static void __init free_unused_memmap(void)
361 {
362 	unsigned long start, prev_end = 0;
363 	struct memblock_region *reg;
364 
365 	for_each_memblock(memory, reg) {
366 		start = __phys_to_pfn(reg->base);
367 
368 #ifdef CONFIG_SPARSEMEM
369 		/*
370 		 * Take care not to free memmap entries that don't exist due
371 		 * to SPARSEMEM sections which aren't present.
372 		 */
373 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
374 #endif
375 		/*
376 		 * If we had a previous bank, and there is a space between the
377 		 * current bank and the previous, free it.
378 		 */
379 		if (prev_end && prev_end < start)
380 			free_memmap(prev_end, start);
381 
382 		/*
383 		 * Align up here since the VM subsystem insists that the
384 		 * memmap entries are valid from the bank end aligned to
385 		 * MAX_ORDER_NR_PAGES.
386 		 */
387 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
388 				 MAX_ORDER_NR_PAGES);
389 	}
390 
391 #ifdef CONFIG_SPARSEMEM
392 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
393 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
394 #endif
395 }
396 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
397 
398 /*
399  * mem_init() marks the free areas in the mem_map and tells us how much memory
400  * is free.  This is done after various parts of the system have claimed their
401  * memory after the kernel image.
402  */
403 void __init mem_init(void)
404 {
405 	if (swiotlb_force == SWIOTLB_FORCE ||
406 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
407 		swiotlb_init(1);
408 	else
409 		swiotlb_force = SWIOTLB_NO_FORCE;
410 
411 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
412 
413 #ifndef CONFIG_SPARSEMEM_VMEMMAP
414 	free_unused_memmap();
415 #endif
416 	/* this will put all unused low memory onto the freelists */
417 	free_all_bootmem();
418 
419 	mem_init_print_info(NULL);
420 
421 #define MLK(b, t) b, t, ((t) - (b)) >> 10
422 #define MLM(b, t) b, t, ((t) - (b)) >> 20
423 #define MLG(b, t) b, t, ((t) - (b)) >> 30
424 #define MLK_ROUNDUP(b, t) b, t, DIV_ROUND_UP(((t) - (b)), SZ_1K)
425 
426 	pr_notice("Virtual kernel memory layout:\n");
427 #ifdef CONFIG_KASAN
428 	pr_notice("    kasan   : 0x%16lx - 0x%16lx   (%6ld GB)\n",
429 		MLG(KASAN_SHADOW_START, KASAN_SHADOW_END));
430 #endif
431 	pr_notice("    modules : 0x%16lx - 0x%16lx   (%6ld MB)\n",
432 		MLM(MODULES_VADDR, MODULES_END));
433 	pr_notice("    vmalloc : 0x%16lx - 0x%16lx   (%6ld GB)\n",
434 		MLG(VMALLOC_START, VMALLOC_END));
435 	pr_notice("      .text : 0x%p" " - 0x%p" "   (%6ld KB)\n",
436 		MLK_ROUNDUP(_text, _etext));
437 	pr_notice("    .rodata : 0x%p" " - 0x%p" "   (%6ld KB)\n",
438 		MLK_ROUNDUP(__start_rodata, __init_begin));
439 	pr_notice("      .init : 0x%p" " - 0x%p" "   (%6ld KB)\n",
440 		MLK_ROUNDUP(__init_begin, __init_end));
441 	pr_notice("      .data : 0x%p" " - 0x%p" "   (%6ld KB)\n",
442 		MLK_ROUNDUP(_sdata, _edata));
443 	pr_notice("       .bss : 0x%p" " - 0x%p" "   (%6ld KB)\n",
444 		MLK_ROUNDUP(__bss_start, __bss_stop));
445 	pr_notice("    fixed   : 0x%16lx - 0x%16lx   (%6ld KB)\n",
446 		MLK(FIXADDR_START, FIXADDR_TOP));
447 	pr_notice("    PCI I/O : 0x%16lx - 0x%16lx   (%6ld MB)\n",
448 		MLM(PCI_IO_START, PCI_IO_END));
449 #ifdef CONFIG_SPARSEMEM_VMEMMAP
450 	pr_notice("    vmemmap : 0x%16lx - 0x%16lx   (%6ld GB maximum)\n",
451 		MLG(VMEMMAP_START, VMEMMAP_START + VMEMMAP_SIZE));
452 	pr_notice("              0x%16lx - 0x%16lx   (%6ld MB actual)\n",
453 		MLM((unsigned long)phys_to_page(memblock_start_of_DRAM()),
454 		    (unsigned long)virt_to_page(high_memory)));
455 #endif
456 	pr_notice("    memory  : 0x%16lx - 0x%16lx   (%6ld MB)\n",
457 		MLM(__phys_to_virt(memblock_start_of_DRAM()),
458 		    (unsigned long)high_memory));
459 
460 #undef MLK
461 #undef MLM
462 #undef MLK_ROUNDUP
463 
464 	/*
465 	 * Check boundaries twice: Some fundamental inconsistencies can be
466 	 * detected at build time already.
467 	 */
468 #ifdef CONFIG_COMPAT
469 	BUILD_BUG_ON(TASK_SIZE_32			> TASK_SIZE_64);
470 #endif
471 
472 	/*
473 	 * Make sure we chose the upper bound of sizeof(struct page)
474 	 * correctly.
475 	 */
476 	BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
477 
478 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
479 		extern int sysctl_overcommit_memory;
480 		/*
481 		 * On a machine this small we won't get anywhere without
482 		 * overcommit, so turn it on by default.
483 		 */
484 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
485 	}
486 }
487 
488 void free_initmem(void)
489 {
490 	free_reserved_area(lm_alias(__init_begin),
491 			   lm_alias(__init_end),
492 			   0, "unused kernel");
493 	/*
494 	 * Unmap the __init region but leave the VM area in place. This
495 	 * prevents the region from being reused for kernel modules, which
496 	 * is not supported by kallsyms.
497 	 */
498 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
499 }
500 
501 #ifdef CONFIG_BLK_DEV_INITRD
502 
503 static int keep_initrd __initdata;
504 
505 void __init free_initrd_mem(unsigned long start, unsigned long end)
506 {
507 	if (!keep_initrd)
508 		free_reserved_area((void *)start, (void *)end, 0, "initrd");
509 }
510 
511 static int __init keepinitrd_setup(char *__unused)
512 {
513 	keep_initrd = 1;
514 	return 1;
515 }
516 
517 __setup("keepinitrd", keepinitrd_setup);
518 #endif
519 
520 /*
521  * Dump out memory limit information on panic.
522  */
523 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
524 {
525 	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
526 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
527 	} else {
528 		pr_emerg("Memory Limit: none\n");
529 	}
530 	return 0;
531 }
532 
533 static struct notifier_block mem_limit_notifier = {
534 	.notifier_call = dump_mem_limit,
535 };
536 
537 static int __init register_mem_limit_dumper(void)
538 {
539 	atomic_notifier_chain_register(&panic_notifier_list,
540 				       &mem_limit_notifier);
541 	return 0;
542 }
543 __initcall(register_mem_limit_dumper);
544