xref: /linux/arch/arm64/mm/init.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 
33 #include <asm/boot.h>
34 #include <asm/fixmap.h>
35 #include <asm/kasan.h>
36 #include <asm/kernel-pgtable.h>
37 #include <asm/memory.h>
38 #include <asm/numa.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <linux/sizes.h>
42 #include <asm/tlb.h>
43 #include <asm/alternative.h>
44 
45 #define ARM64_ZONE_DMA_BITS	30
46 
47 /*
48  * We need to be able to catch inadvertent references to memstart_addr
49  * that occur (potentially in generic code) before arm64_memblock_init()
50  * executes, which assigns it its actual value. So use a default value
51  * that cannot be mistaken for a real physical address.
52  */
53 s64 memstart_addr __ro_after_init = -1;
54 EXPORT_SYMBOL(memstart_addr);
55 
56 s64 physvirt_offset __ro_after_init;
57 EXPORT_SYMBOL(physvirt_offset);
58 
59 struct page *vmemmap __ro_after_init;
60 EXPORT_SYMBOL(vmemmap);
61 
62 /*
63  * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
64  * memory as some devices, namely the Raspberry Pi 4, have peripherals with
65  * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
66  * bit addressable memory area.
67  */
68 phys_addr_t arm64_dma_phys_limit __ro_after_init;
69 static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
70 
71 #ifdef CONFIG_KEXEC_CORE
72 /*
73  * reserve_crashkernel() - reserves memory for crash kernel
74  *
75  * This function reserves memory area given in "crashkernel=" kernel command
76  * line parameter. The memory reserved is used by dump capture kernel when
77  * primary kernel is crashing.
78  */
79 static void __init reserve_crashkernel(void)
80 {
81 	unsigned long long crash_base, crash_size;
82 	int ret;
83 
84 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
85 				&crash_size, &crash_base);
86 	/* no crashkernel= or invalid value specified */
87 	if (ret || !crash_size)
88 		return;
89 
90 	crash_size = PAGE_ALIGN(crash_size);
91 
92 	if (crash_base == 0) {
93 		/* Current arm64 boot protocol requires 2MB alignment */
94 		crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
95 				crash_size, SZ_2M);
96 		if (crash_base == 0) {
97 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
98 				crash_size);
99 			return;
100 		}
101 	} else {
102 		/* User specifies base address explicitly. */
103 		if (!memblock_is_region_memory(crash_base, crash_size)) {
104 			pr_warn("cannot reserve crashkernel: region is not memory\n");
105 			return;
106 		}
107 
108 		if (memblock_is_region_reserved(crash_base, crash_size)) {
109 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
110 			return;
111 		}
112 
113 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
114 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
115 			return;
116 		}
117 	}
118 	memblock_reserve(crash_base, crash_size);
119 
120 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
121 		crash_base, crash_base + crash_size, crash_size >> 20);
122 
123 	crashk_res.start = crash_base;
124 	crashk_res.end = crash_base + crash_size - 1;
125 }
126 #else
127 static void __init reserve_crashkernel(void)
128 {
129 }
130 #endif /* CONFIG_KEXEC_CORE */
131 
132 #ifdef CONFIG_CRASH_DUMP
133 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
134 		const char *uname, int depth, void *data)
135 {
136 	const __be32 *reg;
137 	int len;
138 
139 	if (depth != 1 || strcmp(uname, "chosen") != 0)
140 		return 0;
141 
142 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
143 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
144 		return 1;
145 
146 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
147 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
148 
149 	return 1;
150 }
151 
152 /*
153  * reserve_elfcorehdr() - reserves memory for elf core header
154  *
155  * This function reserves the memory occupied by an elf core header
156  * described in the device tree. This region contains all the
157  * information about primary kernel's core image and is used by a dump
158  * capture kernel to access the system memory on primary kernel.
159  */
160 static void __init reserve_elfcorehdr(void)
161 {
162 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
163 
164 	if (!elfcorehdr_size)
165 		return;
166 
167 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
168 		pr_warn("elfcorehdr is overlapped\n");
169 		return;
170 	}
171 
172 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
173 
174 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
175 		elfcorehdr_size >> 10, elfcorehdr_addr);
176 }
177 #else
178 static void __init reserve_elfcorehdr(void)
179 {
180 }
181 #endif /* CONFIG_CRASH_DUMP */
182 
183 /*
184  * Return the maximum physical address for a zone with a given address size
185  * limit. It currently assumes that for memory starting above 4G, 32-bit
186  * devices will use a DMA offset.
187  */
188 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
189 {
190 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
191 	return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
192 }
193 
194 #ifdef CONFIG_NUMA
195 
196 static void __init zone_sizes_init(unsigned long min, unsigned long max)
197 {
198 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
199 
200 #ifdef CONFIG_ZONE_DMA
201 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
202 #endif
203 #ifdef CONFIG_ZONE_DMA32
204 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
205 #endif
206 	max_zone_pfns[ZONE_NORMAL] = max;
207 
208 	free_area_init_nodes(max_zone_pfns);
209 }
210 
211 #else
212 
213 static void __init zone_sizes_init(unsigned long min, unsigned long max)
214 {
215 	struct memblock_region *reg;
216 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
217 	unsigned long __maybe_unused max_dma, max_dma32;
218 
219 	memset(zone_size, 0, sizeof(zone_size));
220 
221 	max_dma = max_dma32 = min;
222 #ifdef CONFIG_ZONE_DMA
223 	max_dma = max_dma32 = PFN_DOWN(arm64_dma_phys_limit);
224 	zone_size[ZONE_DMA] = max_dma - min;
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 	max_dma32 = PFN_DOWN(arm64_dma32_phys_limit);
228 	zone_size[ZONE_DMA32] = max_dma32 - max_dma;
229 #endif
230 	zone_size[ZONE_NORMAL] = max - max_dma32;
231 
232 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
233 
234 	for_each_memblock(memory, reg) {
235 		unsigned long start = memblock_region_memory_base_pfn(reg);
236 		unsigned long end = memblock_region_memory_end_pfn(reg);
237 
238 #ifdef CONFIG_ZONE_DMA
239 		if (start >= min && start < max_dma) {
240 			unsigned long dma_end = min(end, max_dma);
241 			zhole_size[ZONE_DMA] -= dma_end - start;
242 			start = dma_end;
243 		}
244 #endif
245 #ifdef CONFIG_ZONE_DMA32
246 		if (start >= max_dma && start < max_dma32) {
247 			unsigned long dma32_end = min(end, max_dma32);
248 			zhole_size[ZONE_DMA32] -= dma32_end - start;
249 			start = dma32_end;
250 		}
251 #endif
252 		if (start >= max_dma32 && start < max) {
253 			unsigned long normal_end = min(end, max);
254 			zhole_size[ZONE_NORMAL] -= normal_end - start;
255 		}
256 	}
257 
258 	free_area_init_node(0, zone_size, min, zhole_size);
259 }
260 
261 #endif /* CONFIG_NUMA */
262 
263 int pfn_valid(unsigned long pfn)
264 {
265 	phys_addr_t addr = pfn << PAGE_SHIFT;
266 
267 	if ((addr >> PAGE_SHIFT) != pfn)
268 		return 0;
269 
270 #ifdef CONFIG_SPARSEMEM
271 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
272 		return 0;
273 
274 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
275 		return 0;
276 #endif
277 	return memblock_is_map_memory(addr);
278 }
279 EXPORT_SYMBOL(pfn_valid);
280 
281 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
282 
283 /*
284  * Limit the memory size that was specified via FDT.
285  */
286 static int __init early_mem(char *p)
287 {
288 	if (!p)
289 		return 1;
290 
291 	memory_limit = memparse(p, &p) & PAGE_MASK;
292 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
293 
294 	return 0;
295 }
296 early_param("mem", early_mem);
297 
298 static int __init early_init_dt_scan_usablemem(unsigned long node,
299 		const char *uname, int depth, void *data)
300 {
301 	struct memblock_region *usablemem = data;
302 	const __be32 *reg;
303 	int len;
304 
305 	if (depth != 1 || strcmp(uname, "chosen") != 0)
306 		return 0;
307 
308 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
309 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
310 		return 1;
311 
312 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
313 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
314 
315 	return 1;
316 }
317 
318 static void __init fdt_enforce_memory_region(void)
319 {
320 	struct memblock_region reg = {
321 		.size = 0,
322 	};
323 
324 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
325 
326 	if (reg.size)
327 		memblock_cap_memory_range(reg.base, reg.size);
328 }
329 
330 void __init arm64_memblock_init(void)
331 {
332 	const s64 linear_region_size = BIT(vabits_actual - 1);
333 
334 	/* Handle linux,usable-memory-range property */
335 	fdt_enforce_memory_region();
336 
337 	/* Remove memory above our supported physical address size */
338 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
339 
340 	/*
341 	 * Select a suitable value for the base of physical memory.
342 	 */
343 	memstart_addr = round_down(memblock_start_of_DRAM(),
344 				   ARM64_MEMSTART_ALIGN);
345 
346 	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
347 
348 	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
349 
350 	/*
351 	 * If we are running with a 52-bit kernel VA config on a system that
352 	 * does not support it, we have to offset our vmemmap and physvirt_offset
353 	 * s.t. we avoid the 52-bit portion of the direct linear map
354 	 */
355 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
356 		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
357 		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
358 	}
359 
360 	/*
361 	 * Remove the memory that we will not be able to cover with the
362 	 * linear mapping. Take care not to clip the kernel which may be
363 	 * high in memory.
364 	 */
365 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
366 			__pa_symbol(_end)), ULLONG_MAX);
367 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
368 		/* ensure that memstart_addr remains sufficiently aligned */
369 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
370 					 ARM64_MEMSTART_ALIGN);
371 		memblock_remove(0, memstart_addr);
372 	}
373 
374 	/*
375 	 * Apply the memory limit if it was set. Since the kernel may be loaded
376 	 * high up in memory, add back the kernel region that must be accessible
377 	 * via the linear mapping.
378 	 */
379 	if (memory_limit != PHYS_ADDR_MAX) {
380 		memblock_mem_limit_remove_map(memory_limit);
381 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
382 	}
383 
384 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
385 		/*
386 		 * Add back the memory we just removed if it results in the
387 		 * initrd to become inaccessible via the linear mapping.
388 		 * Otherwise, this is a no-op
389 		 */
390 		u64 base = phys_initrd_start & PAGE_MASK;
391 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
392 
393 		/*
394 		 * We can only add back the initrd memory if we don't end up
395 		 * with more memory than we can address via the linear mapping.
396 		 * It is up to the bootloader to position the kernel and the
397 		 * initrd reasonably close to each other (i.e., within 32 GB of
398 		 * each other) so that all granule/#levels combinations can
399 		 * always access both.
400 		 */
401 		if (WARN(base < memblock_start_of_DRAM() ||
402 			 base + size > memblock_start_of_DRAM() +
403 				       linear_region_size,
404 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
405 			phys_initrd_size = 0;
406 		} else {
407 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
408 			memblock_add(base, size);
409 			memblock_reserve(base, size);
410 		}
411 	}
412 
413 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
414 		extern u16 memstart_offset_seed;
415 		u64 range = linear_region_size -
416 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
417 
418 		/*
419 		 * If the size of the linear region exceeds, by a sufficient
420 		 * margin, the size of the region that the available physical
421 		 * memory spans, randomize the linear region as well.
422 		 */
423 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
424 			range /= ARM64_MEMSTART_ALIGN;
425 			memstart_addr -= ARM64_MEMSTART_ALIGN *
426 					 ((range * memstart_offset_seed) >> 16);
427 		}
428 	}
429 
430 	/*
431 	 * Register the kernel text, kernel data, initrd, and initial
432 	 * pagetables with memblock.
433 	 */
434 	memblock_reserve(__pa_symbol(_text), _end - _text);
435 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
436 		/* the generic initrd code expects virtual addresses */
437 		initrd_start = __phys_to_virt(phys_initrd_start);
438 		initrd_end = initrd_start + phys_initrd_size;
439 	}
440 
441 	early_init_fdt_scan_reserved_mem();
442 
443 	if (IS_ENABLED(CONFIG_ZONE_DMA)) {
444 		zone_dma_bits = ARM64_ZONE_DMA_BITS;
445 		arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
446 	}
447 
448 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
449 		arm64_dma32_phys_limit = max_zone_phys(32);
450 	else
451 		arm64_dma32_phys_limit = PHYS_MASK + 1;
452 
453 	reserve_crashkernel();
454 
455 	reserve_elfcorehdr();
456 
457 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
458 
459 	dma_contiguous_reserve(arm64_dma32_phys_limit);
460 }
461 
462 void __init bootmem_init(void)
463 {
464 	unsigned long min, max;
465 
466 	min = PFN_UP(memblock_start_of_DRAM());
467 	max = PFN_DOWN(memblock_end_of_DRAM());
468 
469 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
470 
471 	max_pfn = max_low_pfn = max;
472 	min_low_pfn = min;
473 
474 	arm64_numa_init();
475 	/*
476 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
477 	 * done after the fixed reservations.
478 	 */
479 	memblocks_present();
480 
481 	sparse_init();
482 	zone_sizes_init(min, max);
483 
484 	memblock_dump_all();
485 }
486 
487 #ifndef CONFIG_SPARSEMEM_VMEMMAP
488 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
489 {
490 	struct page *start_pg, *end_pg;
491 	unsigned long pg, pgend;
492 
493 	/*
494 	 * Convert start_pfn/end_pfn to a struct page pointer.
495 	 */
496 	start_pg = pfn_to_page(start_pfn - 1) + 1;
497 	end_pg = pfn_to_page(end_pfn - 1) + 1;
498 
499 	/*
500 	 * Convert to physical addresses, and round start upwards and end
501 	 * downwards.
502 	 */
503 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
504 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
505 
506 	/*
507 	 * If there are free pages between these, free the section of the
508 	 * memmap array.
509 	 */
510 	if (pg < pgend)
511 		memblock_free(pg, pgend - pg);
512 }
513 
514 /*
515  * The mem_map array can get very big. Free the unused area of the memory map.
516  */
517 static void __init free_unused_memmap(void)
518 {
519 	unsigned long start, prev_end = 0;
520 	struct memblock_region *reg;
521 
522 	for_each_memblock(memory, reg) {
523 		start = __phys_to_pfn(reg->base);
524 
525 #ifdef CONFIG_SPARSEMEM
526 		/*
527 		 * Take care not to free memmap entries that don't exist due
528 		 * to SPARSEMEM sections which aren't present.
529 		 */
530 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
531 #endif
532 		/*
533 		 * If we had a previous bank, and there is a space between the
534 		 * current bank and the previous, free it.
535 		 */
536 		if (prev_end && prev_end < start)
537 			free_memmap(prev_end, start);
538 
539 		/*
540 		 * Align up here since the VM subsystem insists that the
541 		 * memmap entries are valid from the bank end aligned to
542 		 * MAX_ORDER_NR_PAGES.
543 		 */
544 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
545 				 MAX_ORDER_NR_PAGES);
546 	}
547 
548 #ifdef CONFIG_SPARSEMEM
549 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
550 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
551 #endif
552 }
553 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
554 
555 /*
556  * mem_init() marks the free areas in the mem_map and tells us how much memory
557  * is free.  This is done after various parts of the system have claimed their
558  * memory after the kernel image.
559  */
560 void __init mem_init(void)
561 {
562 	if (swiotlb_force == SWIOTLB_FORCE ||
563 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
564 		swiotlb_init(1);
565 	else
566 		swiotlb_force = SWIOTLB_NO_FORCE;
567 
568 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
569 
570 #ifndef CONFIG_SPARSEMEM_VMEMMAP
571 	free_unused_memmap();
572 #endif
573 	/* this will put all unused low memory onto the freelists */
574 	memblock_free_all();
575 
576 	mem_init_print_info(NULL);
577 
578 	/*
579 	 * Check boundaries twice: Some fundamental inconsistencies can be
580 	 * detected at build time already.
581 	 */
582 #ifdef CONFIG_COMPAT
583 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
584 #endif
585 
586 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
587 		extern int sysctl_overcommit_memory;
588 		/*
589 		 * On a machine this small we won't get anywhere without
590 		 * overcommit, so turn it on by default.
591 		 */
592 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
593 	}
594 }
595 
596 void free_initmem(void)
597 {
598 	free_reserved_area(lm_alias(__init_begin),
599 			   lm_alias(__init_end),
600 			   POISON_FREE_INITMEM, "unused kernel");
601 	/*
602 	 * Unmap the __init region but leave the VM area in place. This
603 	 * prevents the region from being reused for kernel modules, which
604 	 * is not supported by kallsyms.
605 	 */
606 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
607 }
608 
609 /*
610  * Dump out memory limit information on panic.
611  */
612 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
613 {
614 	if (memory_limit != PHYS_ADDR_MAX) {
615 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
616 	} else {
617 		pr_emerg("Memory Limit: none\n");
618 	}
619 	return 0;
620 }
621 
622 static struct notifier_block mem_limit_notifier = {
623 	.notifier_call = dump_mem_limit,
624 };
625 
626 static int __init register_mem_limit_dumper(void)
627 {
628 	atomic_notifier_chain_register(&panic_notifier_list,
629 				       &mem_limit_notifier);
630 	return 0;
631 }
632 __initcall(register_mem_limit_dumper);
633