xref: /linux/arch/arm64/mm/fault.c (revision f49f4ab95c301dbccad0efe85296d908b8ae7ad4)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched.h>
30 #include <linux/highmem.h>
31 #include <linux/perf_event.h>
32 
33 #include <asm/exception.h>
34 #include <asm/debug-monitors.h>
35 #include <asm/system_misc.h>
36 #include <asm/pgtable.h>
37 #include <asm/tlbflush.h>
38 
39 /*
40  * Dump out the page tables associated with 'addr' in mm 'mm'.
41  */
42 void show_pte(struct mm_struct *mm, unsigned long addr)
43 {
44 	pgd_t *pgd;
45 
46 	if (!mm)
47 		mm = &init_mm;
48 
49 	pr_alert("pgd = %p\n", mm->pgd);
50 	pgd = pgd_offset(mm, addr);
51 	pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
52 
53 	do {
54 		pud_t *pud;
55 		pmd_t *pmd;
56 		pte_t *pte;
57 
58 		if (pgd_none_or_clear_bad(pgd))
59 			break;
60 
61 		pud = pud_offset(pgd, addr);
62 		if (pud_none_or_clear_bad(pud))
63 			break;
64 
65 		pmd = pmd_offset(pud, addr);
66 		printk(", *pmd=%016llx", pmd_val(*pmd));
67 		if (pmd_none_or_clear_bad(pmd))
68 			break;
69 
70 		pte = pte_offset_map(pmd, addr);
71 		printk(", *pte=%016llx", pte_val(*pte));
72 		pte_unmap(pte);
73 	} while(0);
74 
75 	printk("\n");
76 }
77 
78 /*
79  * The kernel tried to access some page that wasn't present.
80  */
81 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
82 			      unsigned int esr, struct pt_regs *regs)
83 {
84 	/*
85 	 * Are we prepared to handle this kernel fault?
86 	 */
87 	if (fixup_exception(regs))
88 		return;
89 
90 	/*
91 	 * No handler, we'll have to terminate things with extreme prejudice.
92 	 */
93 	bust_spinlocks(1);
94 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
95 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
96 		 "paging request", addr);
97 
98 	show_pte(mm, addr);
99 	die("Oops", regs, esr);
100 	bust_spinlocks(0);
101 	do_exit(SIGKILL);
102 }
103 
104 /*
105  * Something tried to access memory that isn't in our memory map. User mode
106  * accesses just cause a SIGSEGV
107  */
108 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
109 			    unsigned int esr, unsigned int sig, int code,
110 			    struct pt_regs *regs)
111 {
112 	struct siginfo si;
113 
114 	if (show_unhandled_signals) {
115 		pr_info("%s[%d]: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
116 			tsk->comm, task_pid_nr(tsk), sig, addr, esr);
117 		show_pte(tsk->mm, addr);
118 		show_regs(regs);
119 	}
120 
121 	tsk->thread.fault_address = addr;
122 	si.si_signo = sig;
123 	si.si_errno = 0;
124 	si.si_code = code;
125 	si.si_addr = (void __user *)addr;
126 	force_sig_info(sig, &si, tsk);
127 }
128 
129 void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
130 {
131 	struct task_struct *tsk = current;
132 	struct mm_struct *mm = tsk->active_mm;
133 
134 	/*
135 	 * If we are in kernel mode at this point, we have no context to
136 	 * handle this fault with.
137 	 */
138 	if (user_mode(regs))
139 		__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
140 	else
141 		__do_kernel_fault(mm, addr, esr, regs);
142 }
143 
144 #define VM_FAULT_BADMAP		0x010000
145 #define VM_FAULT_BADACCESS	0x020000
146 
147 #define ESR_WRITE		(1 << 6)
148 #define ESR_LNX_EXEC		(1 << 24)
149 
150 /*
151  * Check that the permissions on the VMA allow for the fault which occurred.
152  * If we encountered a write fault, we must have write permission, otherwise
153  * we allow any permission.
154  */
155 static inline bool access_error(unsigned int esr, struct vm_area_struct *vma)
156 {
157 	unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
158 
159 	if (esr & ESR_WRITE)
160 		mask = VM_WRITE;
161 	if (esr & ESR_LNX_EXEC)
162 		mask = VM_EXEC;
163 
164 	return vma->vm_flags & mask ? false : true;
165 }
166 
167 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
168 			   unsigned int esr, unsigned int flags,
169 			   struct task_struct *tsk)
170 {
171 	struct vm_area_struct *vma;
172 	int fault;
173 
174 	vma = find_vma(mm, addr);
175 	fault = VM_FAULT_BADMAP;
176 	if (unlikely(!vma))
177 		goto out;
178 	if (unlikely(vma->vm_start > addr))
179 		goto check_stack;
180 
181 	/*
182 	 * Ok, we have a good vm_area for this memory access, so we can handle
183 	 * it.
184 	 */
185 good_area:
186 	if (access_error(esr, vma)) {
187 		fault = VM_FAULT_BADACCESS;
188 		goto out;
189 	}
190 
191 	return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
192 
193 check_stack:
194 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
195 		goto good_area;
196 out:
197 	return fault;
198 }
199 
200 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
201 				   struct pt_regs *regs)
202 {
203 	struct task_struct *tsk;
204 	struct mm_struct *mm;
205 	int fault, sig, code;
206 	int write = esr & ESR_WRITE;
207 	unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
208 		(write ? FAULT_FLAG_WRITE : 0);
209 
210 	tsk = current;
211 	mm  = tsk->mm;
212 
213 	/* Enable interrupts if they were enabled in the parent context. */
214 	if (interrupts_enabled(regs))
215 		local_irq_enable();
216 
217 	/*
218 	 * If we're in an interrupt or have no user context, we must not take
219 	 * the fault.
220 	 */
221 	if (in_atomic() || !mm)
222 		goto no_context;
223 
224 	/*
225 	 * As per x86, we may deadlock here. However, since the kernel only
226 	 * validly references user space from well defined areas of the code,
227 	 * we can bug out early if this is from code which shouldn't.
228 	 */
229 	if (!down_read_trylock(&mm->mmap_sem)) {
230 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
231 			goto no_context;
232 retry:
233 		down_read(&mm->mmap_sem);
234 	} else {
235 		/*
236 		 * The above down_read_trylock() might have succeeded in which
237 		 * case, we'll have missed the might_sleep() from down_read().
238 		 */
239 		might_sleep();
240 #ifdef CONFIG_DEBUG_VM
241 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
242 			goto no_context;
243 #endif
244 	}
245 
246 	fault = __do_page_fault(mm, addr, esr, flags, tsk);
247 
248 	/*
249 	 * If we need to retry but a fatal signal is pending, handle the
250 	 * signal first. We do not need to release the mmap_sem because it
251 	 * would already be released in __lock_page_or_retry in mm/filemap.c.
252 	 */
253 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
254 		return 0;
255 
256 	/*
257 	 * Major/minor page fault accounting is only done on the initial
258 	 * attempt. If we go through a retry, it is extremely likely that the
259 	 * page will be found in page cache at that point.
260 	 */
261 
262 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
263 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
264 		if (fault & VM_FAULT_MAJOR) {
265 			tsk->maj_flt++;
266 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
267 				      addr);
268 		} else {
269 			tsk->min_flt++;
270 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
271 				      addr);
272 		}
273 		if (fault & VM_FAULT_RETRY) {
274 			/*
275 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
276 			 * starvation.
277 			 */
278 			flags &= ~FAULT_FLAG_ALLOW_RETRY;
279 			goto retry;
280 		}
281 	}
282 
283 	up_read(&mm->mmap_sem);
284 
285 	/*
286 	 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
287 	 */
288 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
289 			      VM_FAULT_BADACCESS))))
290 		return 0;
291 
292 	if (fault & VM_FAULT_OOM) {
293 		/*
294 		 * We ran out of memory, call the OOM killer, and return to
295 		 * userspace (which will retry the fault, or kill us if we got
296 		 * oom-killed).
297 		 */
298 		pagefault_out_of_memory();
299 		return 0;
300 	}
301 
302 	/*
303 	 * If we are in kernel mode at this point, we have no context to
304 	 * handle this fault with.
305 	 */
306 	if (!user_mode(regs))
307 		goto no_context;
308 
309 	if (fault & VM_FAULT_SIGBUS) {
310 		/*
311 		 * We had some memory, but were unable to successfully fix up
312 		 * this page fault.
313 		 */
314 		sig = SIGBUS;
315 		code = BUS_ADRERR;
316 	} else {
317 		/*
318 		 * Something tried to access memory that isn't in our memory
319 		 * map.
320 		 */
321 		sig = SIGSEGV;
322 		code = fault == VM_FAULT_BADACCESS ?
323 			SEGV_ACCERR : SEGV_MAPERR;
324 	}
325 
326 	__do_user_fault(tsk, addr, esr, sig, code, regs);
327 	return 0;
328 
329 no_context:
330 	__do_kernel_fault(mm, addr, esr, regs);
331 	return 0;
332 }
333 
334 /*
335  * First Level Translation Fault Handler
336  *
337  * We enter here because the first level page table doesn't contain a valid
338  * entry for the address.
339  *
340  * If the address is in kernel space (>= TASK_SIZE), then we are probably
341  * faulting in the vmalloc() area.
342  *
343  * If the init_task's first level page tables contains the relevant entry, we
344  * copy the it to this task.  If not, we send the process a signal, fixup the
345  * exception, or oops the kernel.
346  *
347  * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
348  * or a critical region, and should only copy the information from the master
349  * page table, nothing more.
350  */
351 static int __kprobes do_translation_fault(unsigned long addr,
352 					  unsigned int esr,
353 					  struct pt_regs *regs)
354 {
355 	if (addr < TASK_SIZE)
356 		return do_page_fault(addr, esr, regs);
357 
358 	do_bad_area(addr, esr, regs);
359 	return 0;
360 }
361 
362 /*
363  * Some section permission faults need to be handled gracefully.  They can
364  * happen due to a __{get,put}_user during an oops.
365  */
366 static int do_sect_fault(unsigned long addr, unsigned int esr,
367 			 struct pt_regs *regs)
368 {
369 	do_bad_area(addr, esr, regs);
370 	return 0;
371 }
372 
373 /*
374  * This abort handler always returns "fault".
375  */
376 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
377 {
378 	return 1;
379 }
380 
381 static struct fault_info {
382 	int	(*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
383 	int	sig;
384 	int	code;
385 	const char *name;
386 } fault_info[] = {
387 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
388 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
389 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
390 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
391 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"input address range fault"	},
392 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
393 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
394 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
395 	{ do_bad,		SIGBUS,  0,		"reserved access flag fault"	},
396 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
397 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
398 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
399 	{ do_bad,		SIGBUS,  0,		"reserved permission fault"	},
400 	{ do_bad,		SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
401 	{ do_sect_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
402 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
403 	{ do_bad,		SIGBUS,  0,		"synchronous external abort"	},
404 	{ do_bad,		SIGBUS,  0,		"asynchronous external abort"	},
405 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
406 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
407 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
408 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
409 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
410 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
411 	{ do_bad,		SIGBUS,  0,		"synchronous parity error"	},
412 	{ do_bad,		SIGBUS,  0,		"asynchronous parity error"	},
413 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
414 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
415 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
416 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
417 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
418 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk" },
419 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
420 	{ do_bad,		SIGBUS,  BUS_ADRALN,	"alignment fault"		},
421 	{ do_bad,		SIGBUS,  0,		"debug event"			},
422 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
423 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
424 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
425 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
426 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
427 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
428 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
429 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
430 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
431 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
432 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
433 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
434 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
435 	{ do_bad,		SIGBUS,  0,		"unknown 48"			},
436 	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
437 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
438 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
439 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
440 	{ do_bad,		SIGBUS,  0,		"unknown 53"			},
441 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
442 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
443 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
444 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
445 	{ do_bad,		SIGBUS,  0,		"implementation fault (coprocessor abort)" },
446 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
447 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
448 	{ do_bad,		SIGBUS,  0,		"unknown 61"			},
449 	{ do_bad,		SIGBUS,  0,		"unknown 62"			},
450 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
451 };
452 
453 /*
454  * Dispatch a data abort to the relevant handler.
455  */
456 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
457 					 struct pt_regs *regs)
458 {
459 	const struct fault_info *inf = fault_info + (esr & 63);
460 	struct siginfo info;
461 
462 	if (!inf->fn(addr, esr, regs))
463 		return;
464 
465 	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
466 		 inf->name, esr, addr);
467 
468 	info.si_signo = inf->sig;
469 	info.si_errno = 0;
470 	info.si_code  = inf->code;
471 	info.si_addr  = (void __user *)addr;
472 	arm64_notify_die("", regs, &info, esr);
473 }
474 
475 /*
476  * Handle stack alignment exceptions.
477  */
478 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
479 					   unsigned int esr,
480 					   struct pt_regs *regs)
481 {
482 	struct siginfo info;
483 
484 	info.si_signo = SIGBUS;
485 	info.si_errno = 0;
486 	info.si_code  = BUS_ADRALN;
487 	info.si_addr  = (void __user *)addr;
488 	arm64_notify_die("", regs, &info, esr);
489 }
490 
491 static struct fault_info debug_fault_info[] = {
492 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
493 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
494 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
495 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
496 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
497 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
498 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
499 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
500 };
501 
502 void __init hook_debug_fault_code(int nr,
503 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
504 				  int sig, int code, const char *name)
505 {
506 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
507 
508 	debug_fault_info[nr].fn		= fn;
509 	debug_fault_info[nr].sig	= sig;
510 	debug_fault_info[nr].code	= code;
511 	debug_fault_info[nr].name	= name;
512 }
513 
514 asmlinkage int __exception do_debug_exception(unsigned long addr,
515 					      unsigned int esr,
516 					      struct pt_regs *regs)
517 {
518 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
519 	struct siginfo info;
520 
521 	if (!inf->fn(addr, esr, regs))
522 		return 1;
523 
524 	pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
525 		 inf->name, esr, addr);
526 
527 	info.si_signo = inf->sig;
528 	info.si_errno = 0;
529 	info.si_code  = inf->code;
530 	info.si_addr  = (void __user *)addr;
531 	arm64_notify_die("", regs, &info, esr);
532 
533 	return 0;
534 }
535