1 /* 2 * Based on arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/errno.h> 23 #include <linux/swap.h> 24 #include <linux/init.h> 25 #include <linux/bootmem.h> 26 #include <linux/cache.h> 27 #include <linux/mman.h> 28 #include <linux/nodemask.h> 29 #include <linux/initrd.h> 30 #include <linux/gfp.h> 31 #include <linux/memblock.h> 32 #include <linux/sort.h> 33 #include <linux/of.h> 34 #include <linux/of_fdt.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/dma-contiguous.h> 37 #include <linux/efi.h> 38 #include <linux/swiotlb.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mm.h> 41 #include <linux/kexec.h> 42 #include <linux/crash_dump.h> 43 44 #include <asm/boot.h> 45 #include <asm/fixmap.h> 46 #include <asm/kasan.h> 47 #include <asm/kernel-pgtable.h> 48 #include <asm/memory.h> 49 #include <asm/numa.h> 50 #include <asm/sections.h> 51 #include <asm/setup.h> 52 #include <asm/sizes.h> 53 #include <asm/tlb.h> 54 #include <asm/alternative.h> 55 56 /* 57 * We need to be able to catch inadvertent references to memstart_addr 58 * that occur (potentially in generic code) before arm64_memblock_init() 59 * executes, which assigns it its actual value. So use a default value 60 * that cannot be mistaken for a real physical address. 61 */ 62 s64 memstart_addr __ro_after_init = -1; 63 phys_addr_t arm64_dma_phys_limit __ro_after_init; 64 65 #ifdef CONFIG_BLK_DEV_INITRD 66 static int __init early_initrd(char *p) 67 { 68 unsigned long start, size; 69 char *endp; 70 71 start = memparse(p, &endp); 72 if (*endp == ',') { 73 size = memparse(endp + 1, NULL); 74 75 initrd_start = start; 76 initrd_end = start + size; 77 } 78 return 0; 79 } 80 early_param("initrd", early_initrd); 81 #endif 82 83 #ifdef CONFIG_KEXEC_CORE 84 /* 85 * reserve_crashkernel() - reserves memory for crash kernel 86 * 87 * This function reserves memory area given in "crashkernel=" kernel command 88 * line parameter. The memory reserved is used by dump capture kernel when 89 * primary kernel is crashing. 90 */ 91 static void __init reserve_crashkernel(void) 92 { 93 unsigned long long crash_base, crash_size; 94 int ret; 95 96 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 97 &crash_size, &crash_base); 98 /* no crashkernel= or invalid value specified */ 99 if (ret || !crash_size) 100 return; 101 102 crash_size = PAGE_ALIGN(crash_size); 103 104 if (crash_base == 0) { 105 /* Current arm64 boot protocol requires 2MB alignment */ 106 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, 107 crash_size, SZ_2M); 108 if (crash_base == 0) { 109 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 110 crash_size); 111 return; 112 } 113 } else { 114 /* User specifies base address explicitly. */ 115 if (!memblock_is_region_memory(crash_base, crash_size)) { 116 pr_warn("cannot reserve crashkernel: region is not memory\n"); 117 return; 118 } 119 120 if (memblock_is_region_reserved(crash_base, crash_size)) { 121 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 122 return; 123 } 124 125 if (!IS_ALIGNED(crash_base, SZ_2M)) { 126 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 127 return; 128 } 129 } 130 memblock_reserve(crash_base, crash_size); 131 132 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 133 crash_base, crash_base + crash_size, crash_size >> 20); 134 135 crashk_res.start = crash_base; 136 crashk_res.end = crash_base + crash_size - 1; 137 } 138 139 static void __init kexec_reserve_crashkres_pages(void) 140 { 141 #ifdef CONFIG_HIBERNATION 142 phys_addr_t addr; 143 struct page *page; 144 145 if (!crashk_res.end) 146 return; 147 148 /* 149 * To reduce the size of hibernation image, all the pages are 150 * marked as Reserved initially. 151 */ 152 for (addr = crashk_res.start; addr < (crashk_res.end + 1); 153 addr += PAGE_SIZE) { 154 page = phys_to_page(addr); 155 SetPageReserved(page); 156 } 157 #endif 158 } 159 #else 160 static void __init reserve_crashkernel(void) 161 { 162 } 163 164 static void __init kexec_reserve_crashkres_pages(void) 165 { 166 } 167 #endif /* CONFIG_KEXEC_CORE */ 168 169 #ifdef CONFIG_CRASH_DUMP 170 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 171 const char *uname, int depth, void *data) 172 { 173 const __be32 *reg; 174 int len; 175 176 if (depth != 1 || strcmp(uname, "chosen") != 0) 177 return 0; 178 179 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 180 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 181 return 1; 182 183 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 184 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 185 186 return 1; 187 } 188 189 /* 190 * reserve_elfcorehdr() - reserves memory for elf core header 191 * 192 * This function reserves the memory occupied by an elf core header 193 * described in the device tree. This region contains all the 194 * information about primary kernel's core image and is used by a dump 195 * capture kernel to access the system memory on primary kernel. 196 */ 197 static void __init reserve_elfcorehdr(void) 198 { 199 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 200 201 if (!elfcorehdr_size) 202 return; 203 204 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 205 pr_warn("elfcorehdr is overlapped\n"); 206 return; 207 } 208 209 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 210 211 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 212 elfcorehdr_size >> 10, elfcorehdr_addr); 213 } 214 #else 215 static void __init reserve_elfcorehdr(void) 216 { 217 } 218 #endif /* CONFIG_CRASH_DUMP */ 219 /* 220 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It 221 * currently assumes that for memory starting above 4G, 32-bit devices will 222 * use a DMA offset. 223 */ 224 static phys_addr_t __init max_zone_dma_phys(void) 225 { 226 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); 227 return min(offset + (1ULL << 32), memblock_end_of_DRAM()); 228 } 229 230 #ifdef CONFIG_NUMA 231 232 static void __init zone_sizes_init(unsigned long min, unsigned long max) 233 { 234 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 235 236 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 237 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); 238 max_zone_pfns[ZONE_NORMAL] = max; 239 240 free_area_init_nodes(max_zone_pfns); 241 } 242 243 #else 244 245 static void __init zone_sizes_init(unsigned long min, unsigned long max) 246 { 247 struct memblock_region *reg; 248 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 249 unsigned long max_dma = min; 250 251 memset(zone_size, 0, sizeof(zone_size)); 252 253 /* 4GB maximum for 32-bit only capable devices */ 254 #ifdef CONFIG_ZONE_DMA32 255 max_dma = PFN_DOWN(arm64_dma_phys_limit); 256 zone_size[ZONE_DMA32] = max_dma - min; 257 #endif 258 zone_size[ZONE_NORMAL] = max - max_dma; 259 260 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 261 262 for_each_memblock(memory, reg) { 263 unsigned long start = memblock_region_memory_base_pfn(reg); 264 unsigned long end = memblock_region_memory_end_pfn(reg); 265 266 if (start >= max) 267 continue; 268 269 #ifdef CONFIG_ZONE_DMA32 270 if (start < max_dma) { 271 unsigned long dma_end = min(end, max_dma); 272 zhole_size[ZONE_DMA32] -= dma_end - start; 273 } 274 #endif 275 if (end > max_dma) { 276 unsigned long normal_end = min(end, max); 277 unsigned long normal_start = max(start, max_dma); 278 zhole_size[ZONE_NORMAL] -= normal_end - normal_start; 279 } 280 } 281 282 free_area_init_node(0, zone_size, min, zhole_size); 283 } 284 285 #endif /* CONFIG_NUMA */ 286 287 int pfn_valid(unsigned long pfn) 288 { 289 phys_addr_t addr = pfn << PAGE_SHIFT; 290 291 if ((addr >> PAGE_SHIFT) != pfn) 292 return 0; 293 return memblock_is_map_memory(addr); 294 } 295 EXPORT_SYMBOL(pfn_valid); 296 297 #ifndef CONFIG_SPARSEMEM 298 static void __init arm64_memory_present(void) 299 { 300 } 301 #else 302 static void __init arm64_memory_present(void) 303 { 304 struct memblock_region *reg; 305 306 for_each_memblock(memory, reg) { 307 int nid = memblock_get_region_node(reg); 308 309 memory_present(nid, memblock_region_memory_base_pfn(reg), 310 memblock_region_memory_end_pfn(reg)); 311 } 312 } 313 #endif 314 315 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 316 317 /* 318 * Limit the memory size that was specified via FDT. 319 */ 320 static int __init early_mem(char *p) 321 { 322 if (!p) 323 return 1; 324 325 memory_limit = memparse(p, &p) & PAGE_MASK; 326 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 327 328 return 0; 329 } 330 early_param("mem", early_mem); 331 332 static int __init early_init_dt_scan_usablemem(unsigned long node, 333 const char *uname, int depth, void *data) 334 { 335 struct memblock_region *usablemem = data; 336 const __be32 *reg; 337 int len; 338 339 if (depth != 1 || strcmp(uname, "chosen") != 0) 340 return 0; 341 342 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 343 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 344 return 1; 345 346 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 347 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 348 349 return 1; 350 } 351 352 static void __init fdt_enforce_memory_region(void) 353 { 354 struct memblock_region reg = { 355 .size = 0, 356 }; 357 358 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 359 360 if (reg.size) 361 memblock_cap_memory_range(reg.base, reg.size); 362 } 363 364 void __init arm64_memblock_init(void) 365 { 366 const s64 linear_region_size = -(s64)PAGE_OFFSET; 367 368 /* Handle linux,usable-memory-range property */ 369 fdt_enforce_memory_region(); 370 371 /* Remove memory above our supported physical address size */ 372 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 373 374 /* 375 * Ensure that the linear region takes up exactly half of the kernel 376 * virtual address space. This way, we can distinguish a linear address 377 * from a kernel/module/vmalloc address by testing a single bit. 378 */ 379 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); 380 381 /* 382 * Select a suitable value for the base of physical memory. 383 */ 384 memstart_addr = round_down(memblock_start_of_DRAM(), 385 ARM64_MEMSTART_ALIGN); 386 387 /* 388 * Remove the memory that we will not be able to cover with the 389 * linear mapping. Take care not to clip the kernel which may be 390 * high in memory. 391 */ 392 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 393 __pa_symbol(_end)), ULLONG_MAX); 394 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 395 /* ensure that memstart_addr remains sufficiently aligned */ 396 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 397 ARM64_MEMSTART_ALIGN); 398 memblock_remove(0, memstart_addr); 399 } 400 401 /* 402 * Apply the memory limit if it was set. Since the kernel may be loaded 403 * high up in memory, add back the kernel region that must be accessible 404 * via the linear mapping. 405 */ 406 if (memory_limit != PHYS_ADDR_MAX) { 407 memblock_mem_limit_remove_map(memory_limit); 408 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 409 } 410 411 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) { 412 /* 413 * Add back the memory we just removed if it results in the 414 * initrd to become inaccessible via the linear mapping. 415 * Otherwise, this is a no-op 416 */ 417 u64 base = initrd_start & PAGE_MASK; 418 u64 size = PAGE_ALIGN(initrd_end) - base; 419 420 /* 421 * We can only add back the initrd memory if we don't end up 422 * with more memory than we can address via the linear mapping. 423 * It is up to the bootloader to position the kernel and the 424 * initrd reasonably close to each other (i.e., within 32 GB of 425 * each other) so that all granule/#levels combinations can 426 * always access both. 427 */ 428 if (WARN(base < memblock_start_of_DRAM() || 429 base + size > memblock_start_of_DRAM() + 430 linear_region_size, 431 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 432 initrd_start = 0; 433 } else { 434 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 435 memblock_add(base, size); 436 memblock_reserve(base, size); 437 } 438 } 439 440 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 441 extern u16 memstart_offset_seed; 442 u64 range = linear_region_size - 443 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 444 445 /* 446 * If the size of the linear region exceeds, by a sufficient 447 * margin, the size of the region that the available physical 448 * memory spans, randomize the linear region as well. 449 */ 450 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 451 range = range / ARM64_MEMSTART_ALIGN + 1; 452 memstart_addr -= ARM64_MEMSTART_ALIGN * 453 ((range * memstart_offset_seed) >> 16); 454 } 455 } 456 457 /* 458 * Register the kernel text, kernel data, initrd, and initial 459 * pagetables with memblock. 460 */ 461 memblock_reserve(__pa_symbol(_text), _end - _text); 462 #ifdef CONFIG_BLK_DEV_INITRD 463 if (initrd_start) { 464 memblock_reserve(initrd_start, initrd_end - initrd_start); 465 466 /* the generic initrd code expects virtual addresses */ 467 initrd_start = __phys_to_virt(initrd_start); 468 initrd_end = __phys_to_virt(initrd_end); 469 } 470 #endif 471 472 early_init_fdt_scan_reserved_mem(); 473 474 /* 4GB maximum for 32-bit only capable devices */ 475 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 476 arm64_dma_phys_limit = max_zone_dma_phys(); 477 else 478 arm64_dma_phys_limit = PHYS_MASK + 1; 479 480 reserve_crashkernel(); 481 482 reserve_elfcorehdr(); 483 484 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 485 486 dma_contiguous_reserve(arm64_dma_phys_limit); 487 488 memblock_allow_resize(); 489 } 490 491 void __init bootmem_init(void) 492 { 493 unsigned long min, max; 494 495 min = PFN_UP(memblock_start_of_DRAM()); 496 max = PFN_DOWN(memblock_end_of_DRAM()); 497 498 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 499 500 max_pfn = max_low_pfn = max; 501 502 arm64_numa_init(); 503 /* 504 * Sparsemem tries to allocate bootmem in memory_present(), so must be 505 * done after the fixed reservations. 506 */ 507 arm64_memory_present(); 508 509 sparse_init(); 510 zone_sizes_init(min, max); 511 512 memblock_dump_all(); 513 } 514 515 #ifndef CONFIG_SPARSEMEM_VMEMMAP 516 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 517 { 518 struct page *start_pg, *end_pg; 519 unsigned long pg, pgend; 520 521 /* 522 * Convert start_pfn/end_pfn to a struct page pointer. 523 */ 524 start_pg = pfn_to_page(start_pfn - 1) + 1; 525 end_pg = pfn_to_page(end_pfn - 1) + 1; 526 527 /* 528 * Convert to physical addresses, and round start upwards and end 529 * downwards. 530 */ 531 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 532 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 533 534 /* 535 * If there are free pages between these, free the section of the 536 * memmap array. 537 */ 538 if (pg < pgend) 539 free_bootmem(pg, pgend - pg); 540 } 541 542 /* 543 * The mem_map array can get very big. Free the unused area of the memory map. 544 */ 545 static void __init free_unused_memmap(void) 546 { 547 unsigned long start, prev_end = 0; 548 struct memblock_region *reg; 549 550 for_each_memblock(memory, reg) { 551 start = __phys_to_pfn(reg->base); 552 553 #ifdef CONFIG_SPARSEMEM 554 /* 555 * Take care not to free memmap entries that don't exist due 556 * to SPARSEMEM sections which aren't present. 557 */ 558 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 559 #endif 560 /* 561 * If we had a previous bank, and there is a space between the 562 * current bank and the previous, free it. 563 */ 564 if (prev_end && prev_end < start) 565 free_memmap(prev_end, start); 566 567 /* 568 * Align up here since the VM subsystem insists that the 569 * memmap entries are valid from the bank end aligned to 570 * MAX_ORDER_NR_PAGES. 571 */ 572 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 573 MAX_ORDER_NR_PAGES); 574 } 575 576 #ifdef CONFIG_SPARSEMEM 577 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 578 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 579 #endif 580 } 581 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 582 583 /* 584 * mem_init() marks the free areas in the mem_map and tells us how much memory 585 * is free. This is done after various parts of the system have claimed their 586 * memory after the kernel image. 587 */ 588 void __init mem_init(void) 589 { 590 if (swiotlb_force == SWIOTLB_FORCE || 591 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 592 swiotlb_init(1); 593 else 594 swiotlb_force = SWIOTLB_NO_FORCE; 595 596 set_max_mapnr(pfn_to_page(max_pfn) - mem_map); 597 598 #ifndef CONFIG_SPARSEMEM_VMEMMAP 599 free_unused_memmap(); 600 #endif 601 /* this will put all unused low memory onto the freelists */ 602 free_all_bootmem(); 603 604 kexec_reserve_crashkres_pages(); 605 606 mem_init_print_info(NULL); 607 608 /* 609 * Check boundaries twice: Some fundamental inconsistencies can be 610 * detected at build time already. 611 */ 612 #ifdef CONFIG_COMPAT 613 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64); 614 #endif 615 616 #ifdef CONFIG_SPARSEMEM_VMEMMAP 617 /* 618 * Make sure we chose the upper bound of sizeof(struct page) 619 * correctly when sizing the VMEMMAP array. 620 */ 621 BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT)); 622 #endif 623 624 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 625 extern int sysctl_overcommit_memory; 626 /* 627 * On a machine this small we won't get anywhere without 628 * overcommit, so turn it on by default. 629 */ 630 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 631 } 632 } 633 634 void free_initmem(void) 635 { 636 free_reserved_area(lm_alias(__init_begin), 637 lm_alias(__init_end), 638 0, "unused kernel"); 639 /* 640 * Unmap the __init region but leave the VM area in place. This 641 * prevents the region from being reused for kernel modules, which 642 * is not supported by kallsyms. 643 */ 644 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 645 } 646 647 #ifdef CONFIG_BLK_DEV_INITRD 648 649 static int keep_initrd __initdata; 650 651 void __init free_initrd_mem(unsigned long start, unsigned long end) 652 { 653 if (!keep_initrd) { 654 free_reserved_area((void *)start, (void *)end, 0, "initrd"); 655 memblock_free(__virt_to_phys(start), end - start); 656 } 657 } 658 659 static int __init keepinitrd_setup(char *__unused) 660 { 661 keep_initrd = 1; 662 return 1; 663 } 664 665 __setup("keepinitrd", keepinitrd_setup); 666 #endif 667 668 /* 669 * Dump out memory limit information on panic. 670 */ 671 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 672 { 673 if (memory_limit != PHYS_ADDR_MAX) { 674 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 675 } else { 676 pr_emerg("Memory Limit: none\n"); 677 } 678 return 0; 679 } 680 681 static struct notifier_block mem_limit_notifier = { 682 .notifier_call = dump_mem_limit, 683 }; 684 685 static int __init register_mem_limit_dumper(void) 686 { 687 atomic_notifier_chain_register(&panic_notifier_list, 688 &mem_limit_notifier); 689 return 0; 690 } 691 __initcall(register_mem_limit_dumper); 692