1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/kfence.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/hardirq.h> 17 #include <linux/init.h> 18 #include <linux/kasan.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/page-flags.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/highmem.h> 25 #include <linux/perf_event.h> 26 #include <linux/pkeys.h> 27 #include <linux/preempt.h> 28 #include <linux/hugetlb.h> 29 30 #include <asm/acpi.h> 31 #include <asm/bug.h> 32 #include <asm/cmpxchg.h> 33 #include <asm/cpufeature.h> 34 #include <asm/efi.h> 35 #include <asm/exception.h> 36 #include <asm/daifflags.h> 37 #include <asm/debug-monitors.h> 38 #include <asm/esr.h> 39 #include <asm/kprobes.h> 40 #include <asm/mte.h> 41 #include <asm/processor.h> 42 #include <asm/sysreg.h> 43 #include <asm/system_misc.h> 44 #include <asm/tlbflush.h> 45 #include <asm/traps.h> 46 47 struct fault_info { 48 int (*fn)(unsigned long far, unsigned long esr, 49 struct pt_regs *regs); 50 int sig; 51 int code; 52 const char *name; 53 }; 54 55 static const struct fault_info fault_info[]; 56 static struct fault_info debug_fault_info[]; 57 58 static inline const struct fault_info *esr_to_fault_info(unsigned long esr) 59 { 60 return fault_info + (esr & ESR_ELx_FSC); 61 } 62 63 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr) 64 { 65 return debug_fault_info + DBG_ESR_EVT(esr); 66 } 67 68 static void data_abort_decode(unsigned long esr) 69 { 70 unsigned long iss2 = ESR_ELx_ISS2(esr); 71 72 pr_alert("Data abort info:\n"); 73 74 if (esr & ESR_ELx_ISV) { 75 pr_alert(" Access size = %u byte(s)\n", 76 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 77 pr_alert(" SSE = %lu, SRT = %lu\n", 78 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 79 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 80 pr_alert(" SF = %lu, AR = %lu\n", 81 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 82 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 83 } else { 84 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n", 85 esr & ESR_ELx_ISS_MASK, iss2); 86 } 87 88 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n", 89 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 90 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT, 91 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT, 92 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT); 93 94 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n", 95 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT, 96 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT, 97 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT, 98 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT); 99 } 100 101 static void mem_abort_decode(unsigned long esr) 102 { 103 pr_alert("Mem abort info:\n"); 104 105 pr_alert(" ESR = 0x%016lx\n", esr); 106 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 107 ESR_ELx_EC(esr), esr_get_class_string(esr), 108 (esr & ESR_ELx_IL) ? 32 : 16); 109 pr_alert(" SET = %lu, FnV = %lu\n", 110 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 111 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 112 pr_alert(" EA = %lu, S1PTW = %lu\n", 113 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 114 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 115 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), 116 esr_to_fault_info(esr)->name); 117 118 if (esr_is_data_abort(esr)) 119 data_abort_decode(esr); 120 } 121 122 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 123 { 124 /* Either init_pg_dir or swapper_pg_dir */ 125 if (mm == &init_mm) 126 return __pa_symbol(mm->pgd); 127 128 return (unsigned long)virt_to_phys(mm->pgd); 129 } 130 131 /* 132 * Dump out the page tables associated with 'addr' in the currently active mm. 133 */ 134 static void show_pte(unsigned long addr) 135 { 136 struct mm_struct *mm; 137 pgd_t *pgdp; 138 pgd_t pgd; 139 140 if (is_ttbr0_addr(addr)) { 141 /* TTBR0 */ 142 mm = current->active_mm; 143 if (mm == &init_mm) { 144 pr_alert("[%016lx] user address but active_mm is swapper\n", 145 addr); 146 return; 147 } 148 } else if (is_ttbr1_addr(addr)) { 149 /* TTBR1 */ 150 mm = &init_mm; 151 } else { 152 pr_alert("[%016lx] address between user and kernel address ranges\n", 153 addr); 154 return; 155 } 156 157 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 158 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 159 vabits_actual, mm_to_pgd_phys(mm)); 160 pgdp = pgd_offset(mm, addr); 161 pgd = READ_ONCE(*pgdp); 162 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 163 164 do { 165 p4d_t *p4dp, p4d; 166 pud_t *pudp, pud; 167 pmd_t *pmdp, pmd; 168 pte_t *ptep, pte; 169 170 if (pgd_none(pgd) || pgd_bad(pgd)) 171 break; 172 173 p4dp = p4d_offset(pgdp, addr); 174 p4d = READ_ONCE(*p4dp); 175 pr_cont(", p4d=%016llx", p4d_val(p4d)); 176 if (p4d_none(p4d) || p4d_bad(p4d)) 177 break; 178 179 pudp = pud_offset(p4dp, addr); 180 pud = READ_ONCE(*pudp); 181 pr_cont(", pud=%016llx", pud_val(pud)); 182 if (pud_none(pud) || pud_bad(pud)) 183 break; 184 185 pmdp = pmd_offset(pudp, addr); 186 pmd = READ_ONCE(*pmdp); 187 pr_cont(", pmd=%016llx", pmd_val(pmd)); 188 if (pmd_none(pmd) || pmd_bad(pmd)) 189 break; 190 191 ptep = pte_offset_map(pmdp, addr); 192 if (!ptep) 193 break; 194 195 pte = __ptep_get(ptep); 196 pr_cont(", pte=%016llx", pte_val(pte)); 197 pte_unmap(ptep); 198 } while(0); 199 200 pr_cont("\n"); 201 } 202 203 /* 204 * This function sets the access flags (dirty, accessed), as well as write 205 * permission, and only to a more permissive setting. 206 * 207 * It needs to cope with hardware update of the accessed/dirty state by other 208 * agents in the system and can safely skip the __sync_icache_dcache() call as, 209 * like __set_ptes(), the PTE is never changed from no-exec to exec here. 210 * 211 * Returns whether or not the PTE actually changed. 212 */ 213 int __ptep_set_access_flags(struct vm_area_struct *vma, 214 unsigned long address, pte_t *ptep, 215 pte_t entry, int dirty) 216 { 217 pteval_t old_pteval, pteval; 218 pte_t pte = __ptep_get(ptep); 219 220 if (pte_same(pte, entry)) 221 return 0; 222 223 /* only preserve the access flags and write permission */ 224 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 225 226 /* 227 * Setting the flags must be done atomically to avoid racing with the 228 * hardware update of the access/dirty state. The PTE_RDONLY bit must 229 * be set to the most permissive (lowest value) of *ptep and entry 230 * (calculated as: a & b == ~(~a | ~b)). 231 */ 232 pte_val(entry) ^= PTE_RDONLY; 233 pteval = pte_val(pte); 234 do { 235 old_pteval = pteval; 236 pteval ^= PTE_RDONLY; 237 pteval |= pte_val(entry); 238 pteval ^= PTE_RDONLY; 239 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 240 } while (pteval != old_pteval); 241 242 /* Invalidate a stale read-only entry */ 243 if (dirty) 244 flush_tlb_page(vma, address); 245 return 1; 246 } 247 248 static bool is_el1_instruction_abort(unsigned long esr) 249 { 250 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 251 } 252 253 static bool is_el1_data_abort(unsigned long esr) 254 { 255 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; 256 } 257 258 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, 259 struct pt_regs *regs) 260 { 261 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) 262 return false; 263 264 if (esr_fsc_is_permission_fault(esr)) 265 return true; 266 267 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 268 return esr_fsc_is_translation_fault(esr) && 269 (regs->pstate & PSR_PAN_BIT); 270 271 return false; 272 } 273 274 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 275 unsigned long esr, 276 struct pt_regs *regs) 277 { 278 unsigned long flags; 279 u64 par, dfsc; 280 281 if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr)) 282 return false; 283 284 local_irq_save(flags); 285 asm volatile("at s1e1r, %0" :: "r" (addr)); 286 isb(); 287 par = read_sysreg_par(); 288 local_irq_restore(flags); 289 290 /* 291 * If we now have a valid translation, treat the translation fault as 292 * spurious. 293 */ 294 if (!(par & SYS_PAR_EL1_F)) 295 return true; 296 297 /* 298 * If we got a different type of fault from the AT instruction, 299 * treat the translation fault as spurious. 300 */ 301 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 302 return !esr_fsc_is_translation_fault(dfsc); 303 } 304 305 static void die_kernel_fault(const char *msg, unsigned long addr, 306 unsigned long esr, struct pt_regs *regs) 307 { 308 bust_spinlocks(1); 309 310 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 311 addr); 312 313 kasan_non_canonical_hook(addr); 314 315 mem_abort_decode(esr); 316 317 show_pte(addr); 318 die("Oops", regs, esr); 319 bust_spinlocks(0); 320 make_task_dead(SIGKILL); 321 } 322 323 #ifdef CONFIG_KASAN_HW_TAGS 324 static void report_tag_fault(unsigned long addr, unsigned long esr, 325 struct pt_regs *regs) 326 { 327 /* 328 * SAS bits aren't set for all faults reported in EL1, so we can't 329 * find out access size. 330 */ 331 bool is_write = !!(esr & ESR_ELx_WNR); 332 kasan_report((void *)addr, 0, is_write, regs->pc); 333 } 334 #else 335 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ 336 static inline void report_tag_fault(unsigned long addr, unsigned long esr, 337 struct pt_regs *regs) { } 338 #endif 339 340 static void do_tag_recovery(unsigned long addr, unsigned long esr, 341 struct pt_regs *regs) 342 { 343 344 report_tag_fault(addr, esr, regs); 345 346 /* 347 * Disable MTE Tag Checking on the local CPU for the current EL. 348 * It will be done lazily on the other CPUs when they will hit a 349 * tag fault. 350 */ 351 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 352 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); 353 isb(); 354 } 355 356 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) 357 { 358 unsigned long fsc = esr & ESR_ELx_FSC; 359 360 if (!is_el1_data_abort(esr)) 361 return false; 362 363 if (fsc == ESR_ELx_FSC_MTE) 364 return true; 365 366 return false; 367 } 368 369 static void __do_kernel_fault(unsigned long addr, unsigned long esr, 370 struct pt_regs *regs) 371 { 372 const char *msg; 373 374 /* 375 * Are we prepared to handle this kernel fault? 376 * We are almost certainly not prepared to handle instruction faults. 377 */ 378 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 379 return; 380 381 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 382 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 383 return; 384 385 if (is_el1_mte_sync_tag_check_fault(esr)) { 386 do_tag_recovery(addr, esr, regs); 387 388 return; 389 } 390 391 if (is_el1_permission_fault(addr, esr, regs)) { 392 if (esr & ESR_ELx_WNR) 393 msg = "write to read-only memory"; 394 else if (is_el1_instruction_abort(esr)) 395 msg = "execute from non-executable memory"; 396 else 397 msg = "read from unreadable memory"; 398 } else if (addr < PAGE_SIZE) { 399 msg = "NULL pointer dereference"; 400 } else { 401 if (esr_fsc_is_translation_fault(esr) && 402 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) 403 return; 404 405 msg = "paging request"; 406 } 407 408 if (efi_runtime_fixup_exception(regs, msg)) 409 return; 410 411 die_kernel_fault(msg, addr, esr, regs); 412 } 413 414 static void set_thread_esr(unsigned long address, unsigned long esr) 415 { 416 current->thread.fault_address = address; 417 418 /* 419 * If the faulting address is in the kernel, we must sanitize the ESR. 420 * From userspace's point of view, kernel-only mappings don't exist 421 * at all, so we report them as level 0 translation faults. 422 * (This is not quite the way that "no mapping there at all" behaves: 423 * an alignment fault not caused by the memory type would take 424 * precedence over translation fault for a real access to empty 425 * space. Unfortunately we can't easily distinguish "alignment fault 426 * not caused by memory type" from "alignment fault caused by memory 427 * type", so we ignore this wrinkle and just return the translation 428 * fault.) 429 */ 430 if (!is_ttbr0_addr(current->thread.fault_address)) { 431 switch (ESR_ELx_EC(esr)) { 432 case ESR_ELx_EC_DABT_LOW: 433 /* 434 * These bits provide only information about the 435 * faulting instruction, which userspace knows already. 436 * We explicitly clear bits which are architecturally 437 * RES0 in case they are given meanings in future. 438 * We always report the ESR as if the fault was taken 439 * to EL1 and so ISV and the bits in ISS[23:14] are 440 * clear. (In fact it always will be a fault to EL1.) 441 */ 442 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 443 ESR_ELx_CM | ESR_ELx_WNR; 444 esr |= ESR_ELx_FSC_FAULT; 445 break; 446 case ESR_ELx_EC_IABT_LOW: 447 /* 448 * Claim a level 0 translation fault. 449 * All other bits are architecturally RES0 for faults 450 * reported with that DFSC value, so we clear them. 451 */ 452 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 453 esr |= ESR_ELx_FSC_FAULT; 454 break; 455 default: 456 /* 457 * This should never happen (entry.S only brings us 458 * into this code for insn and data aborts from a lower 459 * exception level). Fail safe by not providing an ESR 460 * context record at all. 461 */ 462 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); 463 esr = 0; 464 break; 465 } 466 } 467 468 current->thread.fault_code = esr; 469 } 470 471 static void do_bad_area(unsigned long far, unsigned long esr, 472 struct pt_regs *regs) 473 { 474 unsigned long addr = untagged_addr(far); 475 476 /* 477 * If we are in kernel mode at this point, we have no context to 478 * handle this fault with. 479 */ 480 if (user_mode(regs)) { 481 const struct fault_info *inf = esr_to_fault_info(esr); 482 483 set_thread_esr(addr, esr); 484 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); 485 } else { 486 __do_kernel_fault(addr, esr, regs); 487 } 488 } 489 490 static bool fault_from_pkey(unsigned long esr, struct vm_area_struct *vma, 491 unsigned int mm_flags) 492 { 493 unsigned long iss2 = ESR_ELx_ISS2(esr); 494 495 if (!system_supports_poe()) 496 return false; 497 498 if (esr_fsc_is_permission_fault(esr) && (iss2 & ESR_ELx_Overlay)) 499 return true; 500 501 return !arch_vma_access_permitted(vma, 502 mm_flags & FAULT_FLAG_WRITE, 503 mm_flags & FAULT_FLAG_INSTRUCTION, 504 false); 505 } 506 507 static bool is_gcs_fault(unsigned long esr) 508 { 509 if (!esr_is_data_abort(esr)) 510 return false; 511 512 return ESR_ELx_ISS2(esr) & ESR_ELx_GCS; 513 } 514 515 static bool is_el0_instruction_abort(unsigned long esr) 516 { 517 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 518 } 519 520 /* 521 * Note: not valid for EL1 DC IVAC, but we never use that such that it 522 * should fault. EL0 cannot issue DC IVAC (undef). 523 */ 524 static bool is_write_abort(unsigned long esr) 525 { 526 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 527 } 528 529 static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr) 530 { 531 if (!system_supports_gcs()) 532 return false; 533 534 if (unlikely(is_gcs_fault(esr))) { 535 /* GCS accesses must be performed on a GCS page */ 536 if (!(vma->vm_flags & VM_SHADOW_STACK)) 537 return true; 538 } else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) { 539 /* Only GCS operations can write to a GCS page */ 540 return esr_is_data_abort(esr) && is_write_abort(esr); 541 } 542 543 return false; 544 } 545 546 static int __kprobes do_page_fault(unsigned long far, unsigned long esr, 547 struct pt_regs *regs) 548 { 549 const struct fault_info *inf; 550 struct mm_struct *mm = current->mm; 551 vm_fault_t fault; 552 unsigned long vm_flags; 553 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 554 unsigned long addr = untagged_addr(far); 555 struct vm_area_struct *vma; 556 int si_code; 557 int pkey = -1; 558 559 if (kprobe_page_fault(regs, esr)) 560 return 0; 561 562 /* 563 * If we're in an interrupt or have no user context, we must not take 564 * the fault. 565 */ 566 if (faulthandler_disabled() || !mm) 567 goto no_context; 568 569 if (user_mode(regs)) 570 mm_flags |= FAULT_FLAG_USER; 571 572 /* 573 * vm_flags tells us what bits we must have in vma->vm_flags 574 * for the fault to be benign, __do_page_fault() would check 575 * vma->vm_flags & vm_flags and returns an error if the 576 * intersection is empty 577 */ 578 if (is_el0_instruction_abort(esr)) { 579 /* It was exec fault */ 580 vm_flags = VM_EXEC; 581 mm_flags |= FAULT_FLAG_INSTRUCTION; 582 } else if (is_gcs_fault(esr)) { 583 /* 584 * The GCS permission on a page implies both read and 585 * write so always handle any GCS fault as a write fault, 586 * we need to trigger CoW even for GCS reads. 587 */ 588 vm_flags = VM_WRITE; 589 mm_flags |= FAULT_FLAG_WRITE; 590 } else if (is_write_abort(esr)) { 591 /* It was write fault */ 592 vm_flags = VM_WRITE; 593 mm_flags |= FAULT_FLAG_WRITE; 594 } else { 595 /* It was read fault */ 596 vm_flags = VM_READ; 597 /* Write implies read */ 598 vm_flags |= VM_WRITE; 599 /* If EPAN is absent then exec implies read */ 600 if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN)) 601 vm_flags |= VM_EXEC; 602 } 603 604 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 605 if (is_el1_instruction_abort(esr)) 606 die_kernel_fault("execution of user memory", 607 addr, esr, regs); 608 609 if (!search_exception_tables(regs->pc)) 610 die_kernel_fault("access to user memory outside uaccess routines", 611 addr, esr, regs); 612 } 613 614 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 615 616 if (!(mm_flags & FAULT_FLAG_USER)) 617 goto lock_mmap; 618 619 vma = lock_vma_under_rcu(mm, addr); 620 if (!vma) 621 goto lock_mmap; 622 623 if (is_invalid_gcs_access(vma, esr)) { 624 vma_end_read(vma); 625 fault = 0; 626 si_code = SEGV_ACCERR; 627 goto bad_area; 628 } 629 630 if (!(vma->vm_flags & vm_flags)) { 631 vma_end_read(vma); 632 fault = 0; 633 si_code = SEGV_ACCERR; 634 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 635 goto bad_area; 636 } 637 638 if (fault_from_pkey(esr, vma, mm_flags)) { 639 pkey = vma_pkey(vma); 640 vma_end_read(vma); 641 fault = 0; 642 si_code = SEGV_PKUERR; 643 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 644 goto bad_area; 645 } 646 647 fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs); 648 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 649 vma_end_read(vma); 650 651 if (!(fault & VM_FAULT_RETRY)) { 652 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 653 goto done; 654 } 655 count_vm_vma_lock_event(VMA_LOCK_RETRY); 656 if (fault & VM_FAULT_MAJOR) 657 mm_flags |= FAULT_FLAG_TRIED; 658 659 /* Quick path to respond to signals */ 660 if (fault_signal_pending(fault, regs)) { 661 if (!user_mode(regs)) 662 goto no_context; 663 return 0; 664 } 665 lock_mmap: 666 667 retry: 668 vma = lock_mm_and_find_vma(mm, addr, regs); 669 if (unlikely(!vma)) { 670 fault = 0; 671 si_code = SEGV_MAPERR; 672 goto bad_area; 673 } 674 675 if (!(vma->vm_flags & vm_flags)) { 676 mmap_read_unlock(mm); 677 fault = 0; 678 si_code = SEGV_ACCERR; 679 goto bad_area; 680 } 681 682 if (fault_from_pkey(esr, vma, mm_flags)) { 683 pkey = vma_pkey(vma); 684 mmap_read_unlock(mm); 685 fault = 0; 686 si_code = SEGV_PKUERR; 687 goto bad_area; 688 } 689 690 fault = handle_mm_fault(vma, addr, mm_flags, regs); 691 692 /* Quick path to respond to signals */ 693 if (fault_signal_pending(fault, regs)) { 694 if (!user_mode(regs)) 695 goto no_context; 696 return 0; 697 } 698 699 /* The fault is fully completed (including releasing mmap lock) */ 700 if (fault & VM_FAULT_COMPLETED) 701 return 0; 702 703 if (fault & VM_FAULT_RETRY) { 704 mm_flags |= FAULT_FLAG_TRIED; 705 goto retry; 706 } 707 mmap_read_unlock(mm); 708 709 done: 710 /* Handle the "normal" (no error) case first. */ 711 if (likely(!(fault & VM_FAULT_ERROR))) 712 return 0; 713 714 si_code = SEGV_MAPERR; 715 bad_area: 716 /* 717 * If we are in kernel mode at this point, we have no context to 718 * handle this fault with. 719 */ 720 if (!user_mode(regs)) 721 goto no_context; 722 723 if (fault & VM_FAULT_OOM) { 724 /* 725 * We ran out of memory, call the OOM killer, and return to 726 * userspace (which will retry the fault, or kill us if we got 727 * oom-killed). 728 */ 729 pagefault_out_of_memory(); 730 return 0; 731 } 732 733 inf = esr_to_fault_info(esr); 734 set_thread_esr(addr, esr); 735 if (fault & VM_FAULT_SIGBUS) { 736 /* 737 * We had some memory, but were unable to successfully fix up 738 * this page fault. 739 */ 740 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); 741 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 742 unsigned int lsb; 743 744 lsb = PAGE_SHIFT; 745 if (fault & VM_FAULT_HWPOISON_LARGE) 746 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 747 748 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); 749 } else { 750 /* 751 * The pkey value that we return to userspace can be different 752 * from the pkey that caused the fault. 753 * 754 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 755 * 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page 756 * 3. T1 : faults... 757 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 758 * 5. T1 : enters fault handler, takes mmap_lock, etc... 759 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 760 * faulted on a pte with its pkey=4. 761 */ 762 /* Something tried to access memory that out of memory map */ 763 if (si_code == SEGV_PKUERR) 764 arm64_force_sig_fault_pkey(far, inf->name, pkey); 765 else 766 arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name); 767 } 768 769 return 0; 770 771 no_context: 772 __do_kernel_fault(addr, esr, regs); 773 return 0; 774 } 775 776 static int __kprobes do_translation_fault(unsigned long far, 777 unsigned long esr, 778 struct pt_regs *regs) 779 { 780 unsigned long addr = untagged_addr(far); 781 782 if (is_ttbr0_addr(addr)) 783 return do_page_fault(far, esr, regs); 784 785 do_bad_area(far, esr, regs); 786 return 0; 787 } 788 789 static int do_alignment_fault(unsigned long far, unsigned long esr, 790 struct pt_regs *regs) 791 { 792 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) && 793 compat_user_mode(regs)) 794 return do_compat_alignment_fixup(far, regs); 795 do_bad_area(far, esr, regs); 796 return 0; 797 } 798 799 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) 800 { 801 return 1; /* "fault" */ 802 } 803 804 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) 805 { 806 const struct fault_info *inf; 807 unsigned long siaddr; 808 809 inf = esr_to_fault_info(esr); 810 811 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 812 /* 813 * APEI claimed this as a firmware-first notification. 814 * Some processing deferred to task_work before ret_to_user(). 815 */ 816 return 0; 817 } 818 819 if (esr & ESR_ELx_FnV) { 820 siaddr = 0; 821 } else { 822 /* 823 * The architecture specifies that the tag bits of FAR_EL1 are 824 * UNKNOWN for synchronous external aborts. Mask them out now 825 * so that userspace doesn't see them. 826 */ 827 siaddr = untagged_addr(far); 828 } 829 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 830 831 return 0; 832 } 833 834 static int do_tag_check_fault(unsigned long far, unsigned long esr, 835 struct pt_regs *regs) 836 { 837 /* 838 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN 839 * for tag check faults. Set them to corresponding bits in the untagged 840 * address. 841 */ 842 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); 843 do_bad_area(far, esr, regs); 844 return 0; 845 } 846 847 static const struct fault_info fault_info[] = { 848 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 849 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 850 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 851 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 852 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 853 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 854 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 855 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 856 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" }, 857 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 858 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 859 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 860 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" }, 861 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 862 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 863 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 864 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 865 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 866 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 867 { do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" }, 868 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 869 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 870 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 871 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 872 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 873 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 874 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 875 { do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 876 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 877 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 878 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 879 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 880 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 881 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 882 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 883 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 884 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 885 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 886 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 887 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 888 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 889 { do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" }, 890 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 891 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" }, 892 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 893 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 894 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 895 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 896 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 897 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 898 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 899 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 900 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 901 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 902 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 903 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 904 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 905 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 906 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 907 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 908 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 909 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 910 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 911 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 912 }; 913 914 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) 915 { 916 const struct fault_info *inf = esr_to_fault_info(esr); 917 unsigned long addr = untagged_addr(far); 918 919 if (!inf->fn(far, esr, regs)) 920 return; 921 922 if (!user_mode(regs)) 923 die_kernel_fault(inf->name, addr, esr, regs); 924 925 /* 926 * At this point we have an unrecognized fault type whose tag bits may 927 * have been defined as UNKNOWN. Therefore we only expose the untagged 928 * address to the signal handler. 929 */ 930 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); 931 } 932 NOKPROBE_SYMBOL(do_mem_abort); 933 934 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) 935 { 936 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, 937 addr, esr); 938 } 939 NOKPROBE_SYMBOL(do_sp_pc_abort); 940 941 /* 942 * __refdata because early_brk64 is __init, but the reference to it is 943 * clobbered at arch_initcall time. 944 * See traps.c and debug-monitors.c:debug_traps_init(). 945 */ 946 static struct fault_info __refdata debug_fault_info[] = { 947 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 948 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 949 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 950 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 951 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 952 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 953 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 954 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 955 }; 956 957 void __init hook_debug_fault_code(int nr, 958 int (*fn)(unsigned long, unsigned long, struct pt_regs *), 959 int sig, int code, const char *name) 960 { 961 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 962 963 debug_fault_info[nr].fn = fn; 964 debug_fault_info[nr].sig = sig; 965 debug_fault_info[nr].code = code; 966 debug_fault_info[nr].name = name; 967 } 968 969 /* 970 * In debug exception context, we explicitly disable preemption despite 971 * having interrupts disabled. 972 * This serves two purposes: it makes it much less likely that we would 973 * accidentally schedule in exception context and it will force a warning 974 * if we somehow manage to schedule by accident. 975 */ 976 static void debug_exception_enter(struct pt_regs *regs) 977 { 978 preempt_disable(); 979 980 /* This code is a bit fragile. Test it. */ 981 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 982 } 983 NOKPROBE_SYMBOL(debug_exception_enter); 984 985 static void debug_exception_exit(struct pt_regs *regs) 986 { 987 preempt_enable_no_resched(); 988 } 989 NOKPROBE_SYMBOL(debug_exception_exit); 990 991 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr, 992 struct pt_regs *regs) 993 { 994 const struct fault_info *inf = esr_to_debug_fault_info(esr); 995 unsigned long pc = instruction_pointer(regs); 996 997 debug_exception_enter(regs); 998 999 if (user_mode(regs) && !is_ttbr0_addr(pc)) 1000 arm64_apply_bp_hardening(); 1001 1002 if (inf->fn(addr_if_watchpoint, esr, regs)) { 1003 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); 1004 } 1005 1006 debug_exception_exit(regs); 1007 } 1008 NOKPROBE_SYMBOL(do_debug_exception); 1009 1010 /* 1011 * Used during anonymous page fault handling. 1012 */ 1013 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 1014 unsigned long vaddr) 1015 { 1016 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; 1017 1018 /* 1019 * If the page is mapped with PROT_MTE, initialise the tags at the 1020 * point of allocation and page zeroing as this is usually faster than 1021 * separate DC ZVA and STGM. 1022 */ 1023 if (vma->vm_flags & VM_MTE) 1024 flags |= __GFP_ZEROTAGS; 1025 1026 return vma_alloc_folio(flags, 0, vma, vaddr, false); 1027 } 1028 1029 void tag_clear_highpage(struct page *page) 1030 { 1031 /* Newly allocated page, shouldn't have been tagged yet */ 1032 WARN_ON_ONCE(!try_page_mte_tagging(page)); 1033 mte_zero_clear_page_tags(page_address(page)); 1034 set_page_mte_tagged(page); 1035 } 1036