1 /* 2 * Based on arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1995-2004 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <linux/acpi.h> 22 #include <linux/extable.h> 23 #include <linux/signal.h> 24 #include <linux/mm.h> 25 #include <linux/hardirq.h> 26 #include <linux/init.h> 27 #include <linux/kprobes.h> 28 #include <linux/uaccess.h> 29 #include <linux/page-flags.h> 30 #include <linux/sched/signal.h> 31 #include <linux/sched/debug.h> 32 #include <linux/highmem.h> 33 #include <linux/perf_event.h> 34 #include <linux/preempt.h> 35 #include <linux/hugetlb.h> 36 37 #include <asm/acpi.h> 38 #include <asm/bug.h> 39 #include <asm/cmpxchg.h> 40 #include <asm/cpufeature.h> 41 #include <asm/exception.h> 42 #include <asm/daifflags.h> 43 #include <asm/debug-monitors.h> 44 #include <asm/esr.h> 45 #include <asm/kasan.h> 46 #include <asm/sysreg.h> 47 #include <asm/system_misc.h> 48 #include <asm/pgtable.h> 49 #include <asm/tlbflush.h> 50 #include <asm/traps.h> 51 52 struct fault_info { 53 int (*fn)(unsigned long addr, unsigned int esr, 54 struct pt_regs *regs); 55 int sig; 56 int code; 57 const char *name; 58 }; 59 60 static const struct fault_info fault_info[]; 61 static struct fault_info debug_fault_info[]; 62 63 static inline const struct fault_info *esr_to_fault_info(unsigned int esr) 64 { 65 return fault_info + (esr & ESR_ELx_FSC); 66 } 67 68 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr) 69 { 70 return debug_fault_info + DBG_ESR_EVT(esr); 71 } 72 73 #ifdef CONFIG_KPROBES 74 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 75 { 76 int ret = 0; 77 78 /* kprobe_running() needs smp_processor_id() */ 79 if (!user_mode(regs)) { 80 preempt_disable(); 81 if (kprobe_running() && kprobe_fault_handler(regs, esr)) 82 ret = 1; 83 preempt_enable(); 84 } 85 86 return ret; 87 } 88 #else 89 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 90 { 91 return 0; 92 } 93 #endif 94 95 static void data_abort_decode(unsigned int esr) 96 { 97 pr_alert("Data abort info:\n"); 98 99 if (esr & ESR_ELx_ISV) { 100 pr_alert(" Access size = %u byte(s)\n", 101 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 102 pr_alert(" SSE = %lu, SRT = %lu\n", 103 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 104 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 105 pr_alert(" SF = %lu, AR = %lu\n", 106 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 107 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 108 } else { 109 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); 110 } 111 112 pr_alert(" CM = %lu, WnR = %lu\n", 113 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 114 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); 115 } 116 117 static void mem_abort_decode(unsigned int esr) 118 { 119 pr_alert("Mem abort info:\n"); 120 121 pr_alert(" ESR = 0x%08x\n", esr); 122 pr_alert(" Exception class = %s, IL = %u bits\n", 123 esr_get_class_string(esr), 124 (esr & ESR_ELx_IL) ? 32 : 16); 125 pr_alert(" SET = %lu, FnV = %lu\n", 126 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 127 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 128 pr_alert(" EA = %lu, S1PTW = %lu\n", 129 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 130 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 131 132 if (esr_is_data_abort(esr)) 133 data_abort_decode(esr); 134 } 135 136 static inline bool is_ttbr0_addr(unsigned long addr) 137 { 138 /* entry assembly clears tags for TTBR0 addrs */ 139 return addr < TASK_SIZE; 140 } 141 142 static inline bool is_ttbr1_addr(unsigned long addr) 143 { 144 /* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */ 145 return arch_kasan_reset_tag(addr) >= VA_START; 146 } 147 148 /* 149 * Dump out the page tables associated with 'addr' in the currently active mm. 150 */ 151 void show_pte(unsigned long addr) 152 { 153 struct mm_struct *mm; 154 pgd_t *pgdp; 155 pgd_t pgd; 156 157 if (is_ttbr0_addr(addr)) { 158 /* TTBR0 */ 159 mm = current->active_mm; 160 if (mm == &init_mm) { 161 pr_alert("[%016lx] user address but active_mm is swapper\n", 162 addr); 163 return; 164 } 165 } else if (is_ttbr1_addr(addr)) { 166 /* TTBR1 */ 167 mm = &init_mm; 168 } else { 169 pr_alert("[%016lx] address between user and kernel address ranges\n", 170 addr); 171 return; 172 } 173 174 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp = %p\n", 175 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 176 mm == &init_mm ? VA_BITS : (int) vabits_user, mm->pgd); 177 pgdp = pgd_offset(mm, addr); 178 pgd = READ_ONCE(*pgdp); 179 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 180 181 do { 182 pud_t *pudp, pud; 183 pmd_t *pmdp, pmd; 184 pte_t *ptep, pte; 185 186 if (pgd_none(pgd) || pgd_bad(pgd)) 187 break; 188 189 pudp = pud_offset(pgdp, addr); 190 pud = READ_ONCE(*pudp); 191 pr_cont(", pud=%016llx", pud_val(pud)); 192 if (pud_none(pud) || pud_bad(pud)) 193 break; 194 195 pmdp = pmd_offset(pudp, addr); 196 pmd = READ_ONCE(*pmdp); 197 pr_cont(", pmd=%016llx", pmd_val(pmd)); 198 if (pmd_none(pmd) || pmd_bad(pmd)) 199 break; 200 201 ptep = pte_offset_map(pmdp, addr); 202 pte = READ_ONCE(*ptep); 203 pr_cont(", pte=%016llx", pte_val(pte)); 204 pte_unmap(ptep); 205 } while(0); 206 207 pr_cont("\n"); 208 } 209 210 /* 211 * This function sets the access flags (dirty, accessed), as well as write 212 * permission, and only to a more permissive setting. 213 * 214 * It needs to cope with hardware update of the accessed/dirty state by other 215 * agents in the system and can safely skip the __sync_icache_dcache() call as, 216 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 217 * 218 * Returns whether or not the PTE actually changed. 219 */ 220 int ptep_set_access_flags(struct vm_area_struct *vma, 221 unsigned long address, pte_t *ptep, 222 pte_t entry, int dirty) 223 { 224 pteval_t old_pteval, pteval; 225 pte_t pte = READ_ONCE(*ptep); 226 227 if (pte_same(pte, entry)) 228 return 0; 229 230 /* only preserve the access flags and write permission */ 231 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 232 233 /* 234 * Setting the flags must be done atomically to avoid racing with the 235 * hardware update of the access/dirty state. The PTE_RDONLY bit must 236 * be set to the most permissive (lowest value) of *ptep and entry 237 * (calculated as: a & b == ~(~a | ~b)). 238 */ 239 pte_val(entry) ^= PTE_RDONLY; 240 pteval = pte_val(pte); 241 do { 242 old_pteval = pteval; 243 pteval ^= PTE_RDONLY; 244 pteval |= pte_val(entry); 245 pteval ^= PTE_RDONLY; 246 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 247 } while (pteval != old_pteval); 248 249 flush_tlb_fix_spurious_fault(vma, address); 250 return 1; 251 } 252 253 static bool is_el1_instruction_abort(unsigned int esr) 254 { 255 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 256 } 257 258 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr, 259 struct pt_regs *regs) 260 { 261 unsigned int ec = ESR_ELx_EC(esr); 262 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 263 264 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 265 return false; 266 267 if (fsc_type == ESR_ELx_FSC_PERM) 268 return true; 269 270 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 271 return fsc_type == ESR_ELx_FSC_FAULT && 272 (regs->pstate & PSR_PAN_BIT); 273 274 return false; 275 } 276 277 static void die_kernel_fault(const char *msg, unsigned long addr, 278 unsigned int esr, struct pt_regs *regs) 279 { 280 bust_spinlocks(1); 281 282 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 283 addr); 284 285 mem_abort_decode(esr); 286 287 show_pte(addr); 288 die("Oops", regs, esr); 289 bust_spinlocks(0); 290 do_exit(SIGKILL); 291 } 292 293 static void __do_kernel_fault(unsigned long addr, unsigned int esr, 294 struct pt_regs *regs) 295 { 296 const char *msg; 297 298 /* 299 * Are we prepared to handle this kernel fault? 300 * We are almost certainly not prepared to handle instruction faults. 301 */ 302 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 303 return; 304 305 if (is_el1_permission_fault(addr, esr, regs)) { 306 if (esr & ESR_ELx_WNR) 307 msg = "write to read-only memory"; 308 else 309 msg = "read from unreadable memory"; 310 } else if (addr < PAGE_SIZE) { 311 msg = "NULL pointer dereference"; 312 } else { 313 msg = "paging request"; 314 } 315 316 die_kernel_fault(msg, addr, esr, regs); 317 } 318 319 static void set_thread_esr(unsigned long address, unsigned int esr) 320 { 321 current->thread.fault_address = address; 322 323 /* 324 * If the faulting address is in the kernel, we must sanitize the ESR. 325 * From userspace's point of view, kernel-only mappings don't exist 326 * at all, so we report them as level 0 translation faults. 327 * (This is not quite the way that "no mapping there at all" behaves: 328 * an alignment fault not caused by the memory type would take 329 * precedence over translation fault for a real access to empty 330 * space. Unfortunately we can't easily distinguish "alignment fault 331 * not caused by memory type" from "alignment fault caused by memory 332 * type", so we ignore this wrinkle and just return the translation 333 * fault.) 334 */ 335 if (!is_ttbr0_addr(current->thread.fault_address)) { 336 switch (ESR_ELx_EC(esr)) { 337 case ESR_ELx_EC_DABT_LOW: 338 /* 339 * These bits provide only information about the 340 * faulting instruction, which userspace knows already. 341 * We explicitly clear bits which are architecturally 342 * RES0 in case they are given meanings in future. 343 * We always report the ESR as if the fault was taken 344 * to EL1 and so ISV and the bits in ISS[23:14] are 345 * clear. (In fact it always will be a fault to EL1.) 346 */ 347 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 348 ESR_ELx_CM | ESR_ELx_WNR; 349 esr |= ESR_ELx_FSC_FAULT; 350 break; 351 case ESR_ELx_EC_IABT_LOW: 352 /* 353 * Claim a level 0 translation fault. 354 * All other bits are architecturally RES0 for faults 355 * reported with that DFSC value, so we clear them. 356 */ 357 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 358 esr |= ESR_ELx_FSC_FAULT; 359 break; 360 default: 361 /* 362 * This should never happen (entry.S only brings us 363 * into this code for insn and data aborts from a lower 364 * exception level). Fail safe by not providing an ESR 365 * context record at all. 366 */ 367 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); 368 esr = 0; 369 break; 370 } 371 } 372 373 current->thread.fault_code = esr; 374 } 375 376 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) 377 { 378 /* 379 * If we are in kernel mode at this point, we have no context to 380 * handle this fault with. 381 */ 382 if (user_mode(regs)) { 383 const struct fault_info *inf = esr_to_fault_info(esr); 384 385 set_thread_esr(addr, esr); 386 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr, 387 inf->name); 388 } else { 389 __do_kernel_fault(addr, esr, regs); 390 } 391 } 392 393 #define VM_FAULT_BADMAP 0x010000 394 #define VM_FAULT_BADACCESS 0x020000 395 396 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, 397 unsigned int mm_flags, unsigned long vm_flags, 398 struct task_struct *tsk) 399 { 400 struct vm_area_struct *vma; 401 vm_fault_t fault; 402 403 vma = find_vma(mm, addr); 404 fault = VM_FAULT_BADMAP; 405 if (unlikely(!vma)) 406 goto out; 407 if (unlikely(vma->vm_start > addr)) 408 goto check_stack; 409 410 /* 411 * Ok, we have a good vm_area for this memory access, so we can handle 412 * it. 413 */ 414 good_area: 415 /* 416 * Check that the permissions on the VMA allow for the fault which 417 * occurred. 418 */ 419 if (!(vma->vm_flags & vm_flags)) { 420 fault = VM_FAULT_BADACCESS; 421 goto out; 422 } 423 424 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); 425 426 check_stack: 427 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) 428 goto good_area; 429 out: 430 return fault; 431 } 432 433 static bool is_el0_instruction_abort(unsigned int esr) 434 { 435 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 436 } 437 438 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, 439 struct pt_regs *regs) 440 { 441 const struct fault_info *inf; 442 struct task_struct *tsk; 443 struct mm_struct *mm; 444 vm_fault_t fault, major = 0; 445 unsigned long vm_flags = VM_READ | VM_WRITE; 446 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 447 448 if (notify_page_fault(regs, esr)) 449 return 0; 450 451 tsk = current; 452 mm = tsk->mm; 453 454 /* 455 * If we're in an interrupt or have no user context, we must not take 456 * the fault. 457 */ 458 if (faulthandler_disabled() || !mm) 459 goto no_context; 460 461 if (user_mode(regs)) 462 mm_flags |= FAULT_FLAG_USER; 463 464 if (is_el0_instruction_abort(esr)) { 465 vm_flags = VM_EXEC; 466 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) { 467 vm_flags = VM_WRITE; 468 mm_flags |= FAULT_FLAG_WRITE; 469 } 470 471 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 472 /* regs->orig_addr_limit may be 0 if we entered from EL0 */ 473 if (regs->orig_addr_limit == KERNEL_DS) 474 die_kernel_fault("access to user memory with fs=KERNEL_DS", 475 addr, esr, regs); 476 477 if (is_el1_instruction_abort(esr)) 478 die_kernel_fault("execution of user memory", 479 addr, esr, regs); 480 481 if (!search_exception_tables(regs->pc)) 482 die_kernel_fault("access to user memory outside uaccess routines", 483 addr, esr, regs); 484 } 485 486 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 487 488 /* 489 * As per x86, we may deadlock here. However, since the kernel only 490 * validly references user space from well defined areas of the code, 491 * we can bug out early if this is from code which shouldn't. 492 */ 493 if (!down_read_trylock(&mm->mmap_sem)) { 494 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 495 goto no_context; 496 retry: 497 down_read(&mm->mmap_sem); 498 } else { 499 /* 500 * The above down_read_trylock() might have succeeded in which 501 * case, we'll have missed the might_sleep() from down_read(). 502 */ 503 might_sleep(); 504 #ifdef CONFIG_DEBUG_VM 505 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 506 goto no_context; 507 #endif 508 } 509 510 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk); 511 major |= fault & VM_FAULT_MAJOR; 512 513 if (fault & VM_FAULT_RETRY) { 514 /* 515 * If we need to retry but a fatal signal is pending, 516 * handle the signal first. We do not need to release 517 * the mmap_sem because it would already be released 518 * in __lock_page_or_retry in mm/filemap.c. 519 */ 520 if (fatal_signal_pending(current)) { 521 if (!user_mode(regs)) 522 goto no_context; 523 return 0; 524 } 525 526 /* 527 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of 528 * starvation. 529 */ 530 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 531 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; 532 mm_flags |= FAULT_FLAG_TRIED; 533 goto retry; 534 } 535 } 536 up_read(&mm->mmap_sem); 537 538 /* 539 * Handle the "normal" (no error) case first. 540 */ 541 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 542 VM_FAULT_BADACCESS)))) { 543 /* 544 * Major/minor page fault accounting is only done 545 * once. If we go through a retry, it is extremely 546 * likely that the page will be found in page cache at 547 * that point. 548 */ 549 if (major) { 550 tsk->maj_flt++; 551 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, 552 addr); 553 } else { 554 tsk->min_flt++; 555 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, 556 addr); 557 } 558 559 return 0; 560 } 561 562 /* 563 * If we are in kernel mode at this point, we have no context to 564 * handle this fault with. 565 */ 566 if (!user_mode(regs)) 567 goto no_context; 568 569 if (fault & VM_FAULT_OOM) { 570 /* 571 * We ran out of memory, call the OOM killer, and return to 572 * userspace (which will retry the fault, or kill us if we got 573 * oom-killed). 574 */ 575 pagefault_out_of_memory(); 576 return 0; 577 } 578 579 inf = esr_to_fault_info(esr); 580 set_thread_esr(addr, esr); 581 if (fault & VM_FAULT_SIGBUS) { 582 /* 583 * We had some memory, but were unable to successfully fix up 584 * this page fault. 585 */ 586 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr, 587 inf->name); 588 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 589 unsigned int lsb; 590 591 lsb = PAGE_SHIFT; 592 if (fault & VM_FAULT_HWPOISON_LARGE) 593 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 594 595 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb, 596 inf->name); 597 } else { 598 /* 599 * Something tried to access memory that isn't in our memory 600 * map. 601 */ 602 arm64_force_sig_fault(SIGSEGV, 603 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, 604 (void __user *)addr, 605 inf->name); 606 } 607 608 return 0; 609 610 no_context: 611 __do_kernel_fault(addr, esr, regs); 612 return 0; 613 } 614 615 static int __kprobes do_translation_fault(unsigned long addr, 616 unsigned int esr, 617 struct pt_regs *regs) 618 { 619 if (is_ttbr0_addr(addr)) 620 return do_page_fault(addr, esr, regs); 621 622 do_bad_area(addr, esr, regs); 623 return 0; 624 } 625 626 static int do_alignment_fault(unsigned long addr, unsigned int esr, 627 struct pt_regs *regs) 628 { 629 do_bad_area(addr, esr, regs); 630 return 0; 631 } 632 633 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) 634 { 635 return 1; /* "fault" */ 636 } 637 638 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) 639 { 640 const struct fault_info *inf; 641 void __user *siaddr; 642 643 inf = esr_to_fault_info(esr); 644 645 /* 646 * Return value ignored as we rely on signal merging. 647 * Future patches will make this more robust. 648 */ 649 apei_claim_sea(regs); 650 651 if (esr & ESR_ELx_FnV) 652 siaddr = NULL; 653 else 654 siaddr = (void __user *)addr; 655 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 656 657 return 0; 658 } 659 660 static const struct fault_info fault_info[] = { 661 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 662 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 663 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 664 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 665 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 666 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 667 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 668 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 669 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, 670 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 671 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 672 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 673 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, 674 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 675 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 676 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 677 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 678 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" }, 679 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 680 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, 681 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 682 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 683 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 684 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 685 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 686 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 687 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 688 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, 689 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 690 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 691 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 692 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 693 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 694 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 695 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 696 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 697 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 698 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 699 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 700 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 701 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 702 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, 703 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 704 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, 705 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 706 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 707 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 708 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 709 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 710 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 711 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 712 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 713 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 714 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 715 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 716 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 717 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 718 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 719 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 720 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 721 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 722 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 723 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 724 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 725 }; 726 727 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr, 728 struct pt_regs *regs) 729 { 730 const struct fault_info *inf = esr_to_fault_info(esr); 731 732 if (!inf->fn(addr, esr, regs)) 733 return; 734 735 if (!user_mode(regs)) { 736 pr_alert("Unhandled fault at 0x%016lx\n", addr); 737 mem_abort_decode(esr); 738 show_pte(addr); 739 } 740 741 arm64_notify_die(inf->name, regs, 742 inf->sig, inf->code, (void __user *)addr, esr); 743 } 744 745 asmlinkage void __exception do_el0_irq_bp_hardening(void) 746 { 747 /* PC has already been checked in entry.S */ 748 arm64_apply_bp_hardening(); 749 } 750 751 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr, 752 unsigned int esr, 753 struct pt_regs *regs) 754 { 755 /* 756 * We've taken an instruction abort from userspace and not yet 757 * re-enabled IRQs. If the address is a kernel address, apply 758 * BP hardening prior to enabling IRQs and pre-emption. 759 */ 760 if (!is_ttbr0_addr(addr)) 761 arm64_apply_bp_hardening(); 762 763 local_daif_restore(DAIF_PROCCTX); 764 do_mem_abort(addr, esr, regs); 765 } 766 767 768 asmlinkage void __exception do_sp_pc_abort(unsigned long addr, 769 unsigned int esr, 770 struct pt_regs *regs) 771 { 772 if (user_mode(regs)) { 773 if (!is_ttbr0_addr(instruction_pointer(regs))) 774 arm64_apply_bp_hardening(); 775 local_daif_restore(DAIF_PROCCTX); 776 } 777 778 arm64_notify_die("SP/PC alignment exception", regs, 779 SIGBUS, BUS_ADRALN, (void __user *)addr, esr); 780 } 781 782 int __init early_brk64(unsigned long addr, unsigned int esr, 783 struct pt_regs *regs); 784 785 /* 786 * __refdata because early_brk64 is __init, but the reference to it is 787 * clobbered at arch_initcall time. 788 * See traps.c and debug-monitors.c:debug_traps_init(). 789 */ 790 static struct fault_info __refdata debug_fault_info[] = { 791 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 792 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 793 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 794 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 795 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 796 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 797 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 798 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 799 }; 800 801 void __init hook_debug_fault_code(int nr, 802 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 803 int sig, int code, const char *name) 804 { 805 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 806 807 debug_fault_info[nr].fn = fn; 808 debug_fault_info[nr].sig = sig; 809 debug_fault_info[nr].code = code; 810 debug_fault_info[nr].name = name; 811 } 812 813 asmlinkage int __exception do_debug_exception(unsigned long addr_if_watchpoint, 814 unsigned int esr, 815 struct pt_regs *regs) 816 { 817 const struct fault_info *inf = esr_to_debug_fault_info(esr); 818 unsigned long pc = instruction_pointer(regs); 819 int rv; 820 821 /* 822 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were 823 * already disabled to preserve the last enabled/disabled addresses. 824 */ 825 if (interrupts_enabled(regs)) 826 trace_hardirqs_off(); 827 828 if (user_mode(regs) && !is_ttbr0_addr(pc)) 829 arm64_apply_bp_hardening(); 830 831 if (!inf->fn(addr_if_watchpoint, esr, regs)) { 832 rv = 1; 833 } else { 834 arm64_notify_die(inf->name, regs, 835 inf->sig, inf->code, (void __user *)pc, esr); 836 rv = 0; 837 } 838 839 if (interrupts_enabled(regs)) 840 trace_hardirqs_on(); 841 842 return rv; 843 } 844 NOKPROBE_SYMBOL(do_debug_exception); 845