xref: /linux/arch/arm64/mm/init.c (revision 8838a1a2d219a86ab05e679c73f68dd75a25aca5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36 
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/rsi.h>
45 #include <asm/sections.h>
46 #include <asm/setup.h>
47 #include <linux/sizes.h>
48 #include <asm/tlb.h>
49 #include <asm/alternative.h>
50 #include <asm/xen/swiotlb-xen.h>
51 
52 /*
53  * We need to be able to catch inadvertent references to memstart_addr
54  * that occur (potentially in generic code) before arm64_memblock_init()
55  * executes, which assigns it its actual value. So use a default value
56  * that cannot be mistaken for a real physical address.
57  */
58 s64 memstart_addr __ro_after_init = -1;
59 EXPORT_SYMBOL(memstart_addr);
60 
61 /*
62  * If the corresponding config options are enabled, we create both ZONE_DMA
63  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
64  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
65  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
66  * otherwise it is empty.
67  */
68 phys_addr_t __ro_after_init arm64_dma_phys_limit;
69 
70 /*
71  * To make optimal use of block mappings when laying out the linear
72  * mapping, round down the base of physical memory to a size that can
73  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
74  * (64k granule), or a multiple that can be mapped using contiguous bits
75  * in the page tables: 32 * PMD_SIZE (16k granule)
76  */
77 #if defined(CONFIG_ARM64_4K_PAGES)
78 #define ARM64_MEMSTART_SHIFT		PUD_SHIFT
79 #elif defined(CONFIG_ARM64_16K_PAGES)
80 #define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
81 #else
82 #define ARM64_MEMSTART_SHIFT		PMD_SHIFT
83 #endif
84 
85 /*
86  * sparsemem vmemmap imposes an additional requirement on the alignment of
87  * memstart_addr, due to the fact that the base of the vmemmap region
88  * has a direct correspondence, and needs to appear sufficiently aligned
89  * in the virtual address space.
90  */
91 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
92 #define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
93 #else
94 #define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
95 #endif
96 
97 static void __init arch_reserve_crashkernel(void)
98 {
99 	unsigned long long low_size = 0;
100 	unsigned long long crash_base, crash_size;
101 	char *cmdline = boot_command_line;
102 	bool high = false;
103 	int ret;
104 
105 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
106 		return;
107 
108 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
109 				&crash_size, &crash_base,
110 				&low_size, &high);
111 	if (ret)
112 		return;
113 
114 	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
115 				    low_size, high);
116 }
117 
118 static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
119 {
120 	return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
121 }
122 
123 static void __init zone_sizes_init(void)
124 {
125 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
126 	phys_addr_t __maybe_unused acpi_zone_dma_limit;
127 	phys_addr_t __maybe_unused dt_zone_dma_limit;
128 	phys_addr_t __maybe_unused dma32_phys_limit =
129 		max_zone_phys(DMA_BIT_MASK(32));
130 
131 #ifdef CONFIG_ZONE_DMA
132 	acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
133 	dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
134 	zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
135 	/*
136 	 * Information we get from firmware (e.g. DT dma-ranges) describe DMA
137 	 * bus constraints. Devices using DMA might have their own limitations.
138 	 * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
139 	 * DMA zone on platforms that have RAM there.
140 	 */
141 	if (memblock_start_of_DRAM() < U32_MAX)
142 		zone_dma_limit = min(zone_dma_limit, U32_MAX);
143 	arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
144 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
145 #endif
146 #ifdef CONFIG_ZONE_DMA32
147 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
148 	if (!arm64_dma_phys_limit)
149 		arm64_dma_phys_limit = dma32_phys_limit;
150 #endif
151 	if (!arm64_dma_phys_limit)
152 		arm64_dma_phys_limit = PHYS_MASK + 1;
153 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
154 
155 	free_area_init(max_zone_pfns);
156 }
157 
158 int pfn_is_map_memory(unsigned long pfn)
159 {
160 	phys_addr_t addr = PFN_PHYS(pfn);
161 
162 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
163 	if (PHYS_PFN(addr) != pfn)
164 		return 0;
165 
166 	return memblock_is_map_memory(addr);
167 }
168 EXPORT_SYMBOL(pfn_is_map_memory);
169 
170 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
171 
172 /*
173  * Limit the memory size that was specified via FDT.
174  */
175 static int __init early_mem(char *p)
176 {
177 	if (!p)
178 		return 1;
179 
180 	memory_limit = memparse(p, &p) & PAGE_MASK;
181 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
182 
183 	return 0;
184 }
185 early_param("mem", early_mem);
186 
187 void __init arm64_memblock_init(void)
188 {
189 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
190 
191 	/*
192 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
193 	 * be limited in their ability to support a linear map that exceeds 51
194 	 * bits of VA space, depending on the placement of the ID map. Given
195 	 * that the placement of the ID map may be randomized, let's simply
196 	 * limit the kernel's linear map to 51 bits as well if we detect this
197 	 * configuration.
198 	 */
199 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
200 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
201 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
202 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
203 	}
204 
205 	/* Remove memory above our supported physical address size */
206 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
207 
208 	/*
209 	 * Select a suitable value for the base of physical memory.
210 	 */
211 	memstart_addr = round_down(memblock_start_of_DRAM(),
212 				   ARM64_MEMSTART_ALIGN);
213 
214 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
215 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
216 
217 	/*
218 	 * Remove the memory that we will not be able to cover with the
219 	 * linear mapping. Take care not to clip the kernel which may be
220 	 * high in memory.
221 	 */
222 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
223 			__pa_symbol(_end)), ULLONG_MAX);
224 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
225 		/* ensure that memstart_addr remains sufficiently aligned */
226 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
227 					 ARM64_MEMSTART_ALIGN);
228 		memblock_remove(0, memstart_addr);
229 	}
230 
231 	/*
232 	 * If we are running with a 52-bit kernel VA config on a system that
233 	 * does not support it, we have to place the available physical
234 	 * memory in the 48-bit addressable part of the linear region, i.e.,
235 	 * we have to move it upward. Since memstart_addr represents the
236 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
237 	 */
238 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
239 		memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
240 
241 	/*
242 	 * Apply the memory limit if it was set. Since the kernel may be loaded
243 	 * high up in memory, add back the kernel region that must be accessible
244 	 * via the linear mapping.
245 	 */
246 	if (memory_limit != PHYS_ADDR_MAX) {
247 		memblock_mem_limit_remove_map(memory_limit);
248 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
249 	}
250 
251 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
252 		/*
253 		 * Add back the memory we just removed if it results in the
254 		 * initrd to become inaccessible via the linear mapping.
255 		 * Otherwise, this is a no-op
256 		 */
257 		u64 base = phys_initrd_start & PAGE_MASK;
258 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
259 
260 		/*
261 		 * We can only add back the initrd memory if we don't end up
262 		 * with more memory than we can address via the linear mapping.
263 		 * It is up to the bootloader to position the kernel and the
264 		 * initrd reasonably close to each other (i.e., within 32 GB of
265 		 * each other) so that all granule/#levels combinations can
266 		 * always access both.
267 		 */
268 		if (WARN(base < memblock_start_of_DRAM() ||
269 			 base + size > memblock_start_of_DRAM() +
270 				       linear_region_size,
271 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
272 			phys_initrd_size = 0;
273 		} else {
274 			memblock_add(base, size);
275 			memblock_clear_nomap(base, size);
276 			memblock_reserve(base, size);
277 		}
278 	}
279 
280 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
281 		extern u16 memstart_offset_seed;
282 
283 		/*
284 		 * Use the sanitised version of id_aa64mmfr0_el1 so that linear
285 		 * map randomization can be enabled by shrinking the IPA space.
286 		 */
287 		u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
288 		int parange = cpuid_feature_extract_unsigned_field(
289 					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
290 		s64 range = linear_region_size -
291 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
292 
293 		/*
294 		 * If the size of the linear region exceeds, by a sufficient
295 		 * margin, the size of the region that the physical memory can
296 		 * span, randomize the linear region as well.
297 		 */
298 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
299 			range /= ARM64_MEMSTART_ALIGN;
300 			memstart_addr -= ARM64_MEMSTART_ALIGN *
301 					 ((range * memstart_offset_seed) >> 16);
302 		}
303 	}
304 
305 	/*
306 	 * Register the kernel text, kernel data, initrd, and initial
307 	 * pagetables with memblock.
308 	 */
309 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
310 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
311 		/* the generic initrd code expects virtual addresses */
312 		initrd_start = __phys_to_virt(phys_initrd_start);
313 		initrd_end = initrd_start + phys_initrd_size;
314 	}
315 
316 	early_init_fdt_scan_reserved_mem();
317 
318 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
319 }
320 
321 void __init bootmem_init(void)
322 {
323 	unsigned long min, max;
324 
325 	min = PFN_UP(memblock_start_of_DRAM());
326 	max = PFN_DOWN(memblock_end_of_DRAM());
327 
328 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
329 
330 	max_pfn = max_low_pfn = max;
331 	min_low_pfn = min;
332 
333 	arch_numa_init();
334 
335 	/*
336 	 * must be done after arch_numa_init() which calls numa_init() to
337 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
338 	 * while allocating required CMA size across online nodes.
339 	 */
340 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
341 	arm64_hugetlb_cma_reserve();
342 #endif
343 
344 	kvm_hyp_reserve();
345 
346 	/*
347 	 * sparse_init() tries to allocate memory from memblock, so must be
348 	 * done after the fixed reservations
349 	 */
350 	sparse_init();
351 	zone_sizes_init();
352 
353 	/*
354 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
355 	 */
356 	dma_contiguous_reserve(arm64_dma_phys_limit);
357 
358 	/*
359 	 * request_standard_resources() depends on crashkernel's memory being
360 	 * reserved, so do it here.
361 	 */
362 	arch_reserve_crashkernel();
363 
364 	memblock_dump_all();
365 }
366 
367 /*
368  * mem_init() marks the free areas in the mem_map and tells us how much memory
369  * is free.  This is done after various parts of the system have claimed their
370  * memory after the kernel image.
371  */
372 void __init mem_init(void)
373 {
374 	unsigned int flags = SWIOTLB_VERBOSE;
375 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
376 
377 	if (is_realm_world()) {
378 		swiotlb = true;
379 		flags |= SWIOTLB_FORCE;
380 	}
381 
382 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
383 		/*
384 		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
385 		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
386 		 */
387 		unsigned long size =
388 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
389 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
390 		swiotlb = true;
391 	}
392 
393 	swiotlb_init(swiotlb, flags);
394 	swiotlb_update_mem_attributes();
395 
396 	/* this will put all unused low memory onto the freelists */
397 	memblock_free_all();
398 
399 	/*
400 	 * Check boundaries twice: Some fundamental inconsistencies can be
401 	 * detected at build time already.
402 	 */
403 #ifdef CONFIG_COMPAT
404 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
405 #endif
406 
407 	/*
408 	 * Selected page table levels should match when derived from
409 	 * scratch using the virtual address range and page size.
410 	 */
411 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
412 		     CONFIG_PGTABLE_LEVELS);
413 
414 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
415 		extern int sysctl_overcommit_memory;
416 		/*
417 		 * On a machine this small we won't get anywhere without
418 		 * overcommit, so turn it on by default.
419 		 */
420 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
421 	}
422 }
423 
424 void free_initmem(void)
425 {
426 	void *lm_init_begin = lm_alias(__init_begin);
427 	void *lm_init_end = lm_alias(__init_end);
428 
429 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
430 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
431 
432 	/* Delete __init region from memblock.reserved. */
433 	memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
434 
435 	free_reserved_area(lm_init_begin, lm_init_end,
436 			   POISON_FREE_INITMEM, "unused kernel");
437 	/*
438 	 * Unmap the __init region but leave the VM area in place. This
439 	 * prevents the region from being reused for kernel modules, which
440 	 * is not supported by kallsyms.
441 	 */
442 	vunmap_range((u64)__init_begin, (u64)__init_end);
443 }
444 
445 void dump_mem_limit(void)
446 {
447 	if (memory_limit != PHYS_ADDR_MAX) {
448 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
449 	} else {
450 		pr_emerg("Memory Limit: none\n");
451 	}
452 }
453 
454 #ifdef CONFIG_EXECMEM
455 static u64 module_direct_base __ro_after_init = 0;
456 static u64 module_plt_base __ro_after_init = 0;
457 
458 /*
459  * Choose a random page-aligned base address for a window of 'size' bytes which
460  * entirely contains the interval [start, end - 1].
461  */
462 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
463 {
464 	u64 max_pgoff, pgoff;
465 
466 	if ((end - start) >= size)
467 		return 0;
468 
469 	max_pgoff = (size - (end - start)) / PAGE_SIZE;
470 	pgoff = get_random_u32_inclusive(0, max_pgoff);
471 
472 	return start - pgoff * PAGE_SIZE;
473 }
474 
475 /*
476  * Modules may directly reference data and text anywhere within the kernel
477  * image and other modules. References using PREL32 relocations have a +/-2G
478  * range, and so we need to ensure that the entire kernel image and all modules
479  * fall within a 2G window such that these are always within range.
480  *
481  * Modules may directly branch to functions and code within the kernel text,
482  * and to functions and code within other modules. These branches will use
483  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
484  * that the entire kernel text and all module text falls within a 128M window
485  * such that these are always within range. With PLTs, we can expand this to a
486  * 2G window.
487  *
488  * We chose the 128M region to surround the entire kernel image (rather than
489  * just the text) as using the same bounds for the 128M and 2G regions ensures
490  * by construction that we never select a 128M region that is not a subset of
491  * the 2G region. For very large and unusual kernel configurations this means
492  * we may fall back to PLTs where they could have been avoided, but this keeps
493  * the logic significantly simpler.
494  */
495 static int __init module_init_limits(void)
496 {
497 	u64 kernel_end = (u64)_end;
498 	u64 kernel_start = (u64)_text;
499 	u64 kernel_size = kernel_end - kernel_start;
500 
501 	/*
502 	 * The default modules region is placed immediately below the kernel
503 	 * image, and is large enough to use the full 2G relocation range.
504 	 */
505 	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
506 	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
507 
508 	if (!kaslr_enabled()) {
509 		if (kernel_size < SZ_128M)
510 			module_direct_base = kernel_end - SZ_128M;
511 		if (kernel_size < SZ_2G)
512 			module_plt_base = kernel_end - SZ_2G;
513 	} else {
514 		u64 min = kernel_start;
515 		u64 max = kernel_end;
516 
517 		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
518 			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
519 		} else {
520 			module_direct_base = random_bounding_box(SZ_128M, min, max);
521 			if (module_direct_base) {
522 				min = module_direct_base;
523 				max = module_direct_base + SZ_128M;
524 			}
525 		}
526 
527 		module_plt_base = random_bounding_box(SZ_2G, min, max);
528 	}
529 
530 	pr_info("%llu pages in range for non-PLT usage",
531 		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
532 	pr_info("%llu pages in range for PLT usage",
533 		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
534 
535 	return 0;
536 }
537 
538 static struct execmem_info execmem_info __ro_after_init;
539 
540 struct execmem_info __init *execmem_arch_setup(void)
541 {
542 	unsigned long fallback_start = 0, fallback_end = 0;
543 	unsigned long start = 0, end = 0;
544 
545 	module_init_limits();
546 
547 	/*
548 	 * Where possible, prefer to allocate within direct branch range of the
549 	 * kernel such that no PLTs are necessary.
550 	 */
551 	if (module_direct_base) {
552 		start = module_direct_base;
553 		end = module_direct_base + SZ_128M;
554 
555 		if (module_plt_base) {
556 			fallback_start = module_plt_base;
557 			fallback_end = module_plt_base + SZ_2G;
558 		}
559 	} else if (module_plt_base) {
560 		start = module_plt_base;
561 		end = module_plt_base + SZ_2G;
562 	}
563 
564 	execmem_info = (struct execmem_info){
565 		.ranges = {
566 			[EXECMEM_DEFAULT] = {
567 				.start	= start,
568 				.end	= end,
569 				.pgprot	= PAGE_KERNEL,
570 				.alignment = 1,
571 				.fallback_start	= fallback_start,
572 				.fallback_end	= fallback_end,
573 			},
574 			[EXECMEM_KPROBES] = {
575 				.start	= VMALLOC_START,
576 				.end	= VMALLOC_END,
577 				.pgprot	= PAGE_KERNEL_ROX,
578 				.alignment = 1,
579 			},
580 			[EXECMEM_BPF] = {
581 				.start	= VMALLOC_START,
582 				.end	= VMALLOC_END,
583 				.pgprot	= PAGE_KERNEL,
584 				.alignment = 1,
585 			},
586 		},
587 	};
588 
589 	return &execmem_info;
590 }
591 #endif /* CONFIG_EXECMEM */
592