1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/hardirq.h> 16 #include <linux/init.h> 17 #include <linux/kprobes.h> 18 #include <linux/uaccess.h> 19 #include <linux/page-flags.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sched/debug.h> 22 #include <linux/highmem.h> 23 #include <linux/perf_event.h> 24 #include <linux/preempt.h> 25 #include <linux/hugetlb.h> 26 27 #include <asm/acpi.h> 28 #include <asm/bug.h> 29 #include <asm/cmpxchg.h> 30 #include <asm/cpufeature.h> 31 #include <asm/exception.h> 32 #include <asm/daifflags.h> 33 #include <asm/debug-monitors.h> 34 #include <asm/esr.h> 35 #include <asm/kprobes.h> 36 #include <asm/processor.h> 37 #include <asm/sysreg.h> 38 #include <asm/system_misc.h> 39 #include <asm/pgtable.h> 40 #include <asm/tlbflush.h> 41 #include <asm/traps.h> 42 43 struct fault_info { 44 int (*fn)(unsigned long addr, unsigned int esr, 45 struct pt_regs *regs); 46 int sig; 47 int code; 48 const char *name; 49 }; 50 51 static const struct fault_info fault_info[]; 52 static struct fault_info debug_fault_info[]; 53 54 static inline const struct fault_info *esr_to_fault_info(unsigned int esr) 55 { 56 return fault_info + (esr & ESR_ELx_FSC); 57 } 58 59 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr) 60 { 61 return debug_fault_info + DBG_ESR_EVT(esr); 62 } 63 64 static void data_abort_decode(unsigned int esr) 65 { 66 pr_alert("Data abort info:\n"); 67 68 if (esr & ESR_ELx_ISV) { 69 pr_alert(" Access size = %u byte(s)\n", 70 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 71 pr_alert(" SSE = %lu, SRT = %lu\n", 72 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 73 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 74 pr_alert(" SF = %lu, AR = %lu\n", 75 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 76 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 77 } else { 78 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); 79 } 80 81 pr_alert(" CM = %lu, WnR = %lu\n", 82 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 83 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); 84 } 85 86 static void mem_abort_decode(unsigned int esr) 87 { 88 pr_alert("Mem abort info:\n"); 89 90 pr_alert(" ESR = 0x%08x\n", esr); 91 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 92 ESR_ELx_EC(esr), esr_get_class_string(esr), 93 (esr & ESR_ELx_IL) ? 32 : 16); 94 pr_alert(" SET = %lu, FnV = %lu\n", 95 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 96 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 97 pr_alert(" EA = %lu, S1PTW = %lu\n", 98 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 99 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 100 101 if (esr_is_data_abort(esr)) 102 data_abort_decode(esr); 103 } 104 105 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 106 { 107 /* Either init_pg_dir or swapper_pg_dir */ 108 if (mm == &init_mm) 109 return __pa_symbol(mm->pgd); 110 111 return (unsigned long)virt_to_phys(mm->pgd); 112 } 113 114 /* 115 * Dump out the page tables associated with 'addr' in the currently active mm. 116 */ 117 static void show_pte(unsigned long addr) 118 { 119 struct mm_struct *mm; 120 pgd_t *pgdp; 121 pgd_t pgd; 122 123 if (is_ttbr0_addr(addr)) { 124 /* TTBR0 */ 125 mm = current->active_mm; 126 if (mm == &init_mm) { 127 pr_alert("[%016lx] user address but active_mm is swapper\n", 128 addr); 129 return; 130 } 131 } else if (is_ttbr1_addr(addr)) { 132 /* TTBR1 */ 133 mm = &init_mm; 134 } else { 135 pr_alert("[%016lx] address between user and kernel address ranges\n", 136 addr); 137 return; 138 } 139 140 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 141 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 142 vabits_actual, mm_to_pgd_phys(mm)); 143 pgdp = pgd_offset(mm, addr); 144 pgd = READ_ONCE(*pgdp); 145 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 146 147 do { 148 pud_t *pudp, pud; 149 pmd_t *pmdp, pmd; 150 pte_t *ptep, pte; 151 152 if (pgd_none(pgd) || pgd_bad(pgd)) 153 break; 154 155 pudp = pud_offset(pgdp, addr); 156 pud = READ_ONCE(*pudp); 157 pr_cont(", pud=%016llx", pud_val(pud)); 158 if (pud_none(pud) || pud_bad(pud)) 159 break; 160 161 pmdp = pmd_offset(pudp, addr); 162 pmd = READ_ONCE(*pmdp); 163 pr_cont(", pmd=%016llx", pmd_val(pmd)); 164 if (pmd_none(pmd) || pmd_bad(pmd)) 165 break; 166 167 ptep = pte_offset_map(pmdp, addr); 168 pte = READ_ONCE(*ptep); 169 pr_cont(", pte=%016llx", pte_val(pte)); 170 pte_unmap(ptep); 171 } while(0); 172 173 pr_cont("\n"); 174 } 175 176 /* 177 * This function sets the access flags (dirty, accessed), as well as write 178 * permission, and only to a more permissive setting. 179 * 180 * It needs to cope with hardware update of the accessed/dirty state by other 181 * agents in the system and can safely skip the __sync_icache_dcache() call as, 182 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 183 * 184 * Returns whether or not the PTE actually changed. 185 */ 186 int ptep_set_access_flags(struct vm_area_struct *vma, 187 unsigned long address, pte_t *ptep, 188 pte_t entry, int dirty) 189 { 190 pteval_t old_pteval, pteval; 191 pte_t pte = READ_ONCE(*ptep); 192 193 if (pte_same(pte, entry)) 194 return 0; 195 196 /* only preserve the access flags and write permission */ 197 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 198 199 /* 200 * Setting the flags must be done atomically to avoid racing with the 201 * hardware update of the access/dirty state. The PTE_RDONLY bit must 202 * be set to the most permissive (lowest value) of *ptep and entry 203 * (calculated as: a & b == ~(~a | ~b)). 204 */ 205 pte_val(entry) ^= PTE_RDONLY; 206 pteval = pte_val(pte); 207 do { 208 old_pteval = pteval; 209 pteval ^= PTE_RDONLY; 210 pteval |= pte_val(entry); 211 pteval ^= PTE_RDONLY; 212 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 213 } while (pteval != old_pteval); 214 215 flush_tlb_fix_spurious_fault(vma, address); 216 return 1; 217 } 218 219 static bool is_el1_instruction_abort(unsigned int esr) 220 { 221 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 222 } 223 224 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr, 225 struct pt_regs *regs) 226 { 227 unsigned int ec = ESR_ELx_EC(esr); 228 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 229 230 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 231 return false; 232 233 if (fsc_type == ESR_ELx_FSC_PERM) 234 return true; 235 236 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 237 return fsc_type == ESR_ELx_FSC_FAULT && 238 (regs->pstate & PSR_PAN_BIT); 239 240 return false; 241 } 242 243 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 244 unsigned int esr, 245 struct pt_regs *regs) 246 { 247 unsigned long flags; 248 u64 par, dfsc; 249 250 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR || 251 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) 252 return false; 253 254 local_irq_save(flags); 255 asm volatile("at s1e1r, %0" :: "r" (addr)); 256 isb(); 257 par = read_sysreg(par_el1); 258 local_irq_restore(flags); 259 260 /* 261 * If we now have a valid translation, treat the translation fault as 262 * spurious. 263 */ 264 if (!(par & SYS_PAR_EL1_F)) 265 return true; 266 267 /* 268 * If we got a different type of fault from the AT instruction, 269 * treat the translation fault as spurious. 270 */ 271 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 272 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; 273 } 274 275 static void die_kernel_fault(const char *msg, unsigned long addr, 276 unsigned int esr, struct pt_regs *regs) 277 { 278 bust_spinlocks(1); 279 280 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 281 addr); 282 283 mem_abort_decode(esr); 284 285 show_pte(addr); 286 die("Oops", regs, esr); 287 bust_spinlocks(0); 288 do_exit(SIGKILL); 289 } 290 291 static void __do_kernel_fault(unsigned long addr, unsigned int esr, 292 struct pt_regs *regs) 293 { 294 const char *msg; 295 296 /* 297 * Are we prepared to handle this kernel fault? 298 * We are almost certainly not prepared to handle instruction faults. 299 */ 300 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 301 return; 302 303 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 304 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 305 return; 306 307 if (is_el1_permission_fault(addr, esr, regs)) { 308 if (esr & ESR_ELx_WNR) 309 msg = "write to read-only memory"; 310 else if (is_el1_instruction_abort(esr)) 311 msg = "execute from non-executable memory"; 312 else 313 msg = "read from unreadable memory"; 314 } else if (addr < PAGE_SIZE) { 315 msg = "NULL pointer dereference"; 316 } else { 317 msg = "paging request"; 318 } 319 320 die_kernel_fault(msg, addr, esr, regs); 321 } 322 323 static void set_thread_esr(unsigned long address, unsigned int esr) 324 { 325 current->thread.fault_address = address; 326 327 /* 328 * If the faulting address is in the kernel, we must sanitize the ESR. 329 * From userspace's point of view, kernel-only mappings don't exist 330 * at all, so we report them as level 0 translation faults. 331 * (This is not quite the way that "no mapping there at all" behaves: 332 * an alignment fault not caused by the memory type would take 333 * precedence over translation fault for a real access to empty 334 * space. Unfortunately we can't easily distinguish "alignment fault 335 * not caused by memory type" from "alignment fault caused by memory 336 * type", so we ignore this wrinkle and just return the translation 337 * fault.) 338 */ 339 if (!is_ttbr0_addr(current->thread.fault_address)) { 340 switch (ESR_ELx_EC(esr)) { 341 case ESR_ELx_EC_DABT_LOW: 342 /* 343 * These bits provide only information about the 344 * faulting instruction, which userspace knows already. 345 * We explicitly clear bits which are architecturally 346 * RES0 in case they are given meanings in future. 347 * We always report the ESR as if the fault was taken 348 * to EL1 and so ISV and the bits in ISS[23:14] are 349 * clear. (In fact it always will be a fault to EL1.) 350 */ 351 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 352 ESR_ELx_CM | ESR_ELx_WNR; 353 esr |= ESR_ELx_FSC_FAULT; 354 break; 355 case ESR_ELx_EC_IABT_LOW: 356 /* 357 * Claim a level 0 translation fault. 358 * All other bits are architecturally RES0 for faults 359 * reported with that DFSC value, so we clear them. 360 */ 361 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 362 esr |= ESR_ELx_FSC_FAULT; 363 break; 364 default: 365 /* 366 * This should never happen (entry.S only brings us 367 * into this code for insn and data aborts from a lower 368 * exception level). Fail safe by not providing an ESR 369 * context record at all. 370 */ 371 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); 372 esr = 0; 373 break; 374 } 375 } 376 377 current->thread.fault_code = esr; 378 } 379 380 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) 381 { 382 /* 383 * If we are in kernel mode at this point, we have no context to 384 * handle this fault with. 385 */ 386 if (user_mode(regs)) { 387 const struct fault_info *inf = esr_to_fault_info(esr); 388 389 set_thread_esr(addr, esr); 390 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr, 391 inf->name); 392 } else { 393 __do_kernel_fault(addr, esr, regs); 394 } 395 } 396 397 #define VM_FAULT_BADMAP 0x010000 398 #define VM_FAULT_BADACCESS 0x020000 399 400 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, 401 unsigned int mm_flags, unsigned long vm_flags) 402 { 403 struct vm_area_struct *vma = find_vma(mm, addr); 404 405 if (unlikely(!vma)) 406 return VM_FAULT_BADMAP; 407 408 /* 409 * Ok, we have a good vm_area for this memory access, so we can handle 410 * it. 411 */ 412 if (unlikely(vma->vm_start > addr)) { 413 if (!(vma->vm_flags & VM_GROWSDOWN)) 414 return VM_FAULT_BADMAP; 415 if (expand_stack(vma, addr)) 416 return VM_FAULT_BADMAP; 417 } 418 419 /* 420 * Check that the permissions on the VMA allow for the fault which 421 * occurred. 422 */ 423 if (!(vma->vm_flags & vm_flags)) 424 return VM_FAULT_BADACCESS; 425 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); 426 } 427 428 static bool is_el0_instruction_abort(unsigned int esr) 429 { 430 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 431 } 432 433 /* 434 * Note: not valid for EL1 DC IVAC, but we never use that such that it 435 * should fault. EL0 cannot issue DC IVAC (undef). 436 */ 437 static bool is_write_abort(unsigned int esr) 438 { 439 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 440 } 441 442 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, 443 struct pt_regs *regs) 444 { 445 const struct fault_info *inf; 446 struct mm_struct *mm = current->mm; 447 vm_fault_t fault, major = 0; 448 unsigned long vm_flags = VM_ACCESS_FLAGS; 449 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 450 451 if (kprobe_page_fault(regs, esr)) 452 return 0; 453 454 /* 455 * If we're in an interrupt or have no user context, we must not take 456 * the fault. 457 */ 458 if (faulthandler_disabled() || !mm) 459 goto no_context; 460 461 if (user_mode(regs)) 462 mm_flags |= FAULT_FLAG_USER; 463 464 if (is_el0_instruction_abort(esr)) { 465 vm_flags = VM_EXEC; 466 mm_flags |= FAULT_FLAG_INSTRUCTION; 467 } else if (is_write_abort(esr)) { 468 vm_flags = VM_WRITE; 469 mm_flags |= FAULT_FLAG_WRITE; 470 } 471 472 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 473 /* regs->orig_addr_limit may be 0 if we entered from EL0 */ 474 if (regs->orig_addr_limit == KERNEL_DS) 475 die_kernel_fault("access to user memory with fs=KERNEL_DS", 476 addr, esr, regs); 477 478 if (is_el1_instruction_abort(esr)) 479 die_kernel_fault("execution of user memory", 480 addr, esr, regs); 481 482 if (!search_exception_tables(regs->pc)) 483 die_kernel_fault("access to user memory outside uaccess routines", 484 addr, esr, regs); 485 } 486 487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 488 489 /* 490 * As per x86, we may deadlock here. However, since the kernel only 491 * validly references user space from well defined areas of the code, 492 * we can bug out early if this is from code which shouldn't. 493 */ 494 if (!down_read_trylock(&mm->mmap_sem)) { 495 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 496 goto no_context; 497 retry: 498 down_read(&mm->mmap_sem); 499 } else { 500 /* 501 * The above down_read_trylock() might have succeeded in which 502 * case, we'll have missed the might_sleep() from down_read(). 503 */ 504 might_sleep(); 505 #ifdef CONFIG_DEBUG_VM 506 if (!user_mode(regs) && !search_exception_tables(regs->pc)) { 507 up_read(&mm->mmap_sem); 508 goto no_context; 509 } 510 #endif 511 } 512 513 fault = __do_page_fault(mm, addr, mm_flags, vm_flags); 514 major |= fault & VM_FAULT_MAJOR; 515 516 /* Quick path to respond to signals */ 517 if (fault_signal_pending(fault, regs)) { 518 if (!user_mode(regs)) 519 goto no_context; 520 return 0; 521 } 522 523 if (fault & VM_FAULT_RETRY) { 524 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 525 mm_flags |= FAULT_FLAG_TRIED; 526 goto retry; 527 } 528 } 529 up_read(&mm->mmap_sem); 530 531 /* 532 * Handle the "normal" (no error) case first. 533 */ 534 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 535 VM_FAULT_BADACCESS)))) { 536 /* 537 * Major/minor page fault accounting is only done 538 * once. If we go through a retry, it is extremely 539 * likely that the page will be found in page cache at 540 * that point. 541 */ 542 if (major) { 543 current->maj_flt++; 544 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, 545 addr); 546 } else { 547 current->min_flt++; 548 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, 549 addr); 550 } 551 552 return 0; 553 } 554 555 /* 556 * If we are in kernel mode at this point, we have no context to 557 * handle this fault with. 558 */ 559 if (!user_mode(regs)) 560 goto no_context; 561 562 if (fault & VM_FAULT_OOM) { 563 /* 564 * We ran out of memory, call the OOM killer, and return to 565 * userspace (which will retry the fault, or kill us if we got 566 * oom-killed). 567 */ 568 pagefault_out_of_memory(); 569 return 0; 570 } 571 572 inf = esr_to_fault_info(esr); 573 set_thread_esr(addr, esr); 574 if (fault & VM_FAULT_SIGBUS) { 575 /* 576 * We had some memory, but were unable to successfully fix up 577 * this page fault. 578 */ 579 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr, 580 inf->name); 581 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 582 unsigned int lsb; 583 584 lsb = PAGE_SHIFT; 585 if (fault & VM_FAULT_HWPOISON_LARGE) 586 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 587 588 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb, 589 inf->name); 590 } else { 591 /* 592 * Something tried to access memory that isn't in our memory 593 * map. 594 */ 595 arm64_force_sig_fault(SIGSEGV, 596 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, 597 (void __user *)addr, 598 inf->name); 599 } 600 601 return 0; 602 603 no_context: 604 __do_kernel_fault(addr, esr, regs); 605 return 0; 606 } 607 608 static int __kprobes do_translation_fault(unsigned long addr, 609 unsigned int esr, 610 struct pt_regs *regs) 611 { 612 if (is_ttbr0_addr(addr)) 613 return do_page_fault(addr, esr, regs); 614 615 do_bad_area(addr, esr, regs); 616 return 0; 617 } 618 619 static int do_alignment_fault(unsigned long addr, unsigned int esr, 620 struct pt_regs *regs) 621 { 622 do_bad_area(addr, esr, regs); 623 return 0; 624 } 625 626 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) 627 { 628 return 1; /* "fault" */ 629 } 630 631 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) 632 { 633 const struct fault_info *inf; 634 void __user *siaddr; 635 636 inf = esr_to_fault_info(esr); 637 638 /* 639 * Return value ignored as we rely on signal merging. 640 * Future patches will make this more robust. 641 */ 642 apei_claim_sea(regs); 643 644 if (esr & ESR_ELx_FnV) 645 siaddr = NULL; 646 else 647 siaddr = (void __user *)addr; 648 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 649 650 return 0; 651 } 652 653 static const struct fault_info fault_info[] = { 654 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 655 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 656 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 657 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 658 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 659 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 660 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 661 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 662 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, 663 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 664 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 665 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 666 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, 667 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 668 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 669 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 670 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 671 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" }, 672 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 673 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, 674 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 675 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 676 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 677 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 678 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 679 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 680 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 681 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, 682 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 683 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 684 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 685 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 686 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 687 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 688 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 689 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 690 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 691 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 692 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 693 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 694 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 695 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, 696 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 697 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, 698 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 699 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 700 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 701 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 702 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 703 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 704 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 705 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 706 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 707 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 708 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 709 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 710 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 711 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 712 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 713 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 714 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 715 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 716 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 717 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 718 }; 719 720 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) 721 { 722 const struct fault_info *inf = esr_to_fault_info(esr); 723 724 if (!inf->fn(addr, esr, regs)) 725 return; 726 727 if (!user_mode(regs)) { 728 pr_alert("Unhandled fault at 0x%016lx\n", addr); 729 mem_abort_decode(esr); 730 show_pte(addr); 731 } 732 733 arm64_notify_die(inf->name, regs, 734 inf->sig, inf->code, (void __user *)addr, esr); 735 } 736 NOKPROBE_SYMBOL(do_mem_abort); 737 738 void do_el0_irq_bp_hardening(void) 739 { 740 /* PC has already been checked in entry.S */ 741 arm64_apply_bp_hardening(); 742 } 743 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening); 744 745 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) 746 { 747 arm64_notify_die("SP/PC alignment exception", regs, 748 SIGBUS, BUS_ADRALN, (void __user *)addr, esr); 749 } 750 NOKPROBE_SYMBOL(do_sp_pc_abort); 751 752 int __init early_brk64(unsigned long addr, unsigned int esr, 753 struct pt_regs *regs); 754 755 /* 756 * __refdata because early_brk64 is __init, but the reference to it is 757 * clobbered at arch_initcall time. 758 * See traps.c and debug-monitors.c:debug_traps_init(). 759 */ 760 static struct fault_info __refdata debug_fault_info[] = { 761 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 762 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 763 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 764 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 765 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 766 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 767 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 768 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 769 }; 770 771 void __init hook_debug_fault_code(int nr, 772 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 773 int sig, int code, const char *name) 774 { 775 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 776 777 debug_fault_info[nr].fn = fn; 778 debug_fault_info[nr].sig = sig; 779 debug_fault_info[nr].code = code; 780 debug_fault_info[nr].name = name; 781 } 782 783 /* 784 * In debug exception context, we explicitly disable preemption despite 785 * having interrupts disabled. 786 * This serves two purposes: it makes it much less likely that we would 787 * accidentally schedule in exception context and it will force a warning 788 * if we somehow manage to schedule by accident. 789 */ 790 static void debug_exception_enter(struct pt_regs *regs) 791 { 792 /* 793 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were 794 * already disabled to preserve the last enabled/disabled addresses. 795 */ 796 if (interrupts_enabled(regs)) 797 trace_hardirqs_off(); 798 799 if (user_mode(regs)) { 800 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 801 } else { 802 /* 803 * We might have interrupted pretty much anything. In 804 * fact, if we're a debug exception, we can even interrupt 805 * NMI processing. We don't want this code makes in_nmi() 806 * to return true, but we need to notify RCU. 807 */ 808 rcu_nmi_enter(); 809 } 810 811 preempt_disable(); 812 813 /* This code is a bit fragile. Test it. */ 814 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 815 } 816 NOKPROBE_SYMBOL(debug_exception_enter); 817 818 static void debug_exception_exit(struct pt_regs *regs) 819 { 820 preempt_enable_no_resched(); 821 822 if (!user_mode(regs)) 823 rcu_nmi_exit(); 824 825 if (interrupts_enabled(regs)) 826 trace_hardirqs_on(); 827 } 828 NOKPROBE_SYMBOL(debug_exception_exit); 829 830 #ifdef CONFIG_ARM64_ERRATUM_1463225 831 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); 832 833 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 834 { 835 if (user_mode(regs)) 836 return 0; 837 838 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) 839 return 0; 840 841 /* 842 * We've taken a dummy step exception from the kernel to ensure 843 * that interrupts are re-enabled on the syscall path. Return back 844 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions 845 * masked so that we can safely restore the mdscr and get on with 846 * handling the syscall. 847 */ 848 regs->pstate |= PSR_D_BIT; 849 return 1; 850 } 851 #else 852 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 853 { 854 return 0; 855 } 856 #endif /* CONFIG_ARM64_ERRATUM_1463225 */ 857 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler); 858 859 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr, 860 struct pt_regs *regs) 861 { 862 const struct fault_info *inf = esr_to_debug_fault_info(esr); 863 unsigned long pc = instruction_pointer(regs); 864 865 if (cortex_a76_erratum_1463225_debug_handler(regs)) 866 return; 867 868 debug_exception_enter(regs); 869 870 if (user_mode(regs) && !is_ttbr0_addr(pc)) 871 arm64_apply_bp_hardening(); 872 873 if (inf->fn(addr_if_watchpoint, esr, regs)) { 874 arm64_notify_die(inf->name, regs, 875 inf->sig, inf->code, (void __user *)pc, esr); 876 } 877 878 debug_exception_exit(regs); 879 } 880 NOKPROBE_SYMBOL(do_debug_exception); 881