xref: /linux/arch/arm64/mm/init.c (revision 0b364cf53b20204e92bac7c6ebd1ee7d3ec62931)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/math.h>
20 #include <linux/memblock.h>
21 #include <linux/sort.h>
22 #include <linux/of.h>
23 #include <linux/of_fdt.h>
24 #include <linux/dma-direct.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 #include <linux/acpi_iort.h>
34 #include <linux/kmemleak.h>
35 #include <linux/execmem.h>
36 
37 #include <asm/boot.h>
38 #include <asm/fixmap.h>
39 #include <asm/kasan.h>
40 #include <asm/kernel-pgtable.h>
41 #include <asm/kvm_host.h>
42 #include <asm/memory.h>
43 #include <asm/numa.h>
44 #include <asm/sections.h>
45 #include <asm/setup.h>
46 #include <linux/sizes.h>
47 #include <asm/tlb.h>
48 #include <asm/alternative.h>
49 #include <asm/xen/swiotlb-xen.h>
50 
51 /*
52  * We need to be able to catch inadvertent references to memstart_addr
53  * that occur (potentially in generic code) before arm64_memblock_init()
54  * executes, which assigns it its actual value. So use a default value
55  * that cannot be mistaken for a real physical address.
56  */
57 s64 memstart_addr __ro_after_init = -1;
58 EXPORT_SYMBOL(memstart_addr);
59 
60 /*
61  * If the corresponding config options are enabled, we create both ZONE_DMA
62  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
63  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
64  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
65  * otherwise it is empty.
66  */
67 phys_addr_t __ro_after_init arm64_dma_phys_limit;
68 
69 /*
70  * To make optimal use of block mappings when laying out the linear
71  * mapping, round down the base of physical memory to a size that can
72  * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
73  * (64k granule), or a multiple that can be mapped using contiguous bits
74  * in the page tables: 32 * PMD_SIZE (16k granule)
75  */
76 #if defined(CONFIG_ARM64_4K_PAGES)
77 #define ARM64_MEMSTART_SHIFT		PUD_SHIFT
78 #elif defined(CONFIG_ARM64_16K_PAGES)
79 #define ARM64_MEMSTART_SHIFT		CONT_PMD_SHIFT
80 #else
81 #define ARM64_MEMSTART_SHIFT		PMD_SHIFT
82 #endif
83 
84 /*
85  * sparsemem vmemmap imposes an additional requirement on the alignment of
86  * memstart_addr, due to the fact that the base of the vmemmap region
87  * has a direct correspondence, and needs to appear sufficiently aligned
88  * in the virtual address space.
89  */
90 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
91 #define ARM64_MEMSTART_ALIGN	(1UL << SECTION_SIZE_BITS)
92 #else
93 #define ARM64_MEMSTART_ALIGN	(1UL << ARM64_MEMSTART_SHIFT)
94 #endif
95 
96 static void __init arch_reserve_crashkernel(void)
97 {
98 	unsigned long long low_size = 0;
99 	unsigned long long crash_base, crash_size;
100 	char *cmdline = boot_command_line;
101 	bool high = false;
102 	int ret;
103 
104 	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
105 		return;
106 
107 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
108 				&crash_size, &crash_base,
109 				&low_size, &high);
110 	if (ret)
111 		return;
112 
113 	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
114 				    low_size, high);
115 }
116 
117 static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
118 {
119 	/**
120 	 * Information we get from firmware (e.g. DT dma-ranges) describe DMA
121 	 * bus constraints. Devices using DMA might have their own limitations.
122 	 * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
123 	 * DMA zone on platforms that have RAM there.
124 	 */
125 	if (memblock_start_of_DRAM() < U32_MAX)
126 		zone_limit = min(zone_limit, U32_MAX);
127 
128 	return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
129 }
130 
131 static void __init zone_sizes_init(void)
132 {
133 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
134 	phys_addr_t __maybe_unused acpi_zone_dma_limit;
135 	phys_addr_t __maybe_unused dt_zone_dma_limit;
136 	phys_addr_t __maybe_unused dma32_phys_limit =
137 		max_zone_phys(DMA_BIT_MASK(32));
138 
139 #ifdef CONFIG_ZONE_DMA
140 	acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
141 	dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
142 	zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
143 	arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
144 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
145 #endif
146 #ifdef CONFIG_ZONE_DMA32
147 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
148 	if (!arm64_dma_phys_limit)
149 		arm64_dma_phys_limit = dma32_phys_limit;
150 #endif
151 	if (!arm64_dma_phys_limit)
152 		arm64_dma_phys_limit = PHYS_MASK + 1;
153 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
154 
155 	free_area_init(max_zone_pfns);
156 }
157 
158 int pfn_is_map_memory(unsigned long pfn)
159 {
160 	phys_addr_t addr = PFN_PHYS(pfn);
161 
162 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
163 	if (PHYS_PFN(addr) != pfn)
164 		return 0;
165 
166 	return memblock_is_map_memory(addr);
167 }
168 EXPORT_SYMBOL(pfn_is_map_memory);
169 
170 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
171 
172 /*
173  * Limit the memory size that was specified via FDT.
174  */
175 static int __init early_mem(char *p)
176 {
177 	if (!p)
178 		return 1;
179 
180 	memory_limit = memparse(p, &p) & PAGE_MASK;
181 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
182 
183 	return 0;
184 }
185 early_param("mem", early_mem);
186 
187 void __init arm64_memblock_init(void)
188 {
189 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
190 
191 	/*
192 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
193 	 * be limited in their ability to support a linear map that exceeds 51
194 	 * bits of VA space, depending on the placement of the ID map. Given
195 	 * that the placement of the ID map may be randomized, let's simply
196 	 * limit the kernel's linear map to 51 bits as well if we detect this
197 	 * configuration.
198 	 */
199 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
200 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
201 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
202 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
203 	}
204 
205 	/* Remove memory above our supported physical address size */
206 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
207 
208 	/*
209 	 * Select a suitable value for the base of physical memory.
210 	 */
211 	memstart_addr = round_down(memblock_start_of_DRAM(),
212 				   ARM64_MEMSTART_ALIGN);
213 
214 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
215 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
216 
217 	/*
218 	 * Remove the memory that we will not be able to cover with the
219 	 * linear mapping. Take care not to clip the kernel which may be
220 	 * high in memory.
221 	 */
222 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
223 			__pa_symbol(_end)), ULLONG_MAX);
224 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
225 		/* ensure that memstart_addr remains sufficiently aligned */
226 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
227 					 ARM64_MEMSTART_ALIGN);
228 		memblock_remove(0, memstart_addr);
229 	}
230 
231 	/*
232 	 * If we are running with a 52-bit kernel VA config on a system that
233 	 * does not support it, we have to place the available physical
234 	 * memory in the 48-bit addressable part of the linear region, i.e.,
235 	 * we have to move it upward. Since memstart_addr represents the
236 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
237 	 */
238 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
239 		memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
240 
241 	/*
242 	 * Apply the memory limit if it was set. Since the kernel may be loaded
243 	 * high up in memory, add back the kernel region that must be accessible
244 	 * via the linear mapping.
245 	 */
246 	if (memory_limit != PHYS_ADDR_MAX) {
247 		memblock_mem_limit_remove_map(memory_limit);
248 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
249 	}
250 
251 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
252 		/*
253 		 * Add back the memory we just removed if it results in the
254 		 * initrd to become inaccessible via the linear mapping.
255 		 * Otherwise, this is a no-op
256 		 */
257 		u64 base = phys_initrd_start & PAGE_MASK;
258 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
259 
260 		/*
261 		 * We can only add back the initrd memory if we don't end up
262 		 * with more memory than we can address via the linear mapping.
263 		 * It is up to the bootloader to position the kernel and the
264 		 * initrd reasonably close to each other (i.e., within 32 GB of
265 		 * each other) so that all granule/#levels combinations can
266 		 * always access both.
267 		 */
268 		if (WARN(base < memblock_start_of_DRAM() ||
269 			 base + size > memblock_start_of_DRAM() +
270 				       linear_region_size,
271 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
272 			phys_initrd_size = 0;
273 		} else {
274 			memblock_add(base, size);
275 			memblock_clear_nomap(base, size);
276 			memblock_reserve(base, size);
277 		}
278 	}
279 
280 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
281 		extern u16 memstart_offset_seed;
282 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
283 		int parange = cpuid_feature_extract_unsigned_field(
284 					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
285 		s64 range = linear_region_size -
286 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
287 
288 		/*
289 		 * If the size of the linear region exceeds, by a sufficient
290 		 * margin, the size of the region that the physical memory can
291 		 * span, randomize the linear region as well.
292 		 */
293 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
294 			range /= ARM64_MEMSTART_ALIGN;
295 			memstart_addr -= ARM64_MEMSTART_ALIGN *
296 					 ((range * memstart_offset_seed) >> 16);
297 		}
298 	}
299 
300 	/*
301 	 * Register the kernel text, kernel data, initrd, and initial
302 	 * pagetables with memblock.
303 	 */
304 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
305 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
306 		/* the generic initrd code expects virtual addresses */
307 		initrd_start = __phys_to_virt(phys_initrd_start);
308 		initrd_end = initrd_start + phys_initrd_size;
309 	}
310 
311 	early_init_fdt_scan_reserved_mem();
312 
313 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
314 }
315 
316 void __init bootmem_init(void)
317 {
318 	unsigned long min, max;
319 
320 	min = PFN_UP(memblock_start_of_DRAM());
321 	max = PFN_DOWN(memblock_end_of_DRAM());
322 
323 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
324 
325 	max_pfn = max_low_pfn = max;
326 	min_low_pfn = min;
327 
328 	arch_numa_init();
329 
330 	/*
331 	 * must be done after arch_numa_init() which calls numa_init() to
332 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
333 	 * while allocating required CMA size across online nodes.
334 	 */
335 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
336 	arm64_hugetlb_cma_reserve();
337 #endif
338 
339 	kvm_hyp_reserve();
340 
341 	/*
342 	 * sparse_init() tries to allocate memory from memblock, so must be
343 	 * done after the fixed reservations
344 	 */
345 	sparse_init();
346 	zone_sizes_init();
347 
348 	/*
349 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
350 	 */
351 	dma_contiguous_reserve(arm64_dma_phys_limit);
352 
353 	/*
354 	 * request_standard_resources() depends on crashkernel's memory being
355 	 * reserved, so do it here.
356 	 */
357 	arch_reserve_crashkernel();
358 
359 	memblock_dump_all();
360 }
361 
362 /*
363  * mem_init() marks the free areas in the mem_map and tells us how much memory
364  * is free.  This is done after various parts of the system have claimed their
365  * memory after the kernel image.
366  */
367 void __init mem_init(void)
368 {
369 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
370 
371 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
372 		/*
373 		 * If no bouncing needed for ZONE_DMA, reduce the swiotlb
374 		 * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
375 		 */
376 		unsigned long size =
377 			DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
378 		swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
379 		swiotlb = true;
380 	}
381 
382 	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
383 
384 	/* this will put all unused low memory onto the freelists */
385 	memblock_free_all();
386 
387 	/*
388 	 * Check boundaries twice: Some fundamental inconsistencies can be
389 	 * detected at build time already.
390 	 */
391 #ifdef CONFIG_COMPAT
392 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
393 #endif
394 
395 	/*
396 	 * Selected page table levels should match when derived from
397 	 * scratch using the virtual address range and page size.
398 	 */
399 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
400 		     CONFIG_PGTABLE_LEVELS);
401 
402 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
403 		extern int sysctl_overcommit_memory;
404 		/*
405 		 * On a machine this small we won't get anywhere without
406 		 * overcommit, so turn it on by default.
407 		 */
408 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
409 	}
410 }
411 
412 void free_initmem(void)
413 {
414 	void *lm_init_begin = lm_alias(__init_begin);
415 	void *lm_init_end = lm_alias(__init_end);
416 
417 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
418 	WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
419 
420 	/* Delete __init region from memblock.reserved. */
421 	memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
422 
423 	free_reserved_area(lm_init_begin, lm_init_end,
424 			   POISON_FREE_INITMEM, "unused kernel");
425 	/*
426 	 * Unmap the __init region but leave the VM area in place. This
427 	 * prevents the region from being reused for kernel modules, which
428 	 * is not supported by kallsyms.
429 	 */
430 	vunmap_range((u64)__init_begin, (u64)__init_end);
431 }
432 
433 void dump_mem_limit(void)
434 {
435 	if (memory_limit != PHYS_ADDR_MAX) {
436 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
437 	} else {
438 		pr_emerg("Memory Limit: none\n");
439 	}
440 }
441 
442 #ifdef CONFIG_EXECMEM
443 static u64 module_direct_base __ro_after_init = 0;
444 static u64 module_plt_base __ro_after_init = 0;
445 
446 /*
447  * Choose a random page-aligned base address for a window of 'size' bytes which
448  * entirely contains the interval [start, end - 1].
449  */
450 static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
451 {
452 	u64 max_pgoff, pgoff;
453 
454 	if ((end - start) >= size)
455 		return 0;
456 
457 	max_pgoff = (size - (end - start)) / PAGE_SIZE;
458 	pgoff = get_random_u32_inclusive(0, max_pgoff);
459 
460 	return start - pgoff * PAGE_SIZE;
461 }
462 
463 /*
464  * Modules may directly reference data and text anywhere within the kernel
465  * image and other modules. References using PREL32 relocations have a +/-2G
466  * range, and so we need to ensure that the entire kernel image and all modules
467  * fall within a 2G window such that these are always within range.
468  *
469  * Modules may directly branch to functions and code within the kernel text,
470  * and to functions and code within other modules. These branches will use
471  * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
472  * that the entire kernel text and all module text falls within a 128M window
473  * such that these are always within range. With PLTs, we can expand this to a
474  * 2G window.
475  *
476  * We chose the 128M region to surround the entire kernel image (rather than
477  * just the text) as using the same bounds for the 128M and 2G regions ensures
478  * by construction that we never select a 128M region that is not a subset of
479  * the 2G region. For very large and unusual kernel configurations this means
480  * we may fall back to PLTs where they could have been avoided, but this keeps
481  * the logic significantly simpler.
482  */
483 static int __init module_init_limits(void)
484 {
485 	u64 kernel_end = (u64)_end;
486 	u64 kernel_start = (u64)_text;
487 	u64 kernel_size = kernel_end - kernel_start;
488 
489 	/*
490 	 * The default modules region is placed immediately below the kernel
491 	 * image, and is large enough to use the full 2G relocation range.
492 	 */
493 	BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
494 	BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
495 
496 	if (!kaslr_enabled()) {
497 		if (kernel_size < SZ_128M)
498 			module_direct_base = kernel_end - SZ_128M;
499 		if (kernel_size < SZ_2G)
500 			module_plt_base = kernel_end - SZ_2G;
501 	} else {
502 		u64 min = kernel_start;
503 		u64 max = kernel_end;
504 
505 		if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
506 			pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
507 		} else {
508 			module_direct_base = random_bounding_box(SZ_128M, min, max);
509 			if (module_direct_base) {
510 				min = module_direct_base;
511 				max = module_direct_base + SZ_128M;
512 			}
513 		}
514 
515 		module_plt_base = random_bounding_box(SZ_2G, min, max);
516 	}
517 
518 	pr_info("%llu pages in range for non-PLT usage",
519 		module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
520 	pr_info("%llu pages in range for PLT usage",
521 		module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
522 
523 	return 0;
524 }
525 
526 static struct execmem_info execmem_info __ro_after_init;
527 
528 struct execmem_info __init *execmem_arch_setup(void)
529 {
530 	unsigned long fallback_start = 0, fallback_end = 0;
531 	unsigned long start = 0, end = 0;
532 
533 	module_init_limits();
534 
535 	/*
536 	 * Where possible, prefer to allocate within direct branch range of the
537 	 * kernel such that no PLTs are necessary.
538 	 */
539 	if (module_direct_base) {
540 		start = module_direct_base;
541 		end = module_direct_base + SZ_128M;
542 
543 		if (module_plt_base) {
544 			fallback_start = module_plt_base;
545 			fallback_end = module_plt_base + SZ_2G;
546 		}
547 	} else if (module_plt_base) {
548 		start = module_plt_base;
549 		end = module_plt_base + SZ_2G;
550 	}
551 
552 	execmem_info = (struct execmem_info){
553 		.ranges = {
554 			[EXECMEM_DEFAULT] = {
555 				.start	= start,
556 				.end	= end,
557 				.pgprot	= PAGE_KERNEL,
558 				.alignment = 1,
559 				.fallback_start	= fallback_start,
560 				.fallback_end	= fallback_end,
561 			},
562 			[EXECMEM_KPROBES] = {
563 				.start	= VMALLOC_START,
564 				.end	= VMALLOC_END,
565 				.pgprot	= PAGE_KERNEL_ROX,
566 				.alignment = 1,
567 			},
568 			[EXECMEM_BPF] = {
569 				.start	= VMALLOC_START,
570 				.end	= VMALLOC_END,
571 				.pgprot	= PAGE_KERNEL,
572 				.alignment = 1,
573 			},
574 		},
575 	};
576 
577 	return &execmem_info;
578 }
579 #endif /* CONFIG_EXECMEM */
580