1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dma-contiguous.h> 26 #include <linux/efi.h> 27 #include <linux/swiotlb.h> 28 #include <linux/vmalloc.h> 29 #include <linux/mm.h> 30 #include <linux/kexec.h> 31 #include <linux/crash_dump.h> 32 33 #include <asm/boot.h> 34 #include <asm/fixmap.h> 35 #include <asm/kasan.h> 36 #include <asm/kernel-pgtable.h> 37 #include <asm/memory.h> 38 #include <asm/numa.h> 39 #include <asm/sections.h> 40 #include <asm/setup.h> 41 #include <linux/sizes.h> 42 #include <asm/tlb.h> 43 #include <asm/alternative.h> 44 45 #define ARM64_ZONE_DMA_BITS 30 46 47 /* 48 * We need to be able to catch inadvertent references to memstart_addr 49 * that occur (potentially in generic code) before arm64_memblock_init() 50 * executes, which assigns it its actual value. So use a default value 51 * that cannot be mistaken for a real physical address. 52 */ 53 s64 memstart_addr __ro_after_init = -1; 54 EXPORT_SYMBOL(memstart_addr); 55 56 s64 physvirt_offset __ro_after_init; 57 EXPORT_SYMBOL(physvirt_offset); 58 59 struct page *vmemmap __ro_after_init; 60 EXPORT_SYMBOL(vmemmap); 61 62 /* 63 * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of 64 * memory as some devices, namely the Raspberry Pi 4, have peripherals with 65 * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32 66 * bit addressable memory area. 67 */ 68 phys_addr_t arm64_dma_phys_limit __ro_after_init; 69 static phys_addr_t arm64_dma32_phys_limit __ro_after_init; 70 71 #ifdef CONFIG_KEXEC_CORE 72 /* 73 * reserve_crashkernel() - reserves memory for crash kernel 74 * 75 * This function reserves memory area given in "crashkernel=" kernel command 76 * line parameter. The memory reserved is used by dump capture kernel when 77 * primary kernel is crashing. 78 */ 79 static void __init reserve_crashkernel(void) 80 { 81 unsigned long long crash_base, crash_size; 82 int ret; 83 84 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 85 &crash_size, &crash_base); 86 /* no crashkernel= or invalid value specified */ 87 if (ret || !crash_size) 88 return; 89 90 crash_size = PAGE_ALIGN(crash_size); 91 92 if (crash_base == 0) { 93 /* Current arm64 boot protocol requires 2MB alignment */ 94 crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit, 95 crash_size, SZ_2M); 96 if (crash_base == 0) { 97 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 98 crash_size); 99 return; 100 } 101 } else { 102 /* User specifies base address explicitly. */ 103 if (!memblock_is_region_memory(crash_base, crash_size)) { 104 pr_warn("cannot reserve crashkernel: region is not memory\n"); 105 return; 106 } 107 108 if (memblock_is_region_reserved(crash_base, crash_size)) { 109 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 110 return; 111 } 112 113 if (!IS_ALIGNED(crash_base, SZ_2M)) { 114 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 115 return; 116 } 117 } 118 memblock_reserve(crash_base, crash_size); 119 120 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 121 crash_base, crash_base + crash_size, crash_size >> 20); 122 123 crashk_res.start = crash_base; 124 crashk_res.end = crash_base + crash_size - 1; 125 } 126 #else 127 static void __init reserve_crashkernel(void) 128 { 129 } 130 #endif /* CONFIG_KEXEC_CORE */ 131 132 #ifdef CONFIG_CRASH_DUMP 133 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 134 const char *uname, int depth, void *data) 135 { 136 const __be32 *reg; 137 int len; 138 139 if (depth != 1 || strcmp(uname, "chosen") != 0) 140 return 0; 141 142 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 143 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 144 return 1; 145 146 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 147 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 148 149 return 1; 150 } 151 152 /* 153 * reserve_elfcorehdr() - reserves memory for elf core header 154 * 155 * This function reserves the memory occupied by an elf core header 156 * described in the device tree. This region contains all the 157 * information about primary kernel's core image and is used by a dump 158 * capture kernel to access the system memory on primary kernel. 159 */ 160 static void __init reserve_elfcorehdr(void) 161 { 162 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 163 164 if (!elfcorehdr_size) 165 return; 166 167 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 168 pr_warn("elfcorehdr is overlapped\n"); 169 return; 170 } 171 172 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 173 174 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 175 elfcorehdr_size >> 10, elfcorehdr_addr); 176 } 177 #else 178 static void __init reserve_elfcorehdr(void) 179 { 180 } 181 #endif /* CONFIG_CRASH_DUMP */ 182 183 /* 184 * Return the maximum physical address for a zone with a given address size 185 * limit. It currently assumes that for memory starting above 4G, 32-bit 186 * devices will use a DMA offset. 187 */ 188 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 189 { 190 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits); 191 return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM()); 192 } 193 194 #ifdef CONFIG_NUMA 195 196 static void __init zone_sizes_init(unsigned long min, unsigned long max) 197 { 198 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 199 200 #ifdef CONFIG_ZONE_DMA 201 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 202 #endif 203 #ifdef CONFIG_ZONE_DMA32 204 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit); 205 #endif 206 max_zone_pfns[ZONE_NORMAL] = max; 207 208 free_area_init_nodes(max_zone_pfns); 209 } 210 211 #else 212 213 static void __init zone_sizes_init(unsigned long min, unsigned long max) 214 { 215 struct memblock_region *reg; 216 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 217 unsigned long __maybe_unused max_dma, max_dma32; 218 219 memset(zone_size, 0, sizeof(zone_size)); 220 221 max_dma = max_dma32 = min; 222 #ifdef CONFIG_ZONE_DMA 223 max_dma = max_dma32 = PFN_DOWN(arm64_dma_phys_limit); 224 zone_size[ZONE_DMA] = max_dma - min; 225 #endif 226 #ifdef CONFIG_ZONE_DMA32 227 max_dma32 = PFN_DOWN(arm64_dma32_phys_limit); 228 zone_size[ZONE_DMA32] = max_dma32 - max_dma; 229 #endif 230 zone_size[ZONE_NORMAL] = max - max_dma32; 231 232 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 233 234 for_each_memblock(memory, reg) { 235 unsigned long start = memblock_region_memory_base_pfn(reg); 236 unsigned long end = memblock_region_memory_end_pfn(reg); 237 238 #ifdef CONFIG_ZONE_DMA 239 if (start >= min && start < max_dma) { 240 unsigned long dma_end = min(end, max_dma); 241 zhole_size[ZONE_DMA] -= dma_end - start; 242 start = dma_end; 243 } 244 #endif 245 #ifdef CONFIG_ZONE_DMA32 246 if (start >= max_dma && start < max_dma32) { 247 unsigned long dma32_end = min(end, max_dma32); 248 zhole_size[ZONE_DMA32] -= dma32_end - start; 249 start = dma32_end; 250 } 251 #endif 252 if (start >= max_dma32 && start < max) { 253 unsigned long normal_end = min(end, max); 254 zhole_size[ZONE_NORMAL] -= normal_end - start; 255 } 256 } 257 258 free_area_init_node(0, zone_size, min, zhole_size); 259 } 260 261 #endif /* CONFIG_NUMA */ 262 263 int pfn_valid(unsigned long pfn) 264 { 265 phys_addr_t addr = pfn << PAGE_SHIFT; 266 267 if ((addr >> PAGE_SHIFT) != pfn) 268 return 0; 269 270 #ifdef CONFIG_SPARSEMEM 271 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 272 return 0; 273 274 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn)))) 275 return 0; 276 #endif 277 return memblock_is_map_memory(addr); 278 } 279 EXPORT_SYMBOL(pfn_valid); 280 281 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 282 283 /* 284 * Limit the memory size that was specified via FDT. 285 */ 286 static int __init early_mem(char *p) 287 { 288 if (!p) 289 return 1; 290 291 memory_limit = memparse(p, &p) & PAGE_MASK; 292 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 293 294 return 0; 295 } 296 early_param("mem", early_mem); 297 298 static int __init early_init_dt_scan_usablemem(unsigned long node, 299 const char *uname, int depth, void *data) 300 { 301 struct memblock_region *usablemem = data; 302 const __be32 *reg; 303 int len; 304 305 if (depth != 1 || strcmp(uname, "chosen") != 0) 306 return 0; 307 308 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 309 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 310 return 1; 311 312 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 313 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 314 315 return 1; 316 } 317 318 static void __init fdt_enforce_memory_region(void) 319 { 320 struct memblock_region reg = { 321 .size = 0, 322 }; 323 324 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 325 326 if (reg.size) 327 memblock_cap_memory_range(reg.base, reg.size); 328 } 329 330 void __init arm64_memblock_init(void) 331 { 332 const s64 linear_region_size = BIT(vabits_actual - 1); 333 334 /* Handle linux,usable-memory-range property */ 335 fdt_enforce_memory_region(); 336 337 /* Remove memory above our supported physical address size */ 338 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 339 340 /* 341 * Select a suitable value for the base of physical memory. 342 */ 343 memstart_addr = round_down(memblock_start_of_DRAM(), 344 ARM64_MEMSTART_ALIGN); 345 346 physvirt_offset = PHYS_OFFSET - PAGE_OFFSET; 347 348 vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)); 349 350 /* 351 * If we are running with a 52-bit kernel VA config on a system that 352 * does not support it, we have to offset our vmemmap and physvirt_offset 353 * s.t. we avoid the 52-bit portion of the direct linear map 354 */ 355 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) { 356 vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT; 357 physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48); 358 } 359 360 /* 361 * Remove the memory that we will not be able to cover with the 362 * linear mapping. Take care not to clip the kernel which may be 363 * high in memory. 364 */ 365 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 366 __pa_symbol(_end)), ULLONG_MAX); 367 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 368 /* ensure that memstart_addr remains sufficiently aligned */ 369 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 370 ARM64_MEMSTART_ALIGN); 371 memblock_remove(0, memstart_addr); 372 } 373 374 /* 375 * Apply the memory limit if it was set. Since the kernel may be loaded 376 * high up in memory, add back the kernel region that must be accessible 377 * via the linear mapping. 378 */ 379 if (memory_limit != PHYS_ADDR_MAX) { 380 memblock_mem_limit_remove_map(memory_limit); 381 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 382 } 383 384 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 385 /* 386 * Add back the memory we just removed if it results in the 387 * initrd to become inaccessible via the linear mapping. 388 * Otherwise, this is a no-op 389 */ 390 u64 base = phys_initrd_start & PAGE_MASK; 391 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 392 393 /* 394 * We can only add back the initrd memory if we don't end up 395 * with more memory than we can address via the linear mapping. 396 * It is up to the bootloader to position the kernel and the 397 * initrd reasonably close to each other (i.e., within 32 GB of 398 * each other) so that all granule/#levels combinations can 399 * always access both. 400 */ 401 if (WARN(base < memblock_start_of_DRAM() || 402 base + size > memblock_start_of_DRAM() + 403 linear_region_size, 404 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 405 phys_initrd_size = 0; 406 } else { 407 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 408 memblock_add(base, size); 409 memblock_reserve(base, size); 410 } 411 } 412 413 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 414 extern u16 memstart_offset_seed; 415 u64 range = linear_region_size - 416 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 417 418 /* 419 * If the size of the linear region exceeds, by a sufficient 420 * margin, the size of the region that the available physical 421 * memory spans, randomize the linear region as well. 422 */ 423 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 424 range /= ARM64_MEMSTART_ALIGN; 425 memstart_addr -= ARM64_MEMSTART_ALIGN * 426 ((range * memstart_offset_seed) >> 16); 427 } 428 } 429 430 /* 431 * Register the kernel text, kernel data, initrd, and initial 432 * pagetables with memblock. 433 */ 434 memblock_reserve(__pa_symbol(_text), _end - _text); 435 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 436 /* the generic initrd code expects virtual addresses */ 437 initrd_start = __phys_to_virt(phys_initrd_start); 438 initrd_end = initrd_start + phys_initrd_size; 439 } 440 441 early_init_fdt_scan_reserved_mem(); 442 443 if (IS_ENABLED(CONFIG_ZONE_DMA)) { 444 zone_dma_bits = ARM64_ZONE_DMA_BITS; 445 arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS); 446 } 447 448 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 449 arm64_dma32_phys_limit = max_zone_phys(32); 450 else 451 arm64_dma32_phys_limit = PHYS_MASK + 1; 452 453 reserve_crashkernel(); 454 455 reserve_elfcorehdr(); 456 457 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 458 459 dma_contiguous_reserve(arm64_dma32_phys_limit); 460 } 461 462 void __init bootmem_init(void) 463 { 464 unsigned long min, max; 465 466 min = PFN_UP(memblock_start_of_DRAM()); 467 max = PFN_DOWN(memblock_end_of_DRAM()); 468 469 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 470 471 max_pfn = max_low_pfn = max; 472 min_low_pfn = min; 473 474 arm64_numa_init(); 475 /* 476 * Sparsemem tries to allocate bootmem in memory_present(), so must be 477 * done after the fixed reservations. 478 */ 479 memblocks_present(); 480 481 sparse_init(); 482 zone_sizes_init(min, max); 483 484 memblock_dump_all(); 485 } 486 487 #ifndef CONFIG_SPARSEMEM_VMEMMAP 488 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 489 { 490 struct page *start_pg, *end_pg; 491 unsigned long pg, pgend; 492 493 /* 494 * Convert start_pfn/end_pfn to a struct page pointer. 495 */ 496 start_pg = pfn_to_page(start_pfn - 1) + 1; 497 end_pg = pfn_to_page(end_pfn - 1) + 1; 498 499 /* 500 * Convert to physical addresses, and round start upwards and end 501 * downwards. 502 */ 503 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 504 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 505 506 /* 507 * If there are free pages between these, free the section of the 508 * memmap array. 509 */ 510 if (pg < pgend) 511 memblock_free(pg, pgend - pg); 512 } 513 514 /* 515 * The mem_map array can get very big. Free the unused area of the memory map. 516 */ 517 static void __init free_unused_memmap(void) 518 { 519 unsigned long start, prev_end = 0; 520 struct memblock_region *reg; 521 522 for_each_memblock(memory, reg) { 523 start = __phys_to_pfn(reg->base); 524 525 #ifdef CONFIG_SPARSEMEM 526 /* 527 * Take care not to free memmap entries that don't exist due 528 * to SPARSEMEM sections which aren't present. 529 */ 530 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 531 #endif 532 /* 533 * If we had a previous bank, and there is a space between the 534 * current bank and the previous, free it. 535 */ 536 if (prev_end && prev_end < start) 537 free_memmap(prev_end, start); 538 539 /* 540 * Align up here since the VM subsystem insists that the 541 * memmap entries are valid from the bank end aligned to 542 * MAX_ORDER_NR_PAGES. 543 */ 544 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 545 MAX_ORDER_NR_PAGES); 546 } 547 548 #ifdef CONFIG_SPARSEMEM 549 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 550 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 551 #endif 552 } 553 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 554 555 /* 556 * mem_init() marks the free areas in the mem_map and tells us how much memory 557 * is free. This is done after various parts of the system have claimed their 558 * memory after the kernel image. 559 */ 560 void __init mem_init(void) 561 { 562 if (swiotlb_force == SWIOTLB_FORCE || 563 max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit)) 564 swiotlb_init(1); 565 else 566 swiotlb_force = SWIOTLB_NO_FORCE; 567 568 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); 569 570 #ifndef CONFIG_SPARSEMEM_VMEMMAP 571 free_unused_memmap(); 572 #endif 573 /* this will put all unused low memory onto the freelists */ 574 memblock_free_all(); 575 576 mem_init_print_info(NULL); 577 578 /* 579 * Check boundaries twice: Some fundamental inconsistencies can be 580 * detected at build time already. 581 */ 582 #ifdef CONFIG_COMPAT 583 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 584 #endif 585 586 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 587 extern int sysctl_overcommit_memory; 588 /* 589 * On a machine this small we won't get anywhere without 590 * overcommit, so turn it on by default. 591 */ 592 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 593 } 594 } 595 596 void free_initmem(void) 597 { 598 free_reserved_area(lm_alias(__init_begin), 599 lm_alias(__init_end), 600 POISON_FREE_INITMEM, "unused kernel"); 601 /* 602 * Unmap the __init region but leave the VM area in place. This 603 * prevents the region from being reused for kernel modules, which 604 * is not supported by kallsyms. 605 */ 606 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 607 } 608 609 /* 610 * Dump out memory limit information on panic. 611 */ 612 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 613 { 614 if (memory_limit != PHYS_ADDR_MAX) { 615 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 616 } else { 617 pr_emerg("Memory Limit: none\n"); 618 } 619 return 0; 620 } 621 622 static struct notifier_block mem_limit_notifier = { 623 .notifier_call = dump_mem_limit, 624 }; 625 626 static int __init register_mem_limit_dumper(void) 627 { 628 atomic_notifier_chain_register(&panic_notifier_list, 629 &mem_limit_notifier); 630 return 0; 631 } 632 __initcall(register_mem_limit_dumper); 633