xref: /linux/arch/arm64/mm/init.c (revision 4494ce4fb4ff42946f48bbc8a5ac55ee18dca600)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mman.h>
27 #include <linux/nodemask.h>
28 #include <linux/initrd.h>
29 #include <linux/gfp.h>
30 #include <linux/memblock.h>
31 #include <linux/sort.h>
32 #include <linux/of.h>
33 #include <linux/of_fdt.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dma-contiguous.h>
36 #include <linux/efi.h>
37 #include <linux/swiotlb.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm.h>
40 #include <linux/kexec.h>
41 #include <linux/crash_dump.h>
42 
43 #include <asm/boot.h>
44 #include <asm/fixmap.h>
45 #include <asm/kasan.h>
46 #include <asm/kernel-pgtable.h>
47 #include <asm/memory.h>
48 #include <asm/numa.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <asm/sizes.h>
52 #include <asm/tlb.h>
53 #include <asm/alternative.h>
54 
55 /*
56  * We need to be able to catch inadvertent references to memstart_addr
57  * that occur (potentially in generic code) before arm64_memblock_init()
58  * executes, which assigns it its actual value. So use a default value
59  * that cannot be mistaken for a real physical address.
60  */
61 s64 memstart_addr __ro_after_init = -1;
62 EXPORT_SYMBOL(memstart_addr);
63 
64 phys_addr_t arm64_dma_phys_limit __ro_after_init;
65 
66 #ifdef CONFIG_BLK_DEV_INITRD
67 static int __init early_initrd(char *p)
68 {
69 	unsigned long start, size;
70 	char *endp;
71 
72 	start = memparse(p, &endp);
73 	if (*endp == ',') {
74 		size = memparse(endp + 1, NULL);
75 
76 		initrd_start = start;
77 		initrd_end = start + size;
78 	}
79 	return 0;
80 }
81 early_param("initrd", early_initrd);
82 #endif
83 
84 #ifdef CONFIG_KEXEC_CORE
85 /*
86  * reserve_crashkernel() - reserves memory for crash kernel
87  *
88  * This function reserves memory area given in "crashkernel=" kernel command
89  * line parameter. The memory reserved is used by dump capture kernel when
90  * primary kernel is crashing.
91  */
92 static void __init reserve_crashkernel(void)
93 {
94 	unsigned long long crash_base, crash_size;
95 	int ret;
96 
97 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
98 				&crash_size, &crash_base);
99 	/* no crashkernel= or invalid value specified */
100 	if (ret || !crash_size)
101 		return;
102 
103 	crash_size = PAGE_ALIGN(crash_size);
104 
105 	if (crash_base == 0) {
106 		/* Current arm64 boot protocol requires 2MB alignment */
107 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
108 				crash_size, SZ_2M);
109 		if (crash_base == 0) {
110 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
111 				crash_size);
112 			return;
113 		}
114 	} else {
115 		/* User specifies base address explicitly. */
116 		if (!memblock_is_region_memory(crash_base, crash_size)) {
117 			pr_warn("cannot reserve crashkernel: region is not memory\n");
118 			return;
119 		}
120 
121 		if (memblock_is_region_reserved(crash_base, crash_size)) {
122 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
123 			return;
124 		}
125 
126 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
127 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
128 			return;
129 		}
130 	}
131 	memblock_reserve(crash_base, crash_size);
132 
133 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
134 		crash_base, crash_base + crash_size, crash_size >> 20);
135 
136 	crashk_res.start = crash_base;
137 	crashk_res.end = crash_base + crash_size - 1;
138 }
139 
140 static void __init kexec_reserve_crashkres_pages(void)
141 {
142 #ifdef CONFIG_HIBERNATION
143 	phys_addr_t addr;
144 	struct page *page;
145 
146 	if (!crashk_res.end)
147 		return;
148 
149 	/*
150 	 * To reduce the size of hibernation image, all the pages are
151 	 * marked as Reserved initially.
152 	 */
153 	for (addr = crashk_res.start; addr < (crashk_res.end + 1);
154 			addr += PAGE_SIZE) {
155 		page = phys_to_page(addr);
156 		SetPageReserved(page);
157 	}
158 #endif
159 }
160 #else
161 static void __init reserve_crashkernel(void)
162 {
163 }
164 
165 static void __init kexec_reserve_crashkres_pages(void)
166 {
167 }
168 #endif /* CONFIG_KEXEC_CORE */
169 
170 #ifdef CONFIG_CRASH_DUMP
171 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
172 		const char *uname, int depth, void *data)
173 {
174 	const __be32 *reg;
175 	int len;
176 
177 	if (depth != 1 || strcmp(uname, "chosen") != 0)
178 		return 0;
179 
180 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
181 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
182 		return 1;
183 
184 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
185 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
186 
187 	return 1;
188 }
189 
190 /*
191  * reserve_elfcorehdr() - reserves memory for elf core header
192  *
193  * This function reserves the memory occupied by an elf core header
194  * described in the device tree. This region contains all the
195  * information about primary kernel's core image and is used by a dump
196  * capture kernel to access the system memory on primary kernel.
197  */
198 static void __init reserve_elfcorehdr(void)
199 {
200 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
201 
202 	if (!elfcorehdr_size)
203 		return;
204 
205 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
206 		pr_warn("elfcorehdr is overlapped\n");
207 		return;
208 	}
209 
210 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
211 
212 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
213 		elfcorehdr_size >> 10, elfcorehdr_addr);
214 }
215 #else
216 static void __init reserve_elfcorehdr(void)
217 {
218 }
219 #endif /* CONFIG_CRASH_DUMP */
220 /*
221  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
222  * currently assumes that for memory starting above 4G, 32-bit devices will
223  * use a DMA offset.
224  */
225 static phys_addr_t __init max_zone_dma_phys(void)
226 {
227 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
228 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
229 }
230 
231 #ifdef CONFIG_NUMA
232 
233 static void __init zone_sizes_init(unsigned long min, unsigned long max)
234 {
235 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
236 
237 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
238 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
239 	max_zone_pfns[ZONE_NORMAL] = max;
240 
241 	free_area_init_nodes(max_zone_pfns);
242 }
243 
244 #else
245 
246 static void __init zone_sizes_init(unsigned long min, unsigned long max)
247 {
248 	struct memblock_region *reg;
249 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
250 	unsigned long max_dma = min;
251 
252 	memset(zone_size, 0, sizeof(zone_size));
253 
254 	/* 4GB maximum for 32-bit only capable devices */
255 #ifdef CONFIG_ZONE_DMA32
256 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
257 	zone_size[ZONE_DMA32] = max_dma - min;
258 #endif
259 	zone_size[ZONE_NORMAL] = max - max_dma;
260 
261 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
262 
263 	for_each_memblock(memory, reg) {
264 		unsigned long start = memblock_region_memory_base_pfn(reg);
265 		unsigned long end = memblock_region_memory_end_pfn(reg);
266 
267 		if (start >= max)
268 			continue;
269 
270 #ifdef CONFIG_ZONE_DMA32
271 		if (start < max_dma) {
272 			unsigned long dma_end = min(end, max_dma);
273 			zhole_size[ZONE_DMA32] -= dma_end - start;
274 		}
275 #endif
276 		if (end > max_dma) {
277 			unsigned long normal_end = min(end, max);
278 			unsigned long normal_start = max(start, max_dma);
279 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
280 		}
281 	}
282 
283 	free_area_init_node(0, zone_size, min, zhole_size);
284 }
285 
286 #endif /* CONFIG_NUMA */
287 
288 int pfn_valid(unsigned long pfn)
289 {
290 	phys_addr_t addr = pfn << PAGE_SHIFT;
291 
292 	if ((addr >> PAGE_SHIFT) != pfn)
293 		return 0;
294 
295 #ifdef CONFIG_SPARSEMEM
296 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
297 		return 0;
298 
299 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
300 		return 0;
301 #endif
302 	return memblock_is_map_memory(addr);
303 }
304 EXPORT_SYMBOL(pfn_valid);
305 
306 #ifndef CONFIG_SPARSEMEM
307 static void __init arm64_memory_present(void)
308 {
309 }
310 #else
311 static void __init arm64_memory_present(void)
312 {
313 	struct memblock_region *reg;
314 
315 	for_each_memblock(memory, reg) {
316 		int nid = memblock_get_region_node(reg);
317 
318 		memory_present(nid, memblock_region_memory_base_pfn(reg),
319 				memblock_region_memory_end_pfn(reg));
320 	}
321 }
322 #endif
323 
324 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
325 
326 /*
327  * Limit the memory size that was specified via FDT.
328  */
329 static int __init early_mem(char *p)
330 {
331 	if (!p)
332 		return 1;
333 
334 	memory_limit = memparse(p, &p) & PAGE_MASK;
335 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
336 
337 	return 0;
338 }
339 early_param("mem", early_mem);
340 
341 static int __init early_init_dt_scan_usablemem(unsigned long node,
342 		const char *uname, int depth, void *data)
343 {
344 	struct memblock_region *usablemem = data;
345 	const __be32 *reg;
346 	int len;
347 
348 	if (depth != 1 || strcmp(uname, "chosen") != 0)
349 		return 0;
350 
351 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
352 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
353 		return 1;
354 
355 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
356 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
357 
358 	return 1;
359 }
360 
361 static void __init fdt_enforce_memory_region(void)
362 {
363 	struct memblock_region reg = {
364 		.size = 0,
365 	};
366 
367 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
368 
369 	if (reg.size)
370 		memblock_cap_memory_range(reg.base, reg.size);
371 }
372 
373 void __init arm64_memblock_init(void)
374 {
375 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
376 
377 	/* Handle linux,usable-memory-range property */
378 	fdt_enforce_memory_region();
379 
380 	/* Remove memory above our supported physical address size */
381 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
382 
383 	/*
384 	 * Ensure that the linear region takes up exactly half of the kernel
385 	 * virtual address space. This way, we can distinguish a linear address
386 	 * from a kernel/module/vmalloc address by testing a single bit.
387 	 */
388 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
389 
390 	/*
391 	 * Select a suitable value for the base of physical memory.
392 	 */
393 	memstart_addr = round_down(memblock_start_of_DRAM(),
394 				   ARM64_MEMSTART_ALIGN);
395 
396 	/*
397 	 * Remove the memory that we will not be able to cover with the
398 	 * linear mapping. Take care not to clip the kernel which may be
399 	 * high in memory.
400 	 */
401 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
402 			__pa_symbol(_end)), ULLONG_MAX);
403 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
404 		/* ensure that memstart_addr remains sufficiently aligned */
405 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
406 					 ARM64_MEMSTART_ALIGN);
407 		memblock_remove(0, memstart_addr);
408 	}
409 
410 	/*
411 	 * Apply the memory limit if it was set. Since the kernel may be loaded
412 	 * high up in memory, add back the kernel region that must be accessible
413 	 * via the linear mapping.
414 	 */
415 	if (memory_limit != PHYS_ADDR_MAX) {
416 		memblock_mem_limit_remove_map(memory_limit);
417 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
418 	}
419 
420 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
421 		/*
422 		 * Add back the memory we just removed if it results in the
423 		 * initrd to become inaccessible via the linear mapping.
424 		 * Otherwise, this is a no-op
425 		 */
426 		u64 base = initrd_start & PAGE_MASK;
427 		u64 size = PAGE_ALIGN(initrd_end) - base;
428 
429 		/*
430 		 * We can only add back the initrd memory if we don't end up
431 		 * with more memory than we can address via the linear mapping.
432 		 * It is up to the bootloader to position the kernel and the
433 		 * initrd reasonably close to each other (i.e., within 32 GB of
434 		 * each other) so that all granule/#levels combinations can
435 		 * always access both.
436 		 */
437 		if (WARN(base < memblock_start_of_DRAM() ||
438 			 base + size > memblock_start_of_DRAM() +
439 				       linear_region_size,
440 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
441 			initrd_start = 0;
442 		} else {
443 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
444 			memblock_add(base, size);
445 			memblock_reserve(base, size);
446 		}
447 	}
448 
449 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
450 		extern u16 memstart_offset_seed;
451 		u64 range = linear_region_size -
452 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
453 
454 		/*
455 		 * If the size of the linear region exceeds, by a sufficient
456 		 * margin, the size of the region that the available physical
457 		 * memory spans, randomize the linear region as well.
458 		 */
459 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
460 			range = range / ARM64_MEMSTART_ALIGN + 1;
461 			memstart_addr -= ARM64_MEMSTART_ALIGN *
462 					 ((range * memstart_offset_seed) >> 16);
463 		}
464 	}
465 
466 	/*
467 	 * Register the kernel text, kernel data, initrd, and initial
468 	 * pagetables with memblock.
469 	 */
470 	memblock_reserve(__pa_symbol(_text), _end - _text);
471 #ifdef CONFIG_BLK_DEV_INITRD
472 	if (initrd_start) {
473 		memblock_reserve(initrd_start, initrd_end - initrd_start);
474 
475 		/* the generic initrd code expects virtual addresses */
476 		initrd_start = __phys_to_virt(initrd_start);
477 		initrd_end = __phys_to_virt(initrd_end);
478 	}
479 #endif
480 
481 	early_init_fdt_scan_reserved_mem();
482 
483 	/* 4GB maximum for 32-bit only capable devices */
484 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
485 		arm64_dma_phys_limit = max_zone_dma_phys();
486 	else
487 		arm64_dma_phys_limit = PHYS_MASK + 1;
488 
489 	reserve_crashkernel();
490 
491 	reserve_elfcorehdr();
492 
493 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
494 
495 	dma_contiguous_reserve(arm64_dma_phys_limit);
496 }
497 
498 void __init bootmem_init(void)
499 {
500 	unsigned long min, max;
501 
502 	min = PFN_UP(memblock_start_of_DRAM());
503 	max = PFN_DOWN(memblock_end_of_DRAM());
504 
505 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
506 
507 	max_pfn = max_low_pfn = max;
508 
509 	arm64_numa_init();
510 	/*
511 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
512 	 * done after the fixed reservations.
513 	 */
514 	arm64_memory_present();
515 
516 	sparse_init();
517 	zone_sizes_init(min, max);
518 
519 	memblock_dump_all();
520 }
521 
522 #ifndef CONFIG_SPARSEMEM_VMEMMAP
523 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
524 {
525 	struct page *start_pg, *end_pg;
526 	unsigned long pg, pgend;
527 
528 	/*
529 	 * Convert start_pfn/end_pfn to a struct page pointer.
530 	 */
531 	start_pg = pfn_to_page(start_pfn - 1) + 1;
532 	end_pg = pfn_to_page(end_pfn - 1) + 1;
533 
534 	/*
535 	 * Convert to physical addresses, and round start upwards and end
536 	 * downwards.
537 	 */
538 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
539 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
540 
541 	/*
542 	 * If there are free pages between these, free the section of the
543 	 * memmap array.
544 	 */
545 	if (pg < pgend)
546 		memblock_free(pg, pgend - pg);
547 }
548 
549 /*
550  * The mem_map array can get very big. Free the unused area of the memory map.
551  */
552 static void __init free_unused_memmap(void)
553 {
554 	unsigned long start, prev_end = 0;
555 	struct memblock_region *reg;
556 
557 	for_each_memblock(memory, reg) {
558 		start = __phys_to_pfn(reg->base);
559 
560 #ifdef CONFIG_SPARSEMEM
561 		/*
562 		 * Take care not to free memmap entries that don't exist due
563 		 * to SPARSEMEM sections which aren't present.
564 		 */
565 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
566 #endif
567 		/*
568 		 * If we had a previous bank, and there is a space between the
569 		 * current bank and the previous, free it.
570 		 */
571 		if (prev_end && prev_end < start)
572 			free_memmap(prev_end, start);
573 
574 		/*
575 		 * Align up here since the VM subsystem insists that the
576 		 * memmap entries are valid from the bank end aligned to
577 		 * MAX_ORDER_NR_PAGES.
578 		 */
579 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
580 				 MAX_ORDER_NR_PAGES);
581 	}
582 
583 #ifdef CONFIG_SPARSEMEM
584 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
585 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
586 #endif
587 }
588 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
589 
590 /*
591  * mem_init() marks the free areas in the mem_map and tells us how much memory
592  * is free.  This is done after various parts of the system have claimed their
593  * memory after the kernel image.
594  */
595 void __init mem_init(void)
596 {
597 	if (swiotlb_force == SWIOTLB_FORCE ||
598 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
599 		swiotlb_init(1);
600 	else
601 		swiotlb_force = SWIOTLB_NO_FORCE;
602 
603 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
604 
605 #ifndef CONFIG_SPARSEMEM_VMEMMAP
606 	free_unused_memmap();
607 #endif
608 	/* this will put all unused low memory onto the freelists */
609 	memblock_free_all();
610 
611 	kexec_reserve_crashkres_pages();
612 
613 	mem_init_print_info(NULL);
614 
615 	/*
616 	 * Check boundaries twice: Some fundamental inconsistencies can be
617 	 * detected at build time already.
618 	 */
619 #ifdef CONFIG_COMPAT
620 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
621 #endif
622 
623 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
624 		extern int sysctl_overcommit_memory;
625 		/*
626 		 * On a machine this small we won't get anywhere without
627 		 * overcommit, so turn it on by default.
628 		 */
629 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
630 	}
631 }
632 
633 void free_initmem(void)
634 {
635 	free_reserved_area(lm_alias(__init_begin),
636 			   lm_alias(__init_end),
637 			   0, "unused kernel");
638 	/*
639 	 * Unmap the __init region but leave the VM area in place. This
640 	 * prevents the region from being reused for kernel modules, which
641 	 * is not supported by kallsyms.
642 	 */
643 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
644 }
645 
646 #ifdef CONFIG_BLK_DEV_INITRD
647 
648 static int keep_initrd __initdata;
649 
650 void __init free_initrd_mem(unsigned long start, unsigned long end)
651 {
652 	if (!keep_initrd) {
653 		free_reserved_area((void *)start, (void *)end, 0, "initrd");
654 		memblock_free(__virt_to_phys(start), end - start);
655 	}
656 }
657 
658 static int __init keepinitrd_setup(char *__unused)
659 {
660 	keep_initrd = 1;
661 	return 1;
662 }
663 
664 __setup("keepinitrd", keepinitrd_setup);
665 #endif
666 
667 /*
668  * Dump out memory limit information on panic.
669  */
670 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
671 {
672 	if (memory_limit != PHYS_ADDR_MAX) {
673 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
674 	} else {
675 		pr_emerg("Memory Limit: none\n");
676 	}
677 	return 0;
678 }
679 
680 static struct notifier_block mem_limit_notifier = {
681 	.notifier_call = dump_mem_limit,
682 };
683 
684 static int __init register_mem_limit_dumper(void)
685 {
686 	atomic_notifier_chain_register(&panic_notifier_list,
687 				       &mem_limit_notifier);
688 	return 0;
689 }
690 __initcall(register_mem_limit_dumper);
691