1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/kfence.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/hardirq.h> 17 #include <linux/init.h> 18 #include <linux/kasan.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/page-flags.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/highmem.h> 25 #include <linux/perf_event.h> 26 #include <linux/pkeys.h> 27 #include <linux/preempt.h> 28 #include <linux/hugetlb.h> 29 30 #include <asm/acpi.h> 31 #include <asm/bug.h> 32 #include <asm/cmpxchg.h> 33 #include <asm/cpufeature.h> 34 #include <asm/efi.h> 35 #include <asm/exception.h> 36 #include <asm/daifflags.h> 37 #include <asm/debug-monitors.h> 38 #include <asm/esr.h> 39 #include <asm/kprobes.h> 40 #include <asm/mte.h> 41 #include <asm/processor.h> 42 #include <asm/sysreg.h> 43 #include <asm/system_misc.h> 44 #include <asm/tlbflush.h> 45 #include <asm/traps.h> 46 47 struct fault_info { 48 int (*fn)(unsigned long far, unsigned long esr, 49 struct pt_regs *regs); 50 int sig; 51 int code; 52 const char *name; 53 }; 54 55 static const struct fault_info fault_info[]; 56 57 static inline const struct fault_info *esr_to_fault_info(unsigned long esr) 58 { 59 return fault_info + (esr & ESR_ELx_FSC); 60 } 61 62 static void data_abort_decode(unsigned long esr) 63 { 64 unsigned long iss2 = ESR_ELx_ISS2(esr); 65 66 pr_alert("Data abort info:\n"); 67 68 if (esr & ESR_ELx_ISV) { 69 pr_alert(" Access size = %u byte(s)\n", 70 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 71 pr_alert(" SSE = %lu, SRT = %lu\n", 72 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 73 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 74 pr_alert(" SF = %lu, AR = %lu\n", 75 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 76 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 77 } else { 78 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n", 79 esr & ESR_ELx_ISS_MASK, iss2); 80 } 81 82 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n", 83 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 84 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT, 85 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT, 86 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT); 87 88 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n", 89 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT, 90 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT, 91 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT, 92 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT); 93 } 94 95 static void mem_abort_decode(unsigned long esr) 96 { 97 pr_alert("Mem abort info:\n"); 98 99 pr_alert(" ESR = 0x%016lx\n", esr); 100 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 101 ESR_ELx_EC(esr), esr_get_class_string(esr), 102 (esr & ESR_ELx_IL) ? 32 : 16); 103 pr_alert(" SET = %lu, FnV = %lu\n", 104 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 105 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 106 pr_alert(" EA = %lu, S1PTW = %lu\n", 107 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 108 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 109 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), 110 esr_to_fault_info(esr)->name); 111 112 if (esr_is_data_abort(esr)) 113 data_abort_decode(esr); 114 } 115 116 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 117 { 118 /* Either init_pg_dir or swapper_pg_dir */ 119 if (mm == &init_mm) 120 return __pa_symbol(mm->pgd); 121 122 return (unsigned long)virt_to_phys(mm->pgd); 123 } 124 125 /* 126 * Dump out the page tables associated with 'addr' in the currently active mm. 127 */ 128 static void show_pte(unsigned long addr) 129 { 130 struct mm_struct *mm; 131 pgd_t *pgdp; 132 pgd_t pgd; 133 134 if (is_ttbr0_addr(addr)) { 135 /* TTBR0 */ 136 mm = current->active_mm; 137 if (mm == &init_mm) { 138 pr_alert("[%016lx] user address but active_mm is swapper\n", 139 addr); 140 return; 141 } 142 } else if (is_ttbr1_addr(addr)) { 143 /* TTBR1 */ 144 mm = &init_mm; 145 } else { 146 pr_alert("[%016lx] address between user and kernel address ranges\n", 147 addr); 148 return; 149 } 150 151 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 152 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 153 vabits_actual, mm_to_pgd_phys(mm)); 154 pgdp = pgd_offset(mm, addr); 155 pgd = READ_ONCE(*pgdp); 156 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 157 158 do { 159 p4d_t *p4dp, p4d; 160 pud_t *pudp, pud; 161 pmd_t *pmdp, pmd; 162 pte_t *ptep, pte; 163 164 if (pgd_none(pgd) || pgd_bad(pgd)) 165 break; 166 167 p4dp = p4d_offset(pgdp, addr); 168 p4d = READ_ONCE(*p4dp); 169 pr_cont(", p4d=%016llx", p4d_val(p4d)); 170 if (p4d_none(p4d) || p4d_bad(p4d)) 171 break; 172 173 pudp = pud_offset(p4dp, addr); 174 pud = READ_ONCE(*pudp); 175 pr_cont(", pud=%016llx", pud_val(pud)); 176 if (pud_none(pud) || pud_bad(pud)) 177 break; 178 179 pmdp = pmd_offset(pudp, addr); 180 pmd = READ_ONCE(*pmdp); 181 pr_cont(", pmd=%016llx", pmd_val(pmd)); 182 if (pmd_none(pmd) || pmd_bad(pmd)) 183 break; 184 185 ptep = pte_offset_map(pmdp, addr); 186 if (!ptep) 187 break; 188 189 pte = __ptep_get(ptep); 190 pr_cont(", pte=%016llx", pte_val(pte)); 191 pte_unmap(ptep); 192 } while(0); 193 194 pr_cont("\n"); 195 } 196 197 /* 198 * This function sets the access flags (dirty, accessed), as well as write 199 * permission, and only to a more permissive setting. 200 * 201 * It needs to cope with hardware update of the accessed/dirty state by other 202 * agents in the system and can safely skip the __sync_icache_dcache() call as, 203 * like __set_ptes(), the PTE is never changed from no-exec to exec here. 204 * 205 * Returns whether or not the PTE actually changed. 206 */ 207 int __ptep_set_access_flags(struct vm_area_struct *vma, 208 unsigned long address, pte_t *ptep, 209 pte_t entry, int dirty) 210 { 211 pteval_t old_pteval, pteval; 212 pte_t pte = __ptep_get(ptep); 213 214 if (pte_same(pte, entry)) 215 return 0; 216 217 /* only preserve the access flags and write permission */ 218 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 219 220 /* 221 * Setting the flags must be done atomically to avoid racing with the 222 * hardware update of the access/dirty state. The PTE_RDONLY bit must 223 * be set to the most permissive (lowest value) of *ptep and entry 224 * (calculated as: a & b == ~(~a | ~b)). 225 */ 226 pte_val(entry) ^= PTE_RDONLY; 227 pteval = pte_val(pte); 228 do { 229 old_pteval = pteval; 230 pteval ^= PTE_RDONLY; 231 pteval |= pte_val(entry); 232 pteval ^= PTE_RDONLY; 233 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 234 } while (pteval != old_pteval); 235 236 /* 237 * Invalidate the local stale read-only entry. Remote stale entries 238 * may still cause page faults and be invalidated via 239 * flush_tlb_fix_spurious_fault(). 240 */ 241 if (dirty) 242 local_flush_tlb_page(vma, address); 243 return 1; 244 } 245 246 static bool is_el1_instruction_abort(unsigned long esr) 247 { 248 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 249 } 250 251 static bool is_el1_data_abort(unsigned long esr) 252 { 253 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; 254 } 255 256 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, 257 struct pt_regs *regs) 258 { 259 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) 260 return false; 261 262 if (esr_fsc_is_permission_fault(esr)) 263 return true; 264 265 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 266 return esr_fsc_is_translation_fault(esr) && 267 (regs->pstate & PSR_PAN_BIT); 268 269 return false; 270 } 271 272 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 273 unsigned long esr, 274 struct pt_regs *regs) 275 { 276 unsigned long flags; 277 u64 par, dfsc; 278 279 if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr)) 280 return false; 281 282 local_irq_save(flags); 283 asm volatile("at s1e1r, %0" :: "r" (addr)); 284 isb(); 285 par = read_sysreg_par(); 286 local_irq_restore(flags); 287 288 /* 289 * If we now have a valid translation, treat the translation fault as 290 * spurious. 291 */ 292 if (!(par & SYS_PAR_EL1_F)) 293 return true; 294 295 /* 296 * If we got a different type of fault from the AT instruction, 297 * treat the translation fault as spurious. 298 */ 299 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 300 return !esr_fsc_is_translation_fault(dfsc); 301 } 302 303 static void die_kernel_fault(const char *msg, unsigned long addr, 304 unsigned long esr, struct pt_regs *regs) 305 { 306 bust_spinlocks(1); 307 308 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 309 addr); 310 311 kasan_non_canonical_hook(addr); 312 313 mem_abort_decode(esr); 314 315 show_pte(addr); 316 die("Oops", regs, esr); 317 bust_spinlocks(0); 318 make_task_dead(SIGKILL); 319 } 320 321 #ifdef CONFIG_KASAN_HW_TAGS 322 static void report_tag_fault(unsigned long addr, unsigned long esr, 323 struct pt_regs *regs) 324 { 325 /* 326 * SAS bits aren't set for all faults reported in EL1, so we can't 327 * find out access size. 328 */ 329 bool is_write = !!(esr & ESR_ELx_WNR); 330 kasan_report((void *)addr, 0, is_write, regs->pc); 331 } 332 #else 333 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ 334 static inline void report_tag_fault(unsigned long addr, unsigned long esr, 335 struct pt_regs *regs) { } 336 #endif 337 338 static void do_tag_recovery(unsigned long addr, unsigned long esr, 339 struct pt_regs *regs) 340 { 341 342 report_tag_fault(addr, esr, regs); 343 344 /* 345 * Disable MTE Tag Checking on the local CPU for the current EL. 346 * It will be done lazily on the other CPUs when they will hit a 347 * tag fault. 348 */ 349 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 350 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); 351 isb(); 352 } 353 354 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) 355 { 356 unsigned long fsc = esr & ESR_ELx_FSC; 357 358 if (!is_el1_data_abort(esr)) 359 return false; 360 361 if (fsc == ESR_ELx_FSC_MTE) 362 return true; 363 364 return false; 365 } 366 367 static void __do_kernel_fault(unsigned long addr, unsigned long esr, 368 struct pt_regs *regs) 369 { 370 const char *msg; 371 372 /* 373 * Are we prepared to handle this kernel fault? 374 * We are almost certainly not prepared to handle instruction faults. 375 */ 376 if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr)) 377 return; 378 379 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 380 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 381 return; 382 383 if (is_el1_mte_sync_tag_check_fault(esr)) { 384 do_tag_recovery(addr, esr, regs); 385 386 return; 387 } 388 389 if (is_el1_permission_fault(addr, esr, regs)) { 390 if (esr & ESR_ELx_WNR) 391 msg = "write to read-only memory"; 392 else if (is_el1_instruction_abort(esr)) 393 msg = "execute from non-executable memory"; 394 else 395 msg = "read from unreadable memory"; 396 } else if (addr < PAGE_SIZE) { 397 msg = "NULL pointer dereference"; 398 } else { 399 if (esr_fsc_is_translation_fault(esr) && 400 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) 401 return; 402 403 msg = "paging request"; 404 } 405 406 if (efi_runtime_fixup_exception(regs, msg)) 407 return; 408 409 die_kernel_fault(msg, addr, esr, regs); 410 } 411 412 static void set_thread_esr(unsigned long address, unsigned long esr) 413 { 414 current->thread.fault_address = address; 415 416 /* 417 * If the faulting address is in the kernel, we must sanitize the ESR. 418 * From userspace's point of view, kernel-only mappings don't exist 419 * at all, so we report them as level 0 translation faults. 420 * (This is not quite the way that "no mapping there at all" behaves: 421 * an alignment fault not caused by the memory type would take 422 * precedence over translation fault for a real access to empty 423 * space. Unfortunately we can't easily distinguish "alignment fault 424 * not caused by memory type" from "alignment fault caused by memory 425 * type", so we ignore this wrinkle and just return the translation 426 * fault.) 427 */ 428 if (!is_ttbr0_addr(current->thread.fault_address)) { 429 switch (ESR_ELx_EC(esr)) { 430 case ESR_ELx_EC_DABT_LOW: 431 /* 432 * These bits provide only information about the 433 * faulting instruction, which userspace knows already. 434 * We explicitly clear bits which are architecturally 435 * RES0 in case they are given meanings in future. 436 * We always report the ESR as if the fault was taken 437 * to EL1 and so ISV and the bits in ISS[23:14] are 438 * clear. (In fact it always will be a fault to EL1.) 439 */ 440 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 441 ESR_ELx_CM | ESR_ELx_WNR; 442 esr |= ESR_ELx_FSC_FAULT; 443 break; 444 case ESR_ELx_EC_IABT_LOW: 445 /* 446 * Claim a level 0 translation fault. 447 * All other bits are architecturally RES0 for faults 448 * reported with that DFSC value, so we clear them. 449 */ 450 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 451 esr |= ESR_ELx_FSC_FAULT; 452 break; 453 default: 454 /* 455 * This should never happen (entry.S only brings us 456 * into this code for insn and data aborts from a lower 457 * exception level). Fail safe by not providing an ESR 458 * context record at all. 459 */ 460 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); 461 esr = 0; 462 break; 463 } 464 } 465 466 current->thread.fault_code = esr; 467 } 468 469 static void do_bad_area(unsigned long far, unsigned long esr, 470 struct pt_regs *regs) 471 { 472 unsigned long addr = untagged_addr(far); 473 474 /* 475 * If we are in kernel mode at this point, we have no context to 476 * handle this fault with. 477 */ 478 if (user_mode(regs)) { 479 const struct fault_info *inf = esr_to_fault_info(esr); 480 481 set_thread_esr(addr, esr); 482 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); 483 } else { 484 __do_kernel_fault(addr, esr, regs); 485 } 486 } 487 488 static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags) 489 { 490 if (!system_supports_poe()) 491 return false; 492 493 /* 494 * We do not check whether an Overlay fault has occurred because we 495 * cannot make a decision based solely on its value: 496 * 497 * - If Overlay is set, a fault did occur due to POE, but it may be 498 * spurious in those cases where we update POR_EL0 without ISB (e.g. 499 * on context-switch). We would then need to manually check POR_EL0 500 * against vma_pkey(vma), which is exactly what 501 * arch_vma_access_permitted() does. 502 * 503 * - If Overlay is not set, we may still need to report a pkey fault. 504 * This is the case if an access was made within a mapping but with no 505 * page mapped, and POR_EL0 forbids the access (according to 506 * vma_pkey()). Such access will result in a SIGSEGV regardless 507 * because core code checks arch_vma_access_permitted(), but in order 508 * to report the correct error code - SEGV_PKUERR - we must handle 509 * that case here. 510 */ 511 return !arch_vma_access_permitted(vma, 512 mm_flags & FAULT_FLAG_WRITE, 513 mm_flags & FAULT_FLAG_INSTRUCTION, 514 false); 515 } 516 517 static bool is_gcs_fault(unsigned long esr) 518 { 519 if (!esr_is_data_abort(esr)) 520 return false; 521 522 return ESR_ELx_ISS2(esr) & ESR_ELx_GCS; 523 } 524 525 static bool is_el0_instruction_abort(unsigned long esr) 526 { 527 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 528 } 529 530 /* 531 * Note: not valid for EL1 DC IVAC, but we never use that such that it 532 * should fault. EL0 cannot issue DC IVAC (undef). 533 */ 534 static bool is_write_abort(unsigned long esr) 535 { 536 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 537 } 538 539 static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr) 540 { 541 if (!system_supports_gcs()) 542 return false; 543 544 if (unlikely(is_gcs_fault(esr))) { 545 /* GCS accesses must be performed on a GCS page */ 546 if (!(vma->vm_flags & VM_SHADOW_STACK)) 547 return true; 548 } else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) { 549 /* Only GCS operations can write to a GCS page */ 550 return esr_is_data_abort(esr) && is_write_abort(esr); 551 } 552 553 return false; 554 } 555 556 static int __kprobes do_page_fault(unsigned long far, unsigned long esr, 557 struct pt_regs *regs) 558 { 559 const struct fault_info *inf; 560 struct mm_struct *mm = current->mm; 561 vm_fault_t fault; 562 vm_flags_t vm_flags; 563 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 564 unsigned long addr = untagged_addr(far); 565 struct vm_area_struct *vma; 566 int si_code; 567 int pkey = -1; 568 569 if (kprobe_page_fault(regs, esr)) 570 return 0; 571 572 /* 573 * If we're in an interrupt or have no user context, we must not take 574 * the fault. 575 */ 576 if (faulthandler_disabled() || !mm) 577 goto no_context; 578 579 if (user_mode(regs)) 580 mm_flags |= FAULT_FLAG_USER; 581 582 /* 583 * vm_flags tells us what bits we must have in vma->vm_flags 584 * for the fault to be benign, __do_page_fault() would check 585 * vma->vm_flags & vm_flags and returns an error if the 586 * intersection is empty 587 */ 588 if (is_el0_instruction_abort(esr)) { 589 /* It was exec fault */ 590 vm_flags = VM_EXEC; 591 mm_flags |= FAULT_FLAG_INSTRUCTION; 592 } else if (is_gcs_fault(esr)) { 593 /* 594 * The GCS permission on a page implies both read and 595 * write so always handle any GCS fault as a write fault, 596 * we need to trigger CoW even for GCS reads. 597 */ 598 vm_flags = VM_WRITE; 599 mm_flags |= FAULT_FLAG_WRITE; 600 } else if (is_write_abort(esr)) { 601 /* It was write fault */ 602 vm_flags = VM_WRITE; 603 mm_flags |= FAULT_FLAG_WRITE; 604 } else { 605 /* It was read fault */ 606 vm_flags = VM_READ; 607 /* Write implies read */ 608 vm_flags |= VM_WRITE; 609 /* If EPAN is absent then exec implies read */ 610 if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN)) 611 vm_flags |= VM_EXEC; 612 } 613 614 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 615 if (is_el1_instruction_abort(esr)) 616 die_kernel_fault("execution of user memory", 617 addr, esr, regs); 618 619 if (!insn_may_access_user(regs->pc, esr)) 620 die_kernel_fault("access to user memory outside uaccess routines", 621 addr, esr, regs); 622 } 623 624 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 625 626 if (!(mm_flags & FAULT_FLAG_USER)) 627 goto lock_mmap; 628 629 vma = lock_vma_under_rcu(mm, addr); 630 if (!vma) 631 goto lock_mmap; 632 633 if (is_invalid_gcs_access(vma, esr)) { 634 vma_end_read(vma); 635 fault = 0; 636 si_code = SEGV_ACCERR; 637 goto bad_area; 638 } 639 640 if (!(vma->vm_flags & vm_flags)) { 641 vma_end_read(vma); 642 fault = 0; 643 si_code = SEGV_ACCERR; 644 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 645 goto bad_area; 646 } 647 648 if (fault_from_pkey(vma, mm_flags)) { 649 pkey = vma_pkey(vma); 650 vma_end_read(vma); 651 fault = 0; 652 si_code = SEGV_PKUERR; 653 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 654 goto bad_area; 655 } 656 657 fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs); 658 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 659 vma_end_read(vma); 660 661 if (!(fault & VM_FAULT_RETRY)) { 662 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 663 goto done; 664 } 665 count_vm_vma_lock_event(VMA_LOCK_RETRY); 666 if (fault & VM_FAULT_MAJOR) 667 mm_flags |= FAULT_FLAG_TRIED; 668 669 /* Quick path to respond to signals */ 670 if (fault_signal_pending(fault, regs)) { 671 if (!user_mode(regs)) 672 goto no_context; 673 return 0; 674 } 675 lock_mmap: 676 677 retry: 678 vma = lock_mm_and_find_vma(mm, addr, regs); 679 if (unlikely(!vma)) { 680 fault = 0; 681 si_code = SEGV_MAPERR; 682 goto bad_area; 683 } 684 685 if (!(vma->vm_flags & vm_flags)) { 686 mmap_read_unlock(mm); 687 fault = 0; 688 si_code = SEGV_ACCERR; 689 goto bad_area; 690 } 691 692 if (fault_from_pkey(vma, mm_flags)) { 693 pkey = vma_pkey(vma); 694 mmap_read_unlock(mm); 695 fault = 0; 696 si_code = SEGV_PKUERR; 697 goto bad_area; 698 } 699 700 fault = handle_mm_fault(vma, addr, mm_flags, regs); 701 702 /* Quick path to respond to signals */ 703 if (fault_signal_pending(fault, regs)) { 704 if (!user_mode(regs)) 705 goto no_context; 706 return 0; 707 } 708 709 /* The fault is fully completed (including releasing mmap lock) */ 710 if (fault & VM_FAULT_COMPLETED) 711 return 0; 712 713 if (fault & VM_FAULT_RETRY) { 714 mm_flags |= FAULT_FLAG_TRIED; 715 goto retry; 716 } 717 mmap_read_unlock(mm); 718 719 done: 720 /* Handle the "normal" (no error) case first. */ 721 if (likely(!(fault & VM_FAULT_ERROR))) 722 return 0; 723 724 si_code = SEGV_MAPERR; 725 bad_area: 726 /* 727 * If we are in kernel mode at this point, we have no context to 728 * handle this fault with. 729 */ 730 if (!user_mode(regs)) 731 goto no_context; 732 733 if (fault & VM_FAULT_OOM) { 734 /* 735 * We ran out of memory, call the OOM killer, and return to 736 * userspace (which will retry the fault, or kill us if we got 737 * oom-killed). 738 */ 739 pagefault_out_of_memory(); 740 return 0; 741 } 742 743 inf = esr_to_fault_info(esr); 744 set_thread_esr(addr, esr); 745 if (fault & VM_FAULT_SIGBUS) { 746 /* 747 * We had some memory, but were unable to successfully fix up 748 * this page fault. 749 */ 750 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); 751 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 752 unsigned int lsb; 753 754 lsb = PAGE_SHIFT; 755 if (fault & VM_FAULT_HWPOISON_LARGE) 756 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 757 758 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); 759 } else { 760 /* 761 * The pkey value that we return to userspace can be different 762 * from the pkey that caused the fault. 763 * 764 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 765 * 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page 766 * 3. T1 : faults... 767 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 768 * 5. T1 : enters fault handler, takes mmap_lock, etc... 769 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 770 * faulted on a pte with its pkey=4. 771 */ 772 /* Something tried to access memory that out of memory map */ 773 if (si_code == SEGV_PKUERR) 774 arm64_force_sig_fault_pkey(far, inf->name, pkey); 775 else 776 arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name); 777 } 778 779 return 0; 780 781 no_context: 782 __do_kernel_fault(addr, esr, regs); 783 return 0; 784 } 785 786 static int __kprobes do_translation_fault(unsigned long far, 787 unsigned long esr, 788 struct pt_regs *regs) 789 { 790 unsigned long addr = untagged_addr(far); 791 792 if (is_ttbr0_addr(addr)) 793 return do_page_fault(far, esr, regs); 794 795 do_bad_area(far, esr, regs); 796 return 0; 797 } 798 799 static int do_alignment_fault(unsigned long far, unsigned long esr, 800 struct pt_regs *regs) 801 { 802 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) && 803 compat_user_mode(regs)) 804 return do_compat_alignment_fixup(far, regs); 805 do_bad_area(far, esr, regs); 806 return 0; 807 } 808 809 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) 810 { 811 return 1; /* "fault" */ 812 } 813 814 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) 815 { 816 const struct fault_info *inf; 817 unsigned long siaddr; 818 819 inf = esr_to_fault_info(esr); 820 821 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 822 /* 823 * APEI claimed this as a firmware-first notification. 824 * Some processing deferred to task_work before ret_to_user(). 825 */ 826 return 0; 827 } 828 829 if (esr & ESR_ELx_FnV) { 830 siaddr = 0; 831 } else { 832 /* 833 * The architecture specifies that the tag bits of FAR_EL1 are 834 * UNKNOWN for synchronous external aborts. Mask them out now 835 * so that userspace doesn't see them. 836 */ 837 siaddr = untagged_addr(far); 838 } 839 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK); 840 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 841 842 return 0; 843 } 844 845 static int do_tag_check_fault(unsigned long far, unsigned long esr, 846 struct pt_regs *regs) 847 { 848 /* 849 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN 850 * for tag check faults. Set them to corresponding bits in the untagged 851 * address if ARM64_MTE_FAR isn't supported. 852 * Otherwise, bits 63:60 of FAR_EL1 are not UNKNOWN. 853 */ 854 if (!cpus_have_cap(ARM64_MTE_FAR)) 855 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); 856 857 do_bad_area(far, esr, regs); 858 return 0; 859 } 860 861 static const struct fault_info fault_info[] = { 862 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 863 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 864 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 865 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 866 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 867 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 868 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 869 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 870 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" }, 871 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 872 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 873 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 874 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" }, 875 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 876 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 877 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 878 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 879 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 880 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 881 { do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" }, 882 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 883 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 884 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 885 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 886 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 887 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 888 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 889 { do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 890 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 891 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 892 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 893 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 894 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 895 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 896 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 897 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 898 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 899 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 900 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 901 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 902 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 903 { do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" }, 904 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 905 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" }, 906 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 907 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 908 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 909 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 910 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 911 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 912 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 913 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 914 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 915 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 916 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 917 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 918 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 919 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 920 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 921 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 922 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 923 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 924 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 925 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 926 }; 927 928 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) 929 { 930 const struct fault_info *inf = esr_to_fault_info(esr); 931 unsigned long addr = untagged_addr(far); 932 933 if (!inf->fn(far, esr, regs)) 934 return; 935 936 if (!user_mode(regs)) 937 die_kernel_fault(inf->name, addr, esr, regs); 938 939 /* 940 * At this point we have an unrecognized fault type whose tag bits may 941 * have been defined as UNKNOWN. Therefore we only expose the untagged 942 * address to the signal handler. 943 */ 944 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); 945 } 946 NOKPROBE_SYMBOL(do_mem_abort); 947 948 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) 949 { 950 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, 951 addr, esr); 952 } 953 NOKPROBE_SYMBOL(do_sp_pc_abort); 954 955 /* 956 * Used during anonymous page fault handling. 957 */ 958 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 959 unsigned long vaddr) 960 { 961 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; 962 963 /* 964 * If the page is mapped with PROT_MTE, initialise the tags at the 965 * point of allocation and page zeroing as this is usually faster than 966 * separate DC ZVA and STGM. 967 */ 968 if (vma->vm_flags & VM_MTE) 969 flags |= __GFP_ZEROTAGS; 970 971 return vma_alloc_folio(flags, 0, vma, vaddr); 972 } 973 974 bool tag_clear_highpages(struct page *page, int numpages) 975 { 976 /* 977 * Check if MTE is supported and fall back to clear_highpage(). 978 * get_huge_zero_folio() unconditionally passes __GFP_ZEROTAGS and 979 * post_alloc_hook() will invoke tag_clear_highpages(). 980 */ 981 if (!system_supports_mte()) 982 return false; 983 984 /* Newly allocated pages, shouldn't have been tagged yet */ 985 for (int i = 0; i < numpages; i++, page++) { 986 WARN_ON_ONCE(!try_page_mte_tagging(page)); 987 mte_zero_clear_page_tags(page_address(page)); 988 set_page_mte_tagged(page); 989 } 990 return true; 991 } 992