1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/kfence.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/hardirq.h> 17 #include <linux/init.h> 18 #include <linux/kasan.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/page-flags.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/highmem.h> 25 #include <linux/perf_event.h> 26 #include <linux/pkeys.h> 27 #include <linux/preempt.h> 28 #include <linux/hugetlb.h> 29 30 #include <asm/acpi.h> 31 #include <asm/bug.h> 32 #include <asm/cmpxchg.h> 33 #include <asm/cpufeature.h> 34 #include <asm/efi.h> 35 #include <asm/exception.h> 36 #include <asm/daifflags.h> 37 #include <asm/debug-monitors.h> 38 #include <asm/esr.h> 39 #include <asm/kprobes.h> 40 #include <asm/mte.h> 41 #include <asm/processor.h> 42 #include <asm/sysreg.h> 43 #include <asm/system_misc.h> 44 #include <asm/tlbflush.h> 45 #include <asm/traps.h> 46 47 struct fault_info { 48 int (*fn)(unsigned long far, unsigned long esr, 49 struct pt_regs *regs); 50 int sig; 51 int code; 52 const char *name; 53 }; 54 55 static const struct fault_info fault_info[]; 56 57 static inline const struct fault_info *esr_to_fault_info(unsigned long esr) 58 { 59 return fault_info + (esr & ESR_ELx_FSC); 60 } 61 62 static void data_abort_decode(unsigned long esr) 63 { 64 unsigned long iss2 = ESR_ELx_ISS2(esr); 65 66 pr_alert("Data abort info:\n"); 67 68 if (esr & ESR_ELx_ISV) { 69 pr_alert(" Access size = %u byte(s)\n", 70 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 71 pr_alert(" SSE = %lu, SRT = %lu\n", 72 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 73 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 74 pr_alert(" SF = %lu, AR = %lu\n", 75 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 76 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 77 } else { 78 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n", 79 esr & ESR_ELx_ISS_MASK, iss2); 80 } 81 82 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n", 83 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 84 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT, 85 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT, 86 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT); 87 88 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n", 89 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT, 90 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT, 91 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT, 92 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT); 93 } 94 95 static void mem_abort_decode(unsigned long esr) 96 { 97 pr_alert("Mem abort info:\n"); 98 99 pr_alert(" ESR = 0x%016lx\n", esr); 100 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 101 ESR_ELx_EC(esr), esr_get_class_string(esr), 102 (esr & ESR_ELx_IL) ? 32 : 16); 103 pr_alert(" SET = %lu, FnV = %lu\n", 104 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 105 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 106 pr_alert(" EA = %lu, S1PTW = %lu\n", 107 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 108 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 109 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), 110 esr_to_fault_info(esr)->name); 111 112 if (esr_is_data_abort(esr)) 113 data_abort_decode(esr); 114 } 115 116 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 117 { 118 /* Either init_pg_dir or swapper_pg_dir */ 119 if (mm == &init_mm) 120 return __pa_symbol(mm->pgd); 121 122 return (unsigned long)virt_to_phys(mm->pgd); 123 } 124 125 /* 126 * Dump out the page tables associated with 'addr' in the currently active mm. 127 */ 128 static void show_pte(unsigned long addr) 129 { 130 struct mm_struct *mm; 131 pgd_t *pgdp; 132 pgd_t pgd; 133 134 if (is_ttbr0_addr(addr)) { 135 /* TTBR0 */ 136 mm = current->active_mm; 137 if (mm == &init_mm) { 138 pr_alert("[%016lx] user address but active_mm is swapper\n", 139 addr); 140 return; 141 } 142 } else if (is_ttbr1_addr(addr)) { 143 /* TTBR1 */ 144 mm = &init_mm; 145 } else { 146 pr_alert("[%016lx] address between user and kernel address ranges\n", 147 addr); 148 return; 149 } 150 151 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 152 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 153 vabits_actual, mm_to_pgd_phys(mm)); 154 pgdp = pgd_offset(mm, addr); 155 pgd = READ_ONCE(*pgdp); 156 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 157 158 do { 159 p4d_t *p4dp, p4d; 160 pud_t *pudp, pud; 161 pmd_t *pmdp, pmd; 162 pte_t *ptep, pte; 163 164 if (pgd_none(pgd) || pgd_bad(pgd)) 165 break; 166 167 p4dp = p4d_offset(pgdp, addr); 168 p4d = READ_ONCE(*p4dp); 169 pr_cont(", p4d=%016llx", p4d_val(p4d)); 170 if (p4d_none(p4d) || p4d_bad(p4d)) 171 break; 172 173 pudp = pud_offset(p4dp, addr); 174 pud = READ_ONCE(*pudp); 175 pr_cont(", pud=%016llx", pud_val(pud)); 176 if (pud_none(pud) || pud_bad(pud)) 177 break; 178 179 pmdp = pmd_offset(pudp, addr); 180 pmd = READ_ONCE(*pmdp); 181 pr_cont(", pmd=%016llx", pmd_val(pmd)); 182 if (pmd_none(pmd) || pmd_bad(pmd)) 183 break; 184 185 ptep = pte_offset_map(pmdp, addr); 186 if (!ptep) 187 break; 188 189 pte = __ptep_get(ptep); 190 pr_cont(", pte=%016llx", pte_val(pte)); 191 pte_unmap(ptep); 192 } while(0); 193 194 pr_cont("\n"); 195 } 196 197 /* 198 * This function sets the access flags (dirty, accessed), as well as write 199 * permission, and only to a more permissive setting. 200 * 201 * It needs to cope with hardware update of the accessed/dirty state by other 202 * agents in the system and can safely skip the __sync_icache_dcache() call as, 203 * like __set_ptes(), the PTE is never changed from no-exec to exec here. 204 * 205 * Returns whether or not the PTE actually changed. 206 */ 207 int __ptep_set_access_flags(struct vm_area_struct *vma, 208 unsigned long address, pte_t *ptep, 209 pte_t entry, int dirty) 210 { 211 pteval_t old_pteval, pteval; 212 pte_t pte = __ptep_get(ptep); 213 214 if (pte_same(pte, entry)) 215 return 0; 216 217 /* only preserve the access flags and write permission */ 218 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 219 220 /* 221 * Setting the flags must be done atomically to avoid racing with the 222 * hardware update of the access/dirty state. The PTE_RDONLY bit must 223 * be set to the most permissive (lowest value) of *ptep and entry 224 * (calculated as: a & b == ~(~a | ~b)). 225 */ 226 pte_val(entry) ^= PTE_RDONLY; 227 pteval = pte_val(pte); 228 do { 229 old_pteval = pteval; 230 pteval ^= PTE_RDONLY; 231 pteval |= pte_val(entry); 232 pteval ^= PTE_RDONLY; 233 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 234 } while (pteval != old_pteval); 235 236 /* Invalidate a stale read-only entry */ 237 if (dirty) 238 flush_tlb_page(vma, address); 239 return 1; 240 } 241 242 static bool is_el1_instruction_abort(unsigned long esr) 243 { 244 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 245 } 246 247 static bool is_el1_data_abort(unsigned long esr) 248 { 249 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; 250 } 251 252 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, 253 struct pt_regs *regs) 254 { 255 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) 256 return false; 257 258 if (esr_fsc_is_permission_fault(esr)) 259 return true; 260 261 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 262 return esr_fsc_is_translation_fault(esr) && 263 (regs->pstate & PSR_PAN_BIT); 264 265 return false; 266 } 267 268 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 269 unsigned long esr, 270 struct pt_regs *regs) 271 { 272 unsigned long flags; 273 u64 par, dfsc; 274 275 if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr)) 276 return false; 277 278 local_irq_save(flags); 279 asm volatile("at s1e1r, %0" :: "r" (addr)); 280 isb(); 281 par = read_sysreg_par(); 282 local_irq_restore(flags); 283 284 /* 285 * If we now have a valid translation, treat the translation fault as 286 * spurious. 287 */ 288 if (!(par & SYS_PAR_EL1_F)) 289 return true; 290 291 /* 292 * If we got a different type of fault from the AT instruction, 293 * treat the translation fault as spurious. 294 */ 295 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 296 return !esr_fsc_is_translation_fault(dfsc); 297 } 298 299 static void die_kernel_fault(const char *msg, unsigned long addr, 300 unsigned long esr, struct pt_regs *regs) 301 { 302 bust_spinlocks(1); 303 304 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 305 addr); 306 307 kasan_non_canonical_hook(addr); 308 309 mem_abort_decode(esr); 310 311 show_pte(addr); 312 die("Oops", regs, esr); 313 bust_spinlocks(0); 314 make_task_dead(SIGKILL); 315 } 316 317 #ifdef CONFIG_KASAN_HW_TAGS 318 static void report_tag_fault(unsigned long addr, unsigned long esr, 319 struct pt_regs *regs) 320 { 321 /* 322 * SAS bits aren't set for all faults reported in EL1, so we can't 323 * find out access size. 324 */ 325 bool is_write = !!(esr & ESR_ELx_WNR); 326 kasan_report((void *)addr, 0, is_write, regs->pc); 327 } 328 #else 329 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ 330 static inline void report_tag_fault(unsigned long addr, unsigned long esr, 331 struct pt_regs *regs) { } 332 #endif 333 334 static void do_tag_recovery(unsigned long addr, unsigned long esr, 335 struct pt_regs *regs) 336 { 337 338 report_tag_fault(addr, esr, regs); 339 340 /* 341 * Disable MTE Tag Checking on the local CPU for the current EL. 342 * It will be done lazily on the other CPUs when they will hit a 343 * tag fault. 344 */ 345 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 346 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); 347 isb(); 348 } 349 350 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) 351 { 352 unsigned long fsc = esr & ESR_ELx_FSC; 353 354 if (!is_el1_data_abort(esr)) 355 return false; 356 357 if (fsc == ESR_ELx_FSC_MTE) 358 return true; 359 360 return false; 361 } 362 363 static void __do_kernel_fault(unsigned long addr, unsigned long esr, 364 struct pt_regs *regs) 365 { 366 const char *msg; 367 368 /* 369 * Are we prepared to handle this kernel fault? 370 * We are almost certainly not prepared to handle instruction faults. 371 */ 372 if (!is_el1_instruction_abort(esr) && fixup_exception(regs, esr)) 373 return; 374 375 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 376 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 377 return; 378 379 if (is_el1_mte_sync_tag_check_fault(esr)) { 380 do_tag_recovery(addr, esr, regs); 381 382 return; 383 } 384 385 if (is_el1_permission_fault(addr, esr, regs)) { 386 if (esr & ESR_ELx_WNR) 387 msg = "write to read-only memory"; 388 else if (is_el1_instruction_abort(esr)) 389 msg = "execute from non-executable memory"; 390 else 391 msg = "read from unreadable memory"; 392 } else if (addr < PAGE_SIZE) { 393 msg = "NULL pointer dereference"; 394 } else { 395 if (esr_fsc_is_translation_fault(esr) && 396 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) 397 return; 398 399 msg = "paging request"; 400 } 401 402 if (efi_runtime_fixup_exception(regs, msg)) 403 return; 404 405 die_kernel_fault(msg, addr, esr, regs); 406 } 407 408 static void set_thread_esr(unsigned long address, unsigned long esr) 409 { 410 current->thread.fault_address = address; 411 412 /* 413 * If the faulting address is in the kernel, we must sanitize the ESR. 414 * From userspace's point of view, kernel-only mappings don't exist 415 * at all, so we report them as level 0 translation faults. 416 * (This is not quite the way that "no mapping there at all" behaves: 417 * an alignment fault not caused by the memory type would take 418 * precedence over translation fault for a real access to empty 419 * space. Unfortunately we can't easily distinguish "alignment fault 420 * not caused by memory type" from "alignment fault caused by memory 421 * type", so we ignore this wrinkle and just return the translation 422 * fault.) 423 */ 424 if (!is_ttbr0_addr(current->thread.fault_address)) { 425 switch (ESR_ELx_EC(esr)) { 426 case ESR_ELx_EC_DABT_LOW: 427 /* 428 * These bits provide only information about the 429 * faulting instruction, which userspace knows already. 430 * We explicitly clear bits which are architecturally 431 * RES0 in case they are given meanings in future. 432 * We always report the ESR as if the fault was taken 433 * to EL1 and so ISV and the bits in ISS[23:14] are 434 * clear. (In fact it always will be a fault to EL1.) 435 */ 436 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 437 ESR_ELx_CM | ESR_ELx_WNR; 438 esr |= ESR_ELx_FSC_FAULT; 439 break; 440 case ESR_ELx_EC_IABT_LOW: 441 /* 442 * Claim a level 0 translation fault. 443 * All other bits are architecturally RES0 for faults 444 * reported with that DFSC value, so we clear them. 445 */ 446 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 447 esr |= ESR_ELx_FSC_FAULT; 448 break; 449 default: 450 /* 451 * This should never happen (entry.S only brings us 452 * into this code for insn and data aborts from a lower 453 * exception level). Fail safe by not providing an ESR 454 * context record at all. 455 */ 456 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); 457 esr = 0; 458 break; 459 } 460 } 461 462 current->thread.fault_code = esr; 463 } 464 465 static void do_bad_area(unsigned long far, unsigned long esr, 466 struct pt_regs *regs) 467 { 468 unsigned long addr = untagged_addr(far); 469 470 /* 471 * If we are in kernel mode at this point, we have no context to 472 * handle this fault with. 473 */ 474 if (user_mode(regs)) { 475 const struct fault_info *inf = esr_to_fault_info(esr); 476 477 set_thread_esr(addr, esr); 478 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); 479 } else { 480 __do_kernel_fault(addr, esr, regs); 481 } 482 } 483 484 static bool fault_from_pkey(struct vm_area_struct *vma, unsigned int mm_flags) 485 { 486 if (!system_supports_poe()) 487 return false; 488 489 /* 490 * We do not check whether an Overlay fault has occurred because we 491 * cannot make a decision based solely on its value: 492 * 493 * - If Overlay is set, a fault did occur due to POE, but it may be 494 * spurious in those cases where we update POR_EL0 without ISB (e.g. 495 * on context-switch). We would then need to manually check POR_EL0 496 * against vma_pkey(vma), which is exactly what 497 * arch_vma_access_permitted() does. 498 * 499 * - If Overlay is not set, we may still need to report a pkey fault. 500 * This is the case if an access was made within a mapping but with no 501 * page mapped, and POR_EL0 forbids the access (according to 502 * vma_pkey()). Such access will result in a SIGSEGV regardless 503 * because core code checks arch_vma_access_permitted(), but in order 504 * to report the correct error code - SEGV_PKUERR - we must handle 505 * that case here. 506 */ 507 return !arch_vma_access_permitted(vma, 508 mm_flags & FAULT_FLAG_WRITE, 509 mm_flags & FAULT_FLAG_INSTRUCTION, 510 false); 511 } 512 513 static bool is_gcs_fault(unsigned long esr) 514 { 515 if (!esr_is_data_abort(esr)) 516 return false; 517 518 return ESR_ELx_ISS2(esr) & ESR_ELx_GCS; 519 } 520 521 static bool is_el0_instruction_abort(unsigned long esr) 522 { 523 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 524 } 525 526 /* 527 * Note: not valid for EL1 DC IVAC, but we never use that such that it 528 * should fault. EL0 cannot issue DC IVAC (undef). 529 */ 530 static bool is_write_abort(unsigned long esr) 531 { 532 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 533 } 534 535 static bool is_invalid_gcs_access(struct vm_area_struct *vma, u64 esr) 536 { 537 if (!system_supports_gcs()) 538 return false; 539 540 if (unlikely(is_gcs_fault(esr))) { 541 /* GCS accesses must be performed on a GCS page */ 542 if (!(vma->vm_flags & VM_SHADOW_STACK)) 543 return true; 544 } else if (unlikely(vma->vm_flags & VM_SHADOW_STACK)) { 545 /* Only GCS operations can write to a GCS page */ 546 return esr_is_data_abort(esr) && is_write_abort(esr); 547 } 548 549 return false; 550 } 551 552 static int __kprobes do_page_fault(unsigned long far, unsigned long esr, 553 struct pt_regs *regs) 554 { 555 const struct fault_info *inf; 556 struct mm_struct *mm = current->mm; 557 vm_fault_t fault; 558 unsigned long vm_flags; 559 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 560 unsigned long addr = untagged_addr(far); 561 struct vm_area_struct *vma; 562 int si_code; 563 int pkey = -1; 564 565 if (kprobe_page_fault(regs, esr)) 566 return 0; 567 568 /* 569 * If we're in an interrupt or have no user context, we must not take 570 * the fault. 571 */ 572 if (faulthandler_disabled() || !mm) 573 goto no_context; 574 575 if (user_mode(regs)) 576 mm_flags |= FAULT_FLAG_USER; 577 578 /* 579 * vm_flags tells us what bits we must have in vma->vm_flags 580 * for the fault to be benign, __do_page_fault() would check 581 * vma->vm_flags & vm_flags and returns an error if the 582 * intersection is empty 583 */ 584 if (is_el0_instruction_abort(esr)) { 585 /* It was exec fault */ 586 vm_flags = VM_EXEC; 587 mm_flags |= FAULT_FLAG_INSTRUCTION; 588 } else if (is_gcs_fault(esr)) { 589 /* 590 * The GCS permission on a page implies both read and 591 * write so always handle any GCS fault as a write fault, 592 * we need to trigger CoW even for GCS reads. 593 */ 594 vm_flags = VM_WRITE; 595 mm_flags |= FAULT_FLAG_WRITE; 596 } else if (is_write_abort(esr)) { 597 /* It was write fault */ 598 vm_flags = VM_WRITE; 599 mm_flags |= FAULT_FLAG_WRITE; 600 } else { 601 /* It was read fault */ 602 vm_flags = VM_READ; 603 /* Write implies read */ 604 vm_flags |= VM_WRITE; 605 /* If EPAN is absent then exec implies read */ 606 if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN)) 607 vm_flags |= VM_EXEC; 608 } 609 610 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 611 if (is_el1_instruction_abort(esr)) 612 die_kernel_fault("execution of user memory", 613 addr, esr, regs); 614 615 if (!insn_may_access_user(regs->pc, esr)) 616 die_kernel_fault("access to user memory outside uaccess routines", 617 addr, esr, regs); 618 } 619 620 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 621 622 if (!(mm_flags & FAULT_FLAG_USER)) 623 goto lock_mmap; 624 625 vma = lock_vma_under_rcu(mm, addr); 626 if (!vma) 627 goto lock_mmap; 628 629 if (is_invalid_gcs_access(vma, esr)) { 630 vma_end_read(vma); 631 fault = 0; 632 si_code = SEGV_ACCERR; 633 goto bad_area; 634 } 635 636 if (!(vma->vm_flags & vm_flags)) { 637 vma_end_read(vma); 638 fault = 0; 639 si_code = SEGV_ACCERR; 640 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 641 goto bad_area; 642 } 643 644 if (fault_from_pkey(vma, mm_flags)) { 645 pkey = vma_pkey(vma); 646 vma_end_read(vma); 647 fault = 0; 648 si_code = SEGV_PKUERR; 649 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 650 goto bad_area; 651 } 652 653 fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs); 654 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 655 vma_end_read(vma); 656 657 if (!(fault & VM_FAULT_RETRY)) { 658 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 659 goto done; 660 } 661 count_vm_vma_lock_event(VMA_LOCK_RETRY); 662 if (fault & VM_FAULT_MAJOR) 663 mm_flags |= FAULT_FLAG_TRIED; 664 665 /* Quick path to respond to signals */ 666 if (fault_signal_pending(fault, regs)) { 667 if (!user_mode(regs)) 668 goto no_context; 669 return 0; 670 } 671 lock_mmap: 672 673 retry: 674 vma = lock_mm_and_find_vma(mm, addr, regs); 675 if (unlikely(!vma)) { 676 fault = 0; 677 si_code = SEGV_MAPERR; 678 goto bad_area; 679 } 680 681 if (!(vma->vm_flags & vm_flags)) { 682 mmap_read_unlock(mm); 683 fault = 0; 684 si_code = SEGV_ACCERR; 685 goto bad_area; 686 } 687 688 if (fault_from_pkey(vma, mm_flags)) { 689 pkey = vma_pkey(vma); 690 mmap_read_unlock(mm); 691 fault = 0; 692 si_code = SEGV_PKUERR; 693 goto bad_area; 694 } 695 696 fault = handle_mm_fault(vma, addr, mm_flags, regs); 697 698 /* Quick path to respond to signals */ 699 if (fault_signal_pending(fault, regs)) { 700 if (!user_mode(regs)) 701 goto no_context; 702 return 0; 703 } 704 705 /* The fault is fully completed (including releasing mmap lock) */ 706 if (fault & VM_FAULT_COMPLETED) 707 return 0; 708 709 if (fault & VM_FAULT_RETRY) { 710 mm_flags |= FAULT_FLAG_TRIED; 711 goto retry; 712 } 713 mmap_read_unlock(mm); 714 715 done: 716 /* Handle the "normal" (no error) case first. */ 717 if (likely(!(fault & VM_FAULT_ERROR))) 718 return 0; 719 720 si_code = SEGV_MAPERR; 721 bad_area: 722 /* 723 * If we are in kernel mode at this point, we have no context to 724 * handle this fault with. 725 */ 726 if (!user_mode(regs)) 727 goto no_context; 728 729 if (fault & VM_FAULT_OOM) { 730 /* 731 * We ran out of memory, call the OOM killer, and return to 732 * userspace (which will retry the fault, or kill us if we got 733 * oom-killed). 734 */ 735 pagefault_out_of_memory(); 736 return 0; 737 } 738 739 inf = esr_to_fault_info(esr); 740 set_thread_esr(addr, esr); 741 if (fault & VM_FAULT_SIGBUS) { 742 /* 743 * We had some memory, but were unable to successfully fix up 744 * this page fault. 745 */ 746 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); 747 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 748 unsigned int lsb; 749 750 lsb = PAGE_SHIFT; 751 if (fault & VM_FAULT_HWPOISON_LARGE) 752 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 753 754 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); 755 } else { 756 /* 757 * The pkey value that we return to userspace can be different 758 * from the pkey that caused the fault. 759 * 760 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 761 * 2. T1 : set POR_EL0 to deny access to pkey=4, touches, page 762 * 3. T1 : faults... 763 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 764 * 5. T1 : enters fault handler, takes mmap_lock, etc... 765 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 766 * faulted on a pte with its pkey=4. 767 */ 768 /* Something tried to access memory that out of memory map */ 769 if (si_code == SEGV_PKUERR) 770 arm64_force_sig_fault_pkey(far, inf->name, pkey); 771 else 772 arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name); 773 } 774 775 return 0; 776 777 no_context: 778 __do_kernel_fault(addr, esr, regs); 779 return 0; 780 } 781 782 static int __kprobes do_translation_fault(unsigned long far, 783 unsigned long esr, 784 struct pt_regs *regs) 785 { 786 unsigned long addr = untagged_addr(far); 787 788 if (is_ttbr0_addr(addr)) 789 return do_page_fault(far, esr, regs); 790 791 do_bad_area(far, esr, regs); 792 return 0; 793 } 794 795 static int do_alignment_fault(unsigned long far, unsigned long esr, 796 struct pt_regs *regs) 797 { 798 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) && 799 compat_user_mode(regs)) 800 return do_compat_alignment_fixup(far, regs); 801 do_bad_area(far, esr, regs); 802 return 0; 803 } 804 805 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) 806 { 807 return 1; /* "fault" */ 808 } 809 810 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) 811 { 812 const struct fault_info *inf; 813 unsigned long siaddr; 814 815 inf = esr_to_fault_info(esr); 816 817 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 818 /* 819 * APEI claimed this as a firmware-first notification. 820 * Some processing deferred to task_work before ret_to_user(). 821 */ 822 return 0; 823 } 824 825 if (esr & ESR_ELx_FnV) { 826 siaddr = 0; 827 } else { 828 /* 829 * The architecture specifies that the tag bits of FAR_EL1 are 830 * UNKNOWN for synchronous external aborts. Mask them out now 831 * so that userspace doesn't see them. 832 */ 833 siaddr = untagged_addr(far); 834 } 835 add_taint(TAINT_MACHINE_CHECK, LOCKDEP_STILL_OK); 836 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 837 838 return 0; 839 } 840 841 static int do_tag_check_fault(unsigned long far, unsigned long esr, 842 struct pt_regs *regs) 843 { 844 /* 845 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN 846 * for tag check faults. Set them to corresponding bits in the untagged 847 * address if ARM64_MTE_FAR isn't supported. 848 * Otherwise, bits 63:60 of FAR_EL1 are not UNKNOWN. 849 */ 850 if (!cpus_have_cap(ARM64_MTE_FAR)) 851 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); 852 853 do_bad_area(far, esr, regs); 854 return 0; 855 } 856 857 static const struct fault_info fault_info[] = { 858 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 859 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 860 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 861 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 862 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 863 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 864 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 865 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 866 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" }, 867 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 868 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 869 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 870 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" }, 871 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 872 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 873 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 874 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 875 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 876 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 877 { do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" }, 878 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 879 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 880 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 881 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 882 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 883 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 884 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 885 { do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 886 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 887 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 888 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 889 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 890 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 891 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 892 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 893 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 894 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 895 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 896 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 897 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 898 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 899 { do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" }, 900 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 901 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" }, 902 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 903 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 904 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 905 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 906 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 907 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 908 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 909 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 910 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 911 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 912 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 913 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 914 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 915 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 916 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 917 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 918 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 919 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 920 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 921 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 922 }; 923 924 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) 925 { 926 const struct fault_info *inf = esr_to_fault_info(esr); 927 unsigned long addr = untagged_addr(far); 928 929 if (!inf->fn(far, esr, regs)) 930 return; 931 932 if (!user_mode(regs)) 933 die_kernel_fault(inf->name, addr, esr, regs); 934 935 /* 936 * At this point we have an unrecognized fault type whose tag bits may 937 * have been defined as UNKNOWN. Therefore we only expose the untagged 938 * address to the signal handler. 939 */ 940 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); 941 } 942 NOKPROBE_SYMBOL(do_mem_abort); 943 944 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) 945 { 946 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, 947 addr, esr); 948 } 949 NOKPROBE_SYMBOL(do_sp_pc_abort); 950 951 /* 952 * Used during anonymous page fault handling. 953 */ 954 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 955 unsigned long vaddr) 956 { 957 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; 958 959 /* 960 * If the page is mapped with PROT_MTE, initialise the tags at the 961 * point of allocation and page zeroing as this is usually faster than 962 * separate DC ZVA and STGM. 963 */ 964 if (vma->vm_flags & VM_MTE) 965 flags |= __GFP_ZEROTAGS; 966 967 return vma_alloc_folio(flags, 0, vma, vaddr); 968 } 969 970 void tag_clear_highpage(struct page *page) 971 { 972 /* Newly allocated page, shouldn't have been tagged yet */ 973 WARN_ON_ONCE(!try_page_mte_tagging(page)); 974 mte_zero_clear_page_tags(page_address(page)); 975 set_page_mte_tagged(page); 976 } 977