xref: /linux/arch/arm64/mm/init.c (revision 99a15348d5842b3c1f95220dc9b119ee0fe0d81b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/kmemleak.h>
34 
35 #include <asm/boot.h>
36 #include <asm/fixmap.h>
37 #include <asm/kasan.h>
38 #include <asm/kernel-pgtable.h>
39 #include <asm/kvm_host.h>
40 #include <asm/memory.h>
41 #include <asm/numa.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <linux/sizes.h>
45 #include <asm/tlb.h>
46 #include <asm/alternative.h>
47 #include <asm/xen/swiotlb-xen.h>
48 
49 /*
50  * We need to be able to catch inadvertent references to memstart_addr
51  * that occur (potentially in generic code) before arm64_memblock_init()
52  * executes, which assigns it its actual value. So use a default value
53  * that cannot be mistaken for a real physical address.
54  */
55 s64 memstart_addr __ro_after_init = -1;
56 EXPORT_SYMBOL(memstart_addr);
57 
58 /*
59  * If the corresponding config options are enabled, we create both ZONE_DMA
60  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
61  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
62  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
63  * otherwise it is empty.
64  *
65  * Memory reservation for crash kernel either done early or deferred
66  * depending on DMA memory zones configs (ZONE_DMA) --
67  *
68  * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized
69  * here instead of max_zone_phys().  This lets early reservation of
70  * crash kernel memory which has a dependency on arm64_dma_phys_limit.
71  * Reserving memory early for crash kernel allows linear creation of block
72  * mappings (greater than page-granularity) for all the memory bank rangs.
73  * In this scheme a comparatively quicker boot is observed.
74  *
75  * If ZONE_DMA configs are defined, crash kernel memory reservation
76  * is delayed until DMA zone memory range size initilazation performed in
77  * zone_sizes_init().  The defer is necessary to steer clear of DMA zone
78  * memory range to avoid overlap allocation.  So crash kernel memory boundaries
79  * are not known when mapping all bank memory ranges, which otherwise means
80  * not possible to exclude crash kernel range from creating block mappings
81  * so page-granularity mappings are created for the entire memory range.
82  * Hence a slightly slower boot is observed.
83  *
84  * Note: Page-granularity mapppings are necessary for crash kernel memory
85  * range for shrinking its size via /sys/kernel/kexec_crash_size interface.
86  */
87 #if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)
88 phys_addr_t __ro_after_init arm64_dma_phys_limit;
89 #else
90 phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
91 #endif
92 
93 /*
94  * reserve_crashkernel() - reserves memory for crash kernel
95  *
96  * This function reserves memory area given in "crashkernel=" kernel command
97  * line parameter. The memory reserved is used by dump capture kernel when
98  * primary kernel is crashing.
99  */
100 static void __init reserve_crashkernel(void)
101 {
102 	unsigned long long crash_base, crash_size;
103 	unsigned long long crash_max = arm64_dma_phys_limit;
104 	int ret;
105 
106 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
107 		return;
108 
109 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
110 				&crash_size, &crash_base);
111 	/* no crashkernel= or invalid value specified */
112 	if (ret || !crash_size)
113 		return;
114 
115 	crash_size = PAGE_ALIGN(crash_size);
116 
117 	/* User specifies base address explicitly. */
118 	if (crash_base)
119 		crash_max = crash_base + crash_size;
120 
121 	/* Current arm64 boot protocol requires 2MB alignment */
122 	crash_base = memblock_phys_alloc_range(crash_size, SZ_2M,
123 					       crash_base, crash_max);
124 	if (!crash_base) {
125 		pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
126 			crash_size);
127 		return;
128 	}
129 
130 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
131 		crash_base, crash_base + crash_size, crash_size >> 20);
132 
133 	/*
134 	 * The crashkernel memory will be removed from the kernel linear
135 	 * map. Inform kmemleak so that it won't try to access it.
136 	 */
137 	kmemleak_ignore_phys(crash_base);
138 	crashk_res.start = crash_base;
139 	crashk_res.end = crash_base + crash_size - 1;
140 }
141 
142 /*
143  * Return the maximum physical address for a zone accessible by the given bits
144  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
145  * available memory, otherwise cap it at 32-bit.
146  */
147 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
148 {
149 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
150 	phys_addr_t phys_start = memblock_start_of_DRAM();
151 
152 	if (phys_start > U32_MAX)
153 		zone_mask = PHYS_ADDR_MAX;
154 	else if (phys_start > zone_mask)
155 		zone_mask = U32_MAX;
156 
157 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
158 }
159 
160 static void __init zone_sizes_init(unsigned long min, unsigned long max)
161 {
162 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
163 	unsigned int __maybe_unused acpi_zone_dma_bits;
164 	unsigned int __maybe_unused dt_zone_dma_bits;
165 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
166 
167 #ifdef CONFIG_ZONE_DMA
168 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
169 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
170 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
171 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
172 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
173 #endif
174 #ifdef CONFIG_ZONE_DMA32
175 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
176 	if (!arm64_dma_phys_limit)
177 		arm64_dma_phys_limit = dma32_phys_limit;
178 #endif
179 	max_zone_pfns[ZONE_NORMAL] = max;
180 
181 	free_area_init(max_zone_pfns);
182 }
183 
184 int pfn_is_map_memory(unsigned long pfn)
185 {
186 	phys_addr_t addr = PFN_PHYS(pfn);
187 
188 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
189 	if (PHYS_PFN(addr) != pfn)
190 		return 0;
191 
192 	return memblock_is_map_memory(addr);
193 }
194 EXPORT_SYMBOL(pfn_is_map_memory);
195 
196 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
197 
198 /*
199  * Limit the memory size that was specified via FDT.
200  */
201 static int __init early_mem(char *p)
202 {
203 	if (!p)
204 		return 1;
205 
206 	memory_limit = memparse(p, &p) & PAGE_MASK;
207 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
208 
209 	return 0;
210 }
211 early_param("mem", early_mem);
212 
213 void __init arm64_memblock_init(void)
214 {
215 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
216 
217 	/*
218 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
219 	 * be limited in their ability to support a linear map that exceeds 51
220 	 * bits of VA space, depending on the placement of the ID map. Given
221 	 * that the placement of the ID map may be randomized, let's simply
222 	 * limit the kernel's linear map to 51 bits as well if we detect this
223 	 * configuration.
224 	 */
225 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
226 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
227 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
228 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
229 	}
230 
231 	/* Remove memory above our supported physical address size */
232 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
233 
234 	/*
235 	 * Select a suitable value for the base of physical memory.
236 	 */
237 	memstart_addr = round_down(memblock_start_of_DRAM(),
238 				   ARM64_MEMSTART_ALIGN);
239 
240 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
241 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
242 
243 	/*
244 	 * Remove the memory that we will not be able to cover with the
245 	 * linear mapping. Take care not to clip the kernel which may be
246 	 * high in memory.
247 	 */
248 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
249 			__pa_symbol(_end)), ULLONG_MAX);
250 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
251 		/* ensure that memstart_addr remains sufficiently aligned */
252 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
253 					 ARM64_MEMSTART_ALIGN);
254 		memblock_remove(0, memstart_addr);
255 	}
256 
257 	/*
258 	 * If we are running with a 52-bit kernel VA config on a system that
259 	 * does not support it, we have to place the available physical
260 	 * memory in the 48-bit addressable part of the linear region, i.e.,
261 	 * we have to move it upward. Since memstart_addr represents the
262 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
263 	 */
264 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
265 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
266 
267 	/*
268 	 * Apply the memory limit if it was set. Since the kernel may be loaded
269 	 * high up in memory, add back the kernel region that must be accessible
270 	 * via the linear mapping.
271 	 */
272 	if (memory_limit != PHYS_ADDR_MAX) {
273 		memblock_mem_limit_remove_map(memory_limit);
274 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
275 	}
276 
277 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
278 		/*
279 		 * Add back the memory we just removed if it results in the
280 		 * initrd to become inaccessible via the linear mapping.
281 		 * Otherwise, this is a no-op
282 		 */
283 		u64 base = phys_initrd_start & PAGE_MASK;
284 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
285 
286 		/*
287 		 * We can only add back the initrd memory if we don't end up
288 		 * with more memory than we can address via the linear mapping.
289 		 * It is up to the bootloader to position the kernel and the
290 		 * initrd reasonably close to each other (i.e., within 32 GB of
291 		 * each other) so that all granule/#levels combinations can
292 		 * always access both.
293 		 */
294 		if (WARN(base < memblock_start_of_DRAM() ||
295 			 base + size > memblock_start_of_DRAM() +
296 				       linear_region_size,
297 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
298 			phys_initrd_size = 0;
299 		} else {
300 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
301 			memblock_add(base, size);
302 			memblock_reserve(base, size);
303 		}
304 	}
305 
306 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
307 		extern u16 memstart_offset_seed;
308 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
309 		int parange = cpuid_feature_extract_unsigned_field(
310 					mmfr0, ID_AA64MMFR0_PARANGE_SHIFT);
311 		s64 range = linear_region_size -
312 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
313 
314 		/*
315 		 * If the size of the linear region exceeds, by a sufficient
316 		 * margin, the size of the region that the physical memory can
317 		 * span, randomize the linear region as well.
318 		 */
319 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
320 			range /= ARM64_MEMSTART_ALIGN;
321 			memstart_addr -= ARM64_MEMSTART_ALIGN *
322 					 ((range * memstart_offset_seed) >> 16);
323 		}
324 	}
325 
326 	/*
327 	 * Register the kernel text, kernel data, initrd, and initial
328 	 * pagetables with memblock.
329 	 */
330 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
331 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
332 		/* the generic initrd code expects virtual addresses */
333 		initrd_start = __phys_to_virt(phys_initrd_start);
334 		initrd_end = initrd_start + phys_initrd_size;
335 	}
336 
337 	early_init_fdt_scan_reserved_mem();
338 
339 	if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32))
340 		reserve_crashkernel();
341 
342 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
343 }
344 
345 void __init bootmem_init(void)
346 {
347 	unsigned long min, max;
348 
349 	min = PFN_UP(memblock_start_of_DRAM());
350 	max = PFN_DOWN(memblock_end_of_DRAM());
351 
352 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
353 
354 	max_pfn = max_low_pfn = max;
355 	min_low_pfn = min;
356 
357 	arch_numa_init();
358 
359 	/*
360 	 * must be done after arch_numa_init() which calls numa_init() to
361 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
362 	 * while allocating required CMA size across online nodes.
363 	 */
364 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
365 	arm64_hugetlb_cma_reserve();
366 #endif
367 
368 	dma_pernuma_cma_reserve();
369 
370 	kvm_hyp_reserve();
371 
372 	/*
373 	 * sparse_init() tries to allocate memory from memblock, so must be
374 	 * done after the fixed reservations
375 	 */
376 	sparse_init();
377 	zone_sizes_init(min, max);
378 
379 	/*
380 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
381 	 */
382 	dma_contiguous_reserve(arm64_dma_phys_limit);
383 
384 	/*
385 	 * request_standard_resources() depends on crashkernel's memory being
386 	 * reserved, so do it here.
387 	 */
388 	if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32))
389 		reserve_crashkernel();
390 
391 	memblock_dump_all();
392 }
393 
394 /*
395  * mem_init() marks the free areas in the mem_map and tells us how much memory
396  * is free.  This is done after various parts of the system have claimed their
397  * memory after the kernel image.
398  */
399 void __init mem_init(void)
400 {
401 	if (swiotlb_force == SWIOTLB_FORCE ||
402 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
403 		swiotlb_init(1);
404 	else if (!xen_swiotlb_detect())
405 		swiotlb_force = SWIOTLB_NO_FORCE;
406 
407 	/* this will put all unused low memory onto the freelists */
408 	memblock_free_all();
409 
410 	/*
411 	 * Check boundaries twice: Some fundamental inconsistencies can be
412 	 * detected at build time already.
413 	 */
414 #ifdef CONFIG_COMPAT
415 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
416 #endif
417 
418 	/*
419 	 * Selected page table levels should match when derived from
420 	 * scratch using the virtual address range and page size.
421 	 */
422 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
423 		     CONFIG_PGTABLE_LEVELS);
424 
425 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
426 		extern int sysctl_overcommit_memory;
427 		/*
428 		 * On a machine this small we won't get anywhere without
429 		 * overcommit, so turn it on by default.
430 		 */
431 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
432 	}
433 }
434 
435 void free_initmem(void)
436 {
437 	free_reserved_area(lm_alias(__init_begin),
438 			   lm_alias(__init_end),
439 			   POISON_FREE_INITMEM, "unused kernel");
440 	/*
441 	 * Unmap the __init region but leave the VM area in place. This
442 	 * prevents the region from being reused for kernel modules, which
443 	 * is not supported by kallsyms.
444 	 */
445 	vunmap_range((u64)__init_begin, (u64)__init_end);
446 }
447 
448 void dump_mem_limit(void)
449 {
450 	if (memory_limit != PHYS_ADDR_MAX) {
451 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
452 	} else {
453 		pr_emerg("Memory Limit: none\n");
454 	}
455 }
456