xref: /linux/arch/arm64/mm/init.c (revision 6e7fd890f1d6ac83805409e9c346240de2705584)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36 
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <linux/sizes.h>
47 #include <asm/tlb.h>
48 #include <asm/alternative.h>
49 #include <asm/xen/swiotlb-xen.h>
50 
51 /*
52  * We need to be able to catch inadvertent references to memstart_addr
53  * that occur (potentially in generic code) before arm64_memblock_init()
54  * executes, which assigns it its actual value. So use a default value
55  * that cannot be mistaken for a real physical address.
56  */
57 s64 memstart_addr __ro_after_init = -1;
58 EXPORT_SYMBOL(memstart_addr);
59 
60 /*
61  * If the corresponding config options are enabled, we create both ZONE_DMA
62  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
63  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
64  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
65  * otherwise it is empty.
66  */
67 phys_addr_t __ro_after_init arm64_dma_phys_limit;
68 
69 /*
70  * To make optimal use of block mappings when laying out the linear
71  * mapping, round down the base of physical memory to a size that can
72  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
73  * (64k granule), or a multiple that can be mapped using contiguous bits
74  * in the page tables: 32 * PMD_SIZE (16k granule)
75  */
76 #if defined(CONFIG_ARM64_4K_PAGES)
77 #define ARM64_MEMSTART_SHIFT		PUD_SHIFT
78 #elif defined(CONFIG_ARM64_16K_PAGES)
79 #define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
80 #else
81 #define ARM64_MEMSTART_SHIFT		PMD_SHIFT
82 #endif
83 
84 /*
85  * sparsemem vmemmap imposes an additional requirement on the alignment of
86  * memstart_addr, due to the fact that the base of the vmemmap region
87  * has a direct correspondence, and needs to appear sufficiently aligned
88  * in the virtual address space.
89  */
90 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
91 #define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
92 #else
93 #define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
94 #endif
95 
96 static void __init arch_reserve_crashkernel(void)
97 {
98 	unsigned long long low_size = 0;
99 	unsigned long long crash_base, crash_size;
100 	char *cmdline = boot_command_line;
101 	bool high = false;
102 	int ret;
103 
104 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
105 		return;
106 
107 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
108 				&crash_size, &crash_base,
109 				&low_size, &high);
110 	if (ret)
111 		return;
112 
113 	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
114 				    low_size, high);
115 }
116 
117 /*
118  * Return the maximum physical address for a zone accessible by the given bits
119  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
120  * available memory, otherwise cap it at 32-bit.
121  */
122 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
123 {
124 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
125 	phys_addr_t phys_start = memblock_start_of_DRAM();
126 
127 	if (phys_start > U32_MAX)
128 		zone_mask = PHYS_ADDR_MAX;
129 	else if (phys_start > zone_mask)
130 		zone_mask = U32_MAX;
131 
132 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
133 }
134 
135 static void __init zone_sizes_init(void)
136 {
137 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
138 	unsigned int __maybe_unused acpi_zone_dma_bits;
139 	unsigned int __maybe_unused dt_zone_dma_bits;
140 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
141 
142 #ifdef CONFIG_ZONE_DMA
143 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
144 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
145 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
146 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
147 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
148 #endif
149 #ifdef CONFIG_ZONE_DMA32
150 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
151 	if (!arm64_dma_phys_limit)
152 		arm64_dma_phys_limit = dma32_phys_limit;
153 #endif
154 	if (!arm64_dma_phys_limit)
155 		arm64_dma_phys_limit = PHYS_MASK + 1;
156 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
157 
158 	free_area_init(max_zone_pfns);
159 }
160 
161 int pfn_is_map_memory(unsigned long pfn)
162 {
163 	phys_addr_t addr = PFN_PHYS(pfn);
164 
165 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
166 	if (PHYS_PFN(addr) != pfn)
167 		return 0;
168 
169 	return memblock_is_map_memory(addr);
170 }
171 EXPORT_SYMBOL(pfn_is_map_memory);
172 
173 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
174 
175 /*
176  * Limit the memory size that was specified via FDT.
177  */
178 static int __init early_mem(char *p)
179 {
180 	if (!p)
181 		return 1;
182 
183 	memory_limit = memparse(p, &p) & PAGE_MASK;
184 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
185 
186 	return 0;
187 }
188 early_param("mem", early_mem);
189 
190 void __init arm64_memblock_init(void)
191 {
192 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
193 
194 	/*
195 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
196 	 * be limited in their ability to support a linear map that exceeds 51
197 	 * bits of VA space, depending on the placement of the ID map. Given
198 	 * that the placement of the ID map may be randomized, let's simply
199 	 * limit the kernel's linear map to 51 bits as well if we detect this
200 	 * configuration.
201 	 */
202 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
203 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
204 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
205 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
206 	}
207 
208 	/* Remove memory above our supported physical address size */
209 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
210 
211 	/*
212 	 * Select a suitable value for the base of physical memory.
213 	 */
214 	memstart_addr = round_down(memblock_start_of_DRAM(),
215 				   ARM64_MEMSTART_ALIGN);
216 
217 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
218 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
219 
220 	/*
221 	 * Remove the memory that we will not be able to cover with the
222 	 * linear mapping. Take care not to clip the kernel which may be
223 	 * high in memory.
224 	 */
225 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
226 			__pa_symbol(_end)), ULLONG_MAX);
227 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
228 		/* ensure that memstart_addr remains sufficiently aligned */
229 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
230 					 ARM64_MEMSTART_ALIGN);
231 		memblock_remove(0, memstart_addr);
232 	}
233 
234 	/*
235 	 * If we are running with a 52-bit kernel VA config on a system that
236 	 * does not support it, we have to place the available physical
237 	 * memory in the 48-bit addressable part of the linear region, i.e.,
238 	 * we have to move it upward. Since memstart_addr represents the
239 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
240 	 */
241 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
242 		memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
243 
244 	/*
245 	 * Apply the memory limit if it was set. Since the kernel may be loaded
246 	 * high up in memory, add back the kernel region that must be accessible
247 	 * via the linear mapping.
248 	 */
249 	if (memory_limit != PHYS_ADDR_MAX) {
250 		memblock_mem_limit_remove_map(memory_limit);
251 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
252 	}
253 
254 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
255 		/*
256 		 * Add back the memory we just removed if it results in the
257 		 * initrd to become inaccessible via the linear mapping.
258 		 * Otherwise, this is a no-op
259 		 */
260 		u64 base = phys_initrd_start & PAGE_MASK;
261 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
262 
263 		/*
264 		 * We can only add back the initrd memory if we don't end up
265 		 * with more memory than we can address via the linear mapping.
266 		 * It is up to the bootloader to position the kernel and the
267 		 * initrd reasonably close to each other (i.e., within 32 GB of
268 		 * each other) so that all granule/#levels combinations can
269 		 * always access both.
270 		 */
271 		if (WARN(base < memblock_start_of_DRAM() ||
272 			 base + size > memblock_start_of_DRAM() +
273 				       linear_region_size,
274 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
275 			phys_initrd_size = 0;
276 		} else {
277 			memblock_add(base, size);
278 			memblock_clear_nomap(base, size);
279 			memblock_reserve(base, size);
280 		}
281 	}
282 
283 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
284 		extern u16 memstart_offset_seed;
285 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
286 		int parange = cpuid_feature_extract_unsigned_field(
287 					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
288 		s64 range = linear_region_size -
289 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
290 
291 		/*
292 		 * If the size of the linear region exceeds, by a sufficient
293 		 * margin, the size of the region that the physical memory can
294 		 * span, randomize the linear region as well.
295 		 */
296 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
297 			range /= ARM64_MEMSTART_ALIGN;
298 			memstart_addr -= ARM64_MEMSTART_ALIGN *
299 					 ((range * memstart_offset_seed) >> 16);
300 		}
301 	}
302 
303 	/*
304 	 * Register the kernel text, kernel data, initrd, and initial
305 	 * pagetables with memblock.
306 	 */
307 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
308 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
309 		/* the generic initrd code expects virtual addresses */
310 		initrd_start = __phys_to_virt(phys_initrd_start);
311 		initrd_end = initrd_start + phys_initrd_size;
312 	}
313 
314 	early_init_fdt_scan_reserved_mem();
315 
316 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
317 }
318 
319 void __init bootmem_init(void)
320 {
321 	unsigned long min, max;
322 
323 	min = PFN_UP(memblock_start_of_DRAM());
324 	max = PFN_DOWN(memblock_end_of_DRAM());
325 
326 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
327 
328 	max_pfn = max_low_pfn = max;
329 	min_low_pfn = min;
330 
331 	arch_numa_init();
332 
333 	/*
334 	 * must be done after arch_numa_init() which calls numa_init() to
335 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
336 	 * while allocating required CMA size across online nodes.
337 	 */
338 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
339 	arm64_hugetlb_cma_reserve();
340 #endif
341 
342 	kvm_hyp_reserve();
343 
344 	/*
345 	 * sparse_init() tries to allocate memory from memblock, so must be
346 	 * done after the fixed reservations
347 	 */
348 	sparse_init();
349 	zone_sizes_init();
350 
351 	/*
352 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
353 	 */
354 	dma_contiguous_reserve(arm64_dma_phys_limit);
355 
356 	/*
357 	 * request_standard_resources() depends on crashkernel's memory being
358 	 * reserved, so do it here.
359 	 */
360 	arch_reserve_crashkernel();
361 
362 	memblock_dump_all();
363 }
364 
365 /*
366  * mem_init() marks the free areas in the mem_map and tells us how much memory
367  * is free.  This is done after various parts of the system have claimed their
368  * memory after the kernel image.
369  */
370 void __init mem_init(void)
371 {
372 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
373 
374 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
375 		/*
376 		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
377 		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
378 		 */
379 		unsigned long size =
380 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
381 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
382 		swiotlb = true;
383 	}
384 
385 	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
386 
387 	/* this will put all unused low memory onto the freelists */
388 	memblock_free_all();
389 
390 	/*
391 	 * Check boundaries twice: Some fundamental inconsistencies can be
392 	 * detected at build time already.
393 	 */
394 #ifdef CONFIG_COMPAT
395 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
396 #endif
397 
398 	/*
399 	 * Selected page table levels should match when derived from
400 	 * scratch using the virtual address range and page size.
401 	 */
402 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
403 		     CONFIG_PGTABLE_LEVELS);
404 
405 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
406 		extern int sysctl_overcommit_memory;
407 		/*
408 		 * On a machine this small we won't get anywhere without
409 		 * overcommit, so turn it on by default.
410 		 */
411 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
412 	}
413 }
414 
415 void free_initmem(void)
416 {
417 	free_reserved_area(lm_alias(__init_begin),
418 			   lm_alias(__init_end),
419 			   POISON_FREE_INITMEM, "unused kernel");
420 	/*
421 	 * Unmap the __init region but leave the VM area in place. This
422 	 * prevents the region from being reused for kernel modules, which
423 	 * is not supported by kallsyms.
424 	 */
425 	vunmap_range((u64)__init_begin, (u64)__init_end);
426 }
427 
428 void dump_mem_limit(void)
429 {
430 	if (memory_limit != PHYS_ADDR_MAX) {
431 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
432 	} else {
433 		pr_emerg("Memory Limit: none\n");
434 	}
435 }
436 
437 #ifdef CONFIG_EXECMEM
438 static u64 module_direct_base __ro_after_init = 0;
439 static u64 module_plt_base __ro_after_init = 0;
440 
441 /*
442  * Choose a random page-aligned base address for a window of 'size' bytes which
443  * entirely contains the interval [start, end - 1].
444  */
445 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
446 {
447 	u64 max_pgoff, pgoff;
448 
449 	if ((end - start) >= size)
450 		return 0;
451 
452 	max_pgoff = (size - (end - start)) / PAGE_SIZE;
453 	pgoff = get_random_u32_inclusive(0, max_pgoff);
454 
455 	return start - pgoff * PAGE_SIZE;
456 }
457 
458 /*
459  * Modules may directly reference data and text anywhere within the kernel
460  * image and other modules. References using PREL32 relocations have a +/-2G
461  * range, and so we need to ensure that the entire kernel image and all modules
462  * fall within a 2G window such that these are always within range.
463  *
464  * Modules may directly branch to functions and code within the kernel text,
465  * and to functions and code within other modules. These branches will use
466  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
467  * that the entire kernel text and all module text falls within a 128M window
468  * such that these are always within range. With PLTs, we can expand this to a
469  * 2G window.
470  *
471  * We chose the 128M region to surround the entire kernel image (rather than
472  * just the text) as using the same bounds for the 128M and 2G regions ensures
473  * by construction that we never select a 128M region that is not a subset of
474  * the 2G region. For very large and unusual kernel configurations this means
475  * we may fall back to PLTs where they could have been avoided, but this keeps
476  * the logic significantly simpler.
477  */
478 static int __init module_init_limits(void)
479 {
480 	u64 kernel_end = (u64)_end;
481 	u64 kernel_start = (u64)_text;
482 	u64 kernel_size = kernel_end - kernel_start;
483 
484 	/*
485 	 * The default modules region is placed immediately below the kernel
486 	 * image, and is large enough to use the full 2G relocation range.
487 	 */
488 	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
489 	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
490 
491 	if (!kaslr_enabled()) {
492 		if (kernel_size < SZ_128M)
493 			module_direct_base = kernel_end - SZ_128M;
494 		if (kernel_size < SZ_2G)
495 			module_plt_base = kernel_end - SZ_2G;
496 	} else {
497 		u64 min = kernel_start;
498 		u64 max = kernel_end;
499 
500 		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
501 			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
502 		} else {
503 			module_direct_base = random_bounding_box(SZ_128M, min, max);
504 			if (module_direct_base) {
505 				min = module_direct_base;
506 				max = module_direct_base + SZ_128M;
507 			}
508 		}
509 
510 		module_plt_base = random_bounding_box(SZ_2G, min, max);
511 	}
512 
513 	pr_info("%llu pages in range for non-PLT usage",
514 		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
515 	pr_info("%llu pages in range for PLT usage",
516 		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
517 
518 	return 0;
519 }
520 
521 static struct execmem_info execmem_info __ro_after_init;
522 
523 struct execmem_info __init *execmem_arch_setup(void)
524 {
525 	unsigned long fallback_start = 0, fallback_end = 0;
526 	unsigned long start = 0, end = 0;
527 
528 	module_init_limits();
529 
530 	/*
531 	 * Where possible, prefer to allocate within direct branch range of the
532 	 * kernel such that no PLTs are necessary.
533 	 */
534 	if (module_direct_base) {
535 		start = module_direct_base;
536 		end = module_direct_base + SZ_128M;
537 
538 		if (module_plt_base) {
539 			fallback_start = module_plt_base;
540 			fallback_end = module_plt_base + SZ_2G;
541 		}
542 	} else if (module_plt_base) {
543 		start = module_plt_base;
544 		end = module_plt_base + SZ_2G;
545 	}
546 
547 	execmem_info = (struct execmem_info){
548 		.ranges = {
549 			[EXECMEM_DEFAULT] = {
550 				.start	= start,
551 				.end	= end,
552 				.pgprot	= PAGE_KERNEL,
553 				.alignment = 1,
554 				.fallback_start	= fallback_start,
555 				.fallback_end	= fallback_end,
556 			},
557 			[EXECMEM_KPROBES] = {
558 				.start	= VMALLOC_START,
559 				.end	= VMALLOC_END,
560 				.pgprot	= PAGE_KERNEL_ROX,
561 				.alignment = 1,
562 			},
563 			[EXECMEM_BPF] = {
564 				.start	= VMALLOC_START,
565 				.end	= VMALLOC_END,
566 				.pgprot	= PAGE_KERNEL,
567 				.alignment = 1,
568 			},
569 		},
570 	};
571 
572 	return &execmem_info;
573 }
574 #endif /* CONFIG_EXECMEM */
575