1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/kfence.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/hardirq.h> 17 #include <linux/init.h> 18 #include <linux/kasan.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/page-flags.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/highmem.h> 25 #include <linux/perf_event.h> 26 #include <linux/pkeys.h> 27 #include <linux/preempt.h> 28 #include <linux/hugetlb.h> 29 30 #include <asm/acpi.h> 31 #include <asm/bug.h> 32 #include <asm/cmpxchg.h> 33 #include <asm/cpufeature.h> 34 #include <asm/efi.h> 35 #include <asm/exception.h> 36 #include <asm/daifflags.h> 37 #include <asm/debug-monitors.h> 38 #include <asm/esr.h> 39 #include <asm/kprobes.h> 40 #include <asm/mte.h> 41 #include <asm/processor.h> 42 #include <asm/sysreg.h> 43 #include <asm/system_misc.h> 44 #include <asm/tlbflush.h> 45 #include <asm/traps.h> 46 47 struct fault_info { 48 int (*fn)(unsigned long far, unsigned long esr, 49 struct pt_regs *regs); 50 int sig; 51 int code; 52 const char *name; 53 }; 54 55 static const struct fault_info fault_info[]; 56 static struct fault_info debug_fault_info[]; 57 58 static inline const struct fault_info *esr_to_fault_info(unsigned long esr) 59 { 60 return fault_info + (esr & ESR_ELx_FSC); 61 } 62 63 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr) 64 { 65 return debug_fault_info + DBG_ESR_EVT(esr); 66 } 67 68 static void data_abort_decode(unsigned long esr) 69 { 70 unsigned long iss2 = ESR_ELx_ISS2(esr); 71 72 pr_alert("Data abort info:\n"); 73 74 if (esr & ESR_ELx_ISV) { 75 pr_alert(" Access size = %u byte(s)\n", 76 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 77 pr_alert(" SSE = %lu, SRT = %lu\n", 78 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 79 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 80 pr_alert(" SF = %lu, AR = %lu\n", 81 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 82 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 83 } else { 84 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n", 85 esr & ESR_ELx_ISS_MASK, iss2); 86 } 87 88 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n", 89 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 90 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT, 91 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT, 92 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT); 93 94 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n", 95 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT, 96 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT, 97 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT, 98 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT); 99 } 100 101 static void mem_abort_decode(unsigned long esr) 102 { 103 pr_alert("Mem abort info:\n"); 104 105 pr_alert(" ESR = 0x%016lx\n", esr); 106 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 107 ESR_ELx_EC(esr), esr_get_class_string(esr), 108 (esr & ESR_ELx_IL) ? 32 : 16); 109 pr_alert(" SET = %lu, FnV = %lu\n", 110 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 111 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 112 pr_alert(" EA = %lu, S1PTW = %lu\n", 113 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 114 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 115 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), 116 esr_to_fault_info(esr)->name); 117 118 if (esr_is_data_abort(esr)) 119 data_abort_decode(esr); 120 } 121 122 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 123 { 124 /* Either init_pg_dir or swapper_pg_dir */ 125 if (mm == &init_mm) 126 return __pa_symbol(mm->pgd); 127 128 return (unsigned long)virt_to_phys(mm->pgd); 129 } 130 131 /* 132 * Dump out the page tables associated with 'addr' in the currently active mm. 133 */ 134 static void show_pte(unsigned long addr) 135 { 136 struct mm_struct *mm; 137 pgd_t *pgdp; 138 pgd_t pgd; 139 140 if (is_ttbr0_addr(addr)) { 141 /* TTBR0 */ 142 mm = current->active_mm; 143 if (mm == &init_mm) { 144 pr_alert("[%016lx] user address but active_mm is swapper\n", 145 addr); 146 return; 147 } 148 } else if (is_ttbr1_addr(addr)) { 149 /* TTBR1 */ 150 mm = &init_mm; 151 } else { 152 pr_alert("[%016lx] address between user and kernel address ranges\n", 153 addr); 154 return; 155 } 156 157 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 158 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 159 vabits_actual, mm_to_pgd_phys(mm)); 160 pgdp = pgd_offset(mm, addr); 161 pgd = READ_ONCE(*pgdp); 162 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 163 164 do { 165 p4d_t *p4dp, p4d; 166 pud_t *pudp, pud; 167 pmd_t *pmdp, pmd; 168 pte_t *ptep, pte; 169 170 if (pgd_none(pgd) || pgd_bad(pgd)) 171 break; 172 173 p4dp = p4d_offset(pgdp, addr); 174 p4d = READ_ONCE(*p4dp); 175 pr_cont(", p4d=%016llx", p4d_val(p4d)); 176 if (p4d_none(p4d) || p4d_bad(p4d)) 177 break; 178 179 pudp = pud_offset(p4dp, addr); 180 pud = READ_ONCE(*pudp); 181 pr_cont(", pud=%016llx", pud_val(pud)); 182 if (pud_none(pud) || pud_bad(pud)) 183 break; 184 185 pmdp = pmd_offset(pudp, addr); 186 pmd = READ_ONCE(*pmdp); 187 pr_cont(", pmd=%016llx", pmd_val(pmd)); 188 if (pmd_none(pmd) || pmd_bad(pmd)) 189 break; 190 191 ptep = pte_offset_map(pmdp, addr); 192 if (!ptep) 193 break; 194 195 pte = __ptep_get(ptep); 196 pr_cont(", pte=%016llx", pte_val(pte)); 197 pte_unmap(ptep); 198 } while(0); 199 200 pr_cont("\n"); 201 } 202 203 /* 204 * This function sets the access flags (dirty, accessed), as well as write 205 * permission, and only to a more permissive setting. 206 * 207 * It needs to cope with hardware update of the accessed/dirty state by other 208 * agents in the system and can safely skip the __sync_icache_dcache() call as, 209 * like __set_ptes(), the PTE is never changed from no-exec to exec here. 210 * 211 * Returns whether or not the PTE actually changed. 212 */ 213 int __ptep_set_access_flags(struct vm_area_struct *vma, 214 unsigned long address, pte_t *ptep, 215 pte_t entry, int dirty) 216 { 217 pteval_t old_pteval, pteval; 218 pte_t pte = __ptep_get(ptep); 219 220 if (pte_same(pte, entry)) 221 return 0; 222 223 /* only preserve the access flags and write permission */ 224 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 225 226 /* 227 * Setting the flags must be done atomically to avoid racing with the 228 * hardware update of the access/dirty state. The PTE_RDONLY bit must 229 * be set to the most permissive (lowest value) of *ptep and entry 230 * (calculated as: a & b == ~(~a | ~b)). 231 */ 232 pte_val(entry) ^= PTE_RDONLY; 233 pteval = pte_val(pte); 234 do { 235 old_pteval = pteval; 236 pteval ^= PTE_RDONLY; 237 pteval |= pte_val(entry); 238 pteval ^= PTE_RDONLY; 239 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 240 } while (pteval != old_pteval); 241 242 /* Invalidate a stale read-only entry */ 243 if (dirty) 244 flush_tlb_page(vma, address); 245 return 1; 246 } 247 248 static bool is_el1_instruction_abort(unsigned long esr) 249 { 250 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 251 } 252 253 static bool is_el1_data_abort(unsigned long esr) 254 { 255 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; 256 } 257 258 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, 259 struct pt_regs *regs) 260 { 261 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) 262 return false; 263 264 if (esr_fsc_is_permission_fault(esr)) 265 return true; 266 267 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 268 return esr_fsc_is_translation_fault(esr) && 269 (regs->pstate & PSR_PAN_BIT); 270 271 return false; 272 } 273 274 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 275 unsigned long esr, 276 struct pt_regs *regs) 277 { 278 unsigned long flags; 279 u64 par, dfsc; 280 281 if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr)) 282 return false; 283 284 local_irq_save(flags); 285 asm volatile("at s1e1r, %0" :: "r" (addr)); 286 isb(); 287 par = read_sysreg_par(); 288 local_irq_restore(flags); 289 290 /* 291 * If we now have a valid translation, treat the translation fault as 292 * spurious. 293 */ 294 if (!(par & SYS_PAR_EL1_F)) 295 return true; 296 297 /* 298 * If we got a different type of fault from the AT instruction, 299 * treat the translation fault as spurious. 300 */ 301 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 302 return !esr_fsc_is_translation_fault(dfsc); 303 } 304 305 static void die_kernel_fault(const char *msg, unsigned long addr, 306 unsigned long esr, struct pt_regs *regs) 307 { 308 bust_spinlocks(1); 309 310 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 311 addr); 312 313 kasan_non_canonical_hook(addr); 314 315 mem_abort_decode(esr); 316 317 show_pte(addr); 318 die("Oops", regs, esr); 319 bust_spinlocks(0); 320 make_task_dead(SIGKILL); 321 } 322 323 #ifdef CONFIG_KASAN_HW_TAGS 324 static void report_tag_fault(unsigned long addr, unsigned long esr, 325 struct pt_regs *regs) 326 { 327 /* 328 * SAS bits aren't set for all faults reported in EL1, so we can't 329 * find out access size. 330 */ 331 bool is_write = !!(esr & ESR_ELx_WNR); 332 kasan_report((void *)addr, 0, is_write, regs->pc); 333 } 334 #else 335 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ 336 static inline void report_tag_fault(unsigned long addr, unsigned long esr, 337 struct pt_regs *regs) { } 338 #endif 339 340 static void do_tag_recovery(unsigned long addr, unsigned long esr, 341 struct pt_regs *regs) 342 { 343 344 report_tag_fault(addr, esr, regs); 345 346 /* 347 * Disable MTE Tag Checking on the local CPU for the current EL. 348 * It will be done lazily on the other CPUs when they will hit a 349 * tag fault. 350 */ 351 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 352 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); 353 isb(); 354 } 355 356 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) 357 { 358 unsigned long fsc = esr & ESR_ELx_FSC; 359 360 if (!is_el1_data_abort(esr)) 361 return false; 362 363 if (fsc == ESR_ELx_FSC_MTE) 364 return true; 365 366 return false; 367 } 368 369 static void __do_kernel_fault(unsigned long addr, unsigned long esr, 370 struct pt_regs *regs) 371 { 372 const char *msg; 373 374 /* 375 * Are we prepared to handle this kernel fault? 376 * We are almost certainly not prepared to handle instruction faults. 377 */ 378 if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr)) 379 return; 380 381 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 382 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 383 return; 384 385 if (is_el1_mte_sync_tag_check_fault(esr)) { 386 do_tag_recovery(addr, esr, regs); 387 388 return; 389 } 390 391 if (is_el1_permission_fault(addr, esr, regs)) { 392 if (esr & ESR_ELx_WNR) 393 msg = "write to read-only memory"; 394 else if (is_el1_instruction_abort(esr)) 395 msg = "execute from non-executable memory"; 396 else 397 msg = "read from unreadable memory"; 398 } else if (addr < PAGE_SIZE) { 399 msg = "NULL pointer dereference"; 400 } else { 401 if (esr_fsc_is_translation_fault(esr) && 402 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) 403 return; 404 405 msg = "paging request"; 406 } 407 408 if (efi_runtime_fixup_exception(regs, msg)) 409 return; 410 411 die_kernel_fault(msg, addr, esr, regs); 412 } 413 414 static void set_thread_esr(unsigned long address, unsigned long esr) 415 { 416 current->thread.fault_address = address; 417 418 /* 419 * If the faulting address is in the kernel, we must sanitize the ESR. 420 * From userspace's point of view, kernel-only mappings don't exist 421 * at all, so we report them as level 0 translation faults. 422 * (This is not quite the way that "no mapping there at all" behaves: 423 * an alignment fault not caused by the memory type would take 424 * precedence over translation fault for a real access to empty 425 * space. Unfortunately we can't easily distinguish "alignment fault 426 * not caused by memory type" from "alignment fault caused by memory 427 * type", so we ignore this wrinkle and just return the translation 428 * fault.) 429 */ 430 if (!is_ttbr0_addr(current->thread.fault_address)) { 431 switch (ESR_ELx_EC(esr)) { 432 case ESR_ELx_EC_DABT_LOW: 433 /* 434 * These bits provide only information about the 435 * faulting instruction, which userspace knows already. 436 * We explicitly clear bits which are architecturally 437 * RES0 in case they are given meanings in future. 438 * We always report the ESR as if the fault was taken 439 * to EL1 and so ISV and the bits in ISS[23:14] are 440 * clear. (In fact it always will be a fault to EL1.) 441 */ 442 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 443 ESR_ELx_CM | ESR_ELx_WNR; 444 esr |= ESR_ELx_FSC_FAULT; 445 break; 446 case ESR_ELx_EC_IABT_LOW: 447 /* 448 * Claim a level 0 translation fault. 449 * All other bits are architecturally RES0 for faults 450 * reported with that DFSC value, so we clear them. 451 */ 452 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 453 esr |= ESR_ELx_FSC_FAULT; 454 break; 455 default: 456 /* 457 * This should never happen (entry.S only brings us 458 * into this code for insn and data aborts from a lower 459 * exception level). Fail safe by not providing an ESR 460 * context record at all. 461 */ 462 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); 463 esr = 0; 464 break; 465 } 466 } 467 468 current->thread.fault_code = esr; 469 } 470 471 static void do_bad_area(unsigned long far, unsigned long esr, 472 struct pt_regs *regs) 473 { 474 unsigned long addr = untagged_addr(far); 475 476 /* 477 * If we are in kernel mode at this point, we have no context to 478 * handle this fault with. 479 */ 480 if (user_mode(regs)) { 481 const struct fault_info *inf = esr_to_fault_info(esr); 482 483 set_thread_esr(addr, esr); 484 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); 485 } else { 486 __do_kernel_fault(addr, esr, regs); 487 } 488 } 489 490 static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags) 491 { 492 if (!system_supports_poe()) 493 return false; 494 495 /* 496 * We do not check whether an Overlay fault has occurred because we 497 * cannot make a decision based solely on its value: 498 * 499 * - If Overlay is set, a fault did occur due to POE, but it may be 500 * spurious in those cases where we update POR_EL0 without ISB (e.g. 501 * on context-switch). We would then need to manually check POR_EL0 502 * against vma_pkey(vma), which is exactly what 503 * arch_vma_access_permitted() does. 504 * 505 * - If Overlay is not set, we may still need to report a pkey fault. 506 * This is the case if an access was made within a mapping but with no 507 * page mapped, and POR_EL0 forbids the access (according to 508 * vma_pkey()). Such access will result in a SIGSEGV regardless 509 * because core code checks arch_vma_access_permitted(), but in order 510 * to report the correct error code - SEGV_PKUERR - we must handle 511 * that case here. 512 */ 513 return !arch_vma_access_permitted(vma, 514 mm_flags & FAULT_FLAG_WRITE, 515 mm_flags & FAULT_FLAG_INSTRUCTION, 516 false); 517 } 518 519 static bool is_gcs_fault(unsigned long esr) 520 { 521 if (!esr_is_data_abort(esr)) 522 return false; 523 524 return ESR_ELx_ISS2(esr) & ESR_ELx_GCS; 525 } 526 527 static bool is_el0_instruction_abort(unsigned long esr) 528 { 529 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 530 } 531 532 /* 533 * Note: not valid for EL1 DC IVAC, but we never use that such that it 534 * should fault. EL0 cannot issue DC IVAC (undef). 535 */ 536 static bool is_write_abort(unsigned long esr) 537 { 538 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 539 } 540 541 static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr) 542 { 543 if (!system_supports_gcs()) 544 return false; 545 546 if (unlikely(is_gcs_fault(esr))) { 547 /* GCS accesses must be performed on a GCS page */ 548 if (!(vma->vm_flags & VM_SHADOW_STACK)) 549 return true; 550 } else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) { 551 /* Only GCS operations can write to a GCS page */ 552 return esr_is_data_abort(esr) && is_write_abort(esr); 553 } 554 555 return false; 556 } 557 558 static int __kprobes do_page_fault(unsigned long far, unsigned long esr, 559 struct pt_regs *regs) 560 { 561 const struct fault_info *inf; 562 struct mm_struct *mm = current->mm; 563 vm_fault_t fault; 564 unsigned long vm_flags; 565 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 566 unsigned long addr = untagged_addr(far); 567 struct vm_area_struct *vma; 568 int si_code; 569 int pkey = -1; 570 571 if (kprobe_page_fault(regs, esr)) 572 return 0; 573 574 /* 575 * If we're in an interrupt or have no user context, we must not take 576 * the fault. 577 */ 578 if (faulthandler_disabled() || !mm) 579 goto no_context; 580 581 if (user_mode(regs)) 582 mm_flags |= FAULT_FLAG_USER; 583 584 /* 585 * vm_flags tells us what bits we must have in vma->vm_flags 586 * for the fault to be benign, __do_page_fault() would check 587 * vma->vm_flags & vm_flags and returns an error if the 588 * intersection is empty 589 */ 590 if (is_el0_instruction_abort(esr)) { 591 /* It was exec fault */ 592 vm_flags = VM_EXEC; 593 mm_flags |= FAULT_FLAG_INSTRUCTION; 594 } else if (is_gcs_fault(esr)) { 595 /* 596 * The GCS permission on a page implies both read and 597 * write so always handle any GCS fault as a write fault, 598 * we need to trigger CoW even for GCS reads. 599 */ 600 vm_flags = VM_WRITE; 601 mm_flags |= FAULT_FLAG_WRITE; 602 } else if (is_write_abort(esr)) { 603 /* It was write fault */ 604 vm_flags = VM_WRITE; 605 mm_flags |= FAULT_FLAG_WRITE; 606 } else { 607 /* It was read fault */ 608 vm_flags = VM_READ; 609 /* Write implies read */ 610 vm_flags |= VM_WRITE; 611 /* If EPAN is absent then exec implies read */ 612 if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN)) 613 vm_flags |= VM_EXEC; 614 } 615 616 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 617 if (is_el1_instruction_abort(esr)) 618 die_kernel_fault("execution of user memory", 619 addr, esr, regs); 620 621 if (!insn_may_access_user(regs->pc, esr)) 622 die_kernel_fault("access to user memory outside uaccess routines", 623 addr, esr, regs); 624 } 625 626 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 627 628 if (!(mm_flags & FAULT_FLAG_USER)) 629 goto lock_mmap; 630 631 vma = lock_vma_under_rcu(mm, addr); 632 if (!vma) 633 goto lock_mmap; 634 635 if (is_invalid_gcs_access(vma, esr)) { 636 vma_end_read(vma); 637 fault = 0; 638 si_code = SEGV_ACCERR; 639 goto bad_area; 640 } 641 642 if (!(vma->vm_flags & vm_flags)) { 643 vma_end_read(vma); 644 fault = 0; 645 si_code = SEGV_ACCERR; 646 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 647 goto bad_area; 648 } 649 650 if (fault_from_pkey(vma, mm_flags)) { 651 pkey = vma_pkey(vma); 652 vma_end_read(vma); 653 fault = 0; 654 si_code = SEGV_PKUERR; 655 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 656 goto bad_area; 657 } 658 659 fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs); 660 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 661 vma_end_read(vma); 662 663 if (!(fault & VM_FAULT_RETRY)) { 664 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 665 goto done; 666 } 667 count_vm_vma_lock_event(VMA_LOCK_RETRY); 668 if (fault & VM_FAULT_MAJOR) 669 mm_flags |= FAULT_FLAG_TRIED; 670 671 /* Quick path to respond to signals */ 672 if (fault_signal_pending(fault, regs)) { 673 if (!user_mode(regs)) 674 goto no_context; 675 return 0; 676 } 677 lock_mmap: 678 679 retry: 680 vma = lock_mm_and_find_vma(mm, addr, regs); 681 if (unlikely(!vma)) { 682 fault = 0; 683 si_code = SEGV_MAPERR; 684 goto bad_area; 685 } 686 687 if (!(vma->vm_flags & vm_flags)) { 688 mmap_read_unlock(mm); 689 fault = 0; 690 si_code = SEGV_ACCERR; 691 goto bad_area; 692 } 693 694 if (fault_from_pkey(vma, mm_flags)) { 695 pkey = vma_pkey(vma); 696 mmap_read_unlock(mm); 697 fault = 0; 698 si_code = SEGV_PKUERR; 699 goto bad_area; 700 } 701 702 fault = handle_mm_fault(vma, addr, mm_flags, regs); 703 704 /* Quick path to respond to signals */ 705 if (fault_signal_pending(fault, regs)) { 706 if (!user_mode(regs)) 707 goto no_context; 708 return 0; 709 } 710 711 /* The fault is fully completed (including releasing mmap lock) */ 712 if (fault & VM_FAULT_COMPLETED) 713 return 0; 714 715 if (fault & VM_FAULT_RETRY) { 716 mm_flags |= FAULT_FLAG_TRIED; 717 goto retry; 718 } 719 mmap_read_unlock(mm); 720 721 done: 722 /* Handle the "normal" (no error) case first. */ 723 if (likely(!(fault & VM_FAULT_ERROR))) 724 return 0; 725 726 si_code = SEGV_MAPERR; 727 bad_area: 728 /* 729 * If we are in kernel mode at this point, we have no context to 730 * handle this fault with. 731 */ 732 if (!user_mode(regs)) 733 goto no_context; 734 735 if (fault & VM_FAULT_OOM) { 736 /* 737 * We ran out of memory, call the OOM killer, and return to 738 * userspace (which will retry the fault, or kill us if we got 739 * oom-killed). 740 */ 741 pagefault_out_of_memory(); 742 return 0; 743 } 744 745 inf = esr_to_fault_info(esr); 746 set_thread_esr(addr, esr); 747 if (fault & VM_FAULT_SIGBUS) { 748 /* 749 * We had some memory, but were unable to successfully fix up 750 * this page fault. 751 */ 752 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); 753 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 754 unsigned int lsb; 755 756 lsb = PAGE_SHIFT; 757 if (fault & VM_FAULT_HWPOISON_LARGE) 758 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 759 760 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); 761 } else { 762 /* 763 * The pkey value that we return to userspace can be different 764 * from the pkey that caused the fault. 765 * 766 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 767 * 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page 768 * 3. T1 : faults... 769 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 770 * 5. T1 : enters fault handler, takes mmap_lock, etc... 771 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 772 * faulted on a pte with its pkey=4. 773 */ 774 /* Something tried to access memory that out of memory map */ 775 if (si_code == SEGV_PKUERR) 776 arm64_force_sig_fault_pkey(far, inf->name, pkey); 777 else 778 arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name); 779 } 780 781 return 0; 782 783 no_context: 784 __do_kernel_fault(addr, esr, regs); 785 return 0; 786 } 787 788 static int __kprobes do_translation_fault(unsigned long far, 789 unsigned long esr, 790 struct pt_regs *regs) 791 { 792 unsigned long addr = untagged_addr(far); 793 794 if (is_ttbr0_addr(addr)) 795 return do_page_fault(far, esr, regs); 796 797 do_bad_area(far, esr, regs); 798 return 0; 799 } 800 801 static int do_alignment_fault(unsigned long far, unsigned long esr, 802 struct pt_regs *regs) 803 { 804 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) && 805 compat_user_mode(regs)) 806 return do_compat_alignment_fixup(far, regs); 807 do_bad_area(far, esr, regs); 808 return 0; 809 } 810 811 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) 812 { 813 return 1; /* "fault" */ 814 } 815 816 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) 817 { 818 const struct fault_info *inf; 819 unsigned long siaddr; 820 821 inf = esr_to_fault_info(esr); 822 823 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 824 /* 825 * APEI claimed this as a firmware-first notification. 826 * Some processing deferred to task_work before ret_to_user(). 827 */ 828 return 0; 829 } 830 831 if (esr & ESR_ELx_FnV) { 832 siaddr = 0; 833 } else { 834 /* 835 * The architecture specifies that the tag bits of FAR_EL1 are 836 * UNKNOWN for synchronous external aborts. Mask them out now 837 * so that userspace doesn't see them. 838 */ 839 siaddr = untagged_addr(far); 840 } 841 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 842 843 return 0; 844 } 845 846 static int do_tag_check_fault(unsigned long far, unsigned long esr, 847 struct pt_regs *regs) 848 { 849 /* 850 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN 851 * for tag check faults. Set them to corresponding bits in the untagged 852 * address. 853 */ 854 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); 855 do_bad_area(far, esr, regs); 856 return 0; 857 } 858 859 static const struct fault_info fault_info[] = { 860 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 861 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 862 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 863 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 864 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 865 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 866 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 867 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 868 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" }, 869 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 870 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 871 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 872 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" }, 873 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 874 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 875 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 876 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 877 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 878 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 879 { do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" }, 880 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 881 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 882 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 883 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 884 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 885 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 886 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 887 { do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 888 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 889 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 890 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 891 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 892 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 893 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 894 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 895 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 896 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 897 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 898 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 899 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 900 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 901 { do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" }, 902 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 903 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" }, 904 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 905 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 906 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 907 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 908 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 909 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 910 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 911 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 912 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 913 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 914 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 915 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 916 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 917 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 918 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 919 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 920 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 921 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 922 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 923 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 924 }; 925 926 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) 927 { 928 const struct fault_info *inf = esr_to_fault_info(esr); 929 unsigned long addr = untagged_addr(far); 930 931 if (!inf->fn(far, esr, regs)) 932 return; 933 934 if (!user_mode(regs)) 935 die_kernel_fault(inf->name, addr, esr, regs); 936 937 /* 938 * At this point we have an unrecognized fault type whose tag bits may 939 * have been defined as UNKNOWN. Therefore we only expose the untagged 940 * address to the signal handler. 941 */ 942 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); 943 } 944 NOKPROBE_SYMBOL(do_mem_abort); 945 946 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) 947 { 948 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, 949 addr, esr); 950 } 951 NOKPROBE_SYMBOL(do_sp_pc_abort); 952 953 /* 954 * __refdata because early_brk64 is __init, but the reference to it is 955 * clobbered at arch_initcall time. 956 * See traps.c and debug-monitors.c:debug_traps_init(). 957 */ 958 static struct fault_info __refdata debug_fault_info[] = { 959 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 960 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 961 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 962 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 963 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 964 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 965 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 966 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 967 }; 968 969 void __init hook_debug_fault_code(int nr, 970 int (*fn)(unsigned long, unsigned long, struct pt_regs *), 971 int sig, int code, const char *name) 972 { 973 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 974 975 debug_fault_info[nr].fn = fn; 976 debug_fault_info[nr].sig = sig; 977 debug_fault_info[nr].code = code; 978 debug_fault_info[nr].name = name; 979 } 980 981 /* 982 * In debug exception context, we explicitly disable preemption despite 983 * having interrupts disabled. 984 * This serves two purposes: it makes it much less likely that we would 985 * accidentally schedule in exception context and it will force a warning 986 * if we somehow manage to schedule by accident. 987 */ 988 static void debug_exception_enter(struct pt_regs *regs) 989 { 990 preempt_disable(); 991 992 /* This code is a bit fragile. Test it. */ 993 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 994 } 995 NOKPROBE_SYMBOL(debug_exception_enter); 996 997 static void debug_exception_exit(struct pt_regs *regs) 998 { 999 preempt_enable_no_resched(); 1000 } 1001 NOKPROBE_SYMBOL(debug_exception_exit); 1002 1003 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr, 1004 struct pt_regs *regs) 1005 { 1006 const struct fault_info *inf = esr_to_debug_fault_info(esr); 1007 unsigned long pc = instruction_pointer(regs); 1008 1009 debug_exception_enter(regs); 1010 1011 if (user_mode(regs) && !is_ttbr0_addr(pc)) 1012 arm64_apply_bp_hardening(); 1013 1014 if (inf->fn(addr_if_watchpoint, esr, regs)) { 1015 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); 1016 } 1017 1018 debug_exception_exit(regs); 1019 } 1020 NOKPROBE_SYMBOL(do_debug_exception); 1021 1022 /* 1023 * Used during anonymous page fault handling. 1024 */ 1025 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 1026 unsigned long vaddr) 1027 { 1028 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; 1029 1030 /* 1031 * If the page is mapped with PROT_MTE, initialise the tags at the 1032 * point of allocation and page zeroing as this is usually faster than 1033 * separate DC ZVA and STGM. 1034 */ 1035 if (vma->vm_flags & VM_MTE) 1036 flags |= __GFP_ZEROTAGS; 1037 1038 return vma_alloc_folio(flags, 0, vma, vaddr); 1039 } 1040 1041 void tag_clear_highpage(struct page *page) 1042 { 1043 /* Newly allocated page, shouldn't have been tagged yet */ 1044 WARN_ON_ONCE(!try_page_mte_tagging(page)); 1045 mte_zero_clear_page_tags(page_address(page)); 1046 set_page_mte_tagged(page); 1047 } 1048