xref: /linux/arch/arm64/mm/fault.c (revision 23c996fc2bc1978a02c64eddb90b4ab5d309c8df)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/preempt.h>
27 #include <linux/hugetlb.h>
28 
29 #include <asm/acpi.h>
30 #include <asm/bug.h>
31 #include <asm/cmpxchg.h>
32 #include <asm/cpufeature.h>
33 #include <asm/efi.h>
34 #include <asm/exception.h>
35 #include <asm/daifflags.h>
36 #include <asm/debug-monitors.h>
37 #include <asm/esr.h>
38 #include <asm/kprobes.h>
39 #include <asm/mte.h>
40 #include <asm/processor.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/traps.h>
45 
46 struct fault_info {
47 	int	(*fn)(unsigned long far, unsigned long esr,
48 		      struct pt_regs *regs);
49 	int	sig;
50 	int	code;
51 	const char *name;
52 };
53 
54 static const struct fault_info fault_info[];
55 static struct fault_info debug_fault_info[];
56 
57 static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58 {
59 	return fault_info + (esr & ESR_ELx_FSC);
60 }
61 
62 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
63 {
64 	return debug_fault_info + DBG_ESR_EVT(esr);
65 }
66 
67 static void data_abort_decode(unsigned long esr)
68 {
69 	unsigned long iss2 = ESR_ELx_ISS2(esr);
70 
71 	pr_alert("Data abort info:\n");
72 
73 	if (esr & ESR_ELx_ISV) {
74 		pr_alert("  Access size = %u byte(s)\n",
75 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
76 		pr_alert("  SSE = %lu, SRT = %lu\n",
77 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
78 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
79 		pr_alert("  SF = %lu, AR = %lu\n",
80 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
81 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
82 	} else {
83 		pr_alert("  ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n",
84 			 esr & ESR_ELx_ISS_MASK, iss2);
85 	}
86 
87 	pr_alert("  CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n",
88 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
89 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT,
90 		 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT,
91 		 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT);
92 
93 	pr_alert("  GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n",
94 		 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT,
95 		 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT,
96 		 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT,
97 		 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT);
98 }
99 
100 static void mem_abort_decode(unsigned long esr)
101 {
102 	pr_alert("Mem abort info:\n");
103 
104 	pr_alert("  ESR = 0x%016lx\n", esr);
105 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
106 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
107 		 (esr & ESR_ELx_IL) ? 32 : 16);
108 	pr_alert("  SET = %lu, FnV = %lu\n",
109 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
110 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
111 	pr_alert("  EA = %lu, S1PTW = %lu\n",
112 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
113 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
114 	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
115 		 esr_to_fault_info(esr)->name);
116 
117 	if (esr_is_data_abort(esr))
118 		data_abort_decode(esr);
119 }
120 
121 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
122 {
123 	/* Either init_pg_dir or swapper_pg_dir */
124 	if (mm == &init_mm)
125 		return __pa_symbol(mm->pgd);
126 
127 	return (unsigned long)virt_to_phys(mm->pgd);
128 }
129 
130 /*
131  * Dump out the page tables associated with 'addr' in the currently active mm.
132  */
133 static void show_pte(unsigned long addr)
134 {
135 	struct mm_struct *mm;
136 	pgd_t *pgdp;
137 	pgd_t pgd;
138 
139 	if (is_ttbr0_addr(addr)) {
140 		/* TTBR0 */
141 		mm = current->active_mm;
142 		if (mm == &init_mm) {
143 			pr_alert("[%016lx] user address but active_mm is swapper\n",
144 				 addr);
145 			return;
146 		}
147 	} else if (is_ttbr1_addr(addr)) {
148 		/* TTBR1 */
149 		mm = &init_mm;
150 	} else {
151 		pr_alert("[%016lx] address between user and kernel address ranges\n",
152 			 addr);
153 		return;
154 	}
155 
156 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
157 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
158 		 vabits_actual, mm_to_pgd_phys(mm));
159 	pgdp = pgd_offset(mm, addr);
160 	pgd = READ_ONCE(*pgdp);
161 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
162 
163 	do {
164 		p4d_t *p4dp, p4d;
165 		pud_t *pudp, pud;
166 		pmd_t *pmdp, pmd;
167 		pte_t *ptep, pte;
168 
169 		if (pgd_none(pgd) || pgd_bad(pgd))
170 			break;
171 
172 		p4dp = p4d_offset(pgdp, addr);
173 		p4d = READ_ONCE(*p4dp);
174 		pr_cont(", p4d=%016llx", p4d_val(p4d));
175 		if (p4d_none(p4d) || p4d_bad(p4d))
176 			break;
177 
178 		pudp = pud_offset(p4dp, addr);
179 		pud = READ_ONCE(*pudp);
180 		pr_cont(", pud=%016llx", pud_val(pud));
181 		if (pud_none(pud) || pud_bad(pud))
182 			break;
183 
184 		pmdp = pmd_offset(pudp, addr);
185 		pmd = READ_ONCE(*pmdp);
186 		pr_cont(", pmd=%016llx", pmd_val(pmd));
187 		if (pmd_none(pmd) || pmd_bad(pmd))
188 			break;
189 
190 		ptep = pte_offset_map(pmdp, addr);
191 		if (!ptep)
192 			break;
193 
194 		pte = __ptep_get(ptep);
195 		pr_cont(", pte=%016llx", pte_val(pte));
196 		pte_unmap(ptep);
197 	} while(0);
198 
199 	pr_cont("\n");
200 }
201 
202 /*
203  * This function sets the access flags (dirty, accessed), as well as write
204  * permission, and only to a more permissive setting.
205  *
206  * It needs to cope with hardware update of the accessed/dirty state by other
207  * agents in the system and can safely skip the __sync_icache_dcache() call as,
208  * like __set_ptes(), the PTE is never changed from no-exec to exec here.
209  *
210  * Returns whether or not the PTE actually changed.
211  */
212 int __ptep_set_access_flags(struct vm_area_struct *vma,
213 			    unsigned long address, pte_t *ptep,
214 			    pte_t entry, int dirty)
215 {
216 	pteval_t old_pteval, pteval;
217 	pte_t pte = __ptep_get(ptep);
218 
219 	if (pte_same(pte, entry))
220 		return 0;
221 
222 	/* only preserve the access flags and write permission */
223 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
224 
225 	/*
226 	 * Setting the flags must be done atomically to avoid racing with the
227 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
228 	 * be set to the most permissive (lowest value) of *ptep and entry
229 	 * (calculated as: a & b == ~(~a | ~b)).
230 	 */
231 	pte_val(entry) ^= PTE_RDONLY;
232 	pteval = pte_val(pte);
233 	do {
234 		old_pteval = pteval;
235 		pteval ^= PTE_RDONLY;
236 		pteval |= pte_val(entry);
237 		pteval ^= PTE_RDONLY;
238 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
239 	} while (pteval != old_pteval);
240 
241 	/* Invalidate a stale read-only entry */
242 	if (dirty)
243 		flush_tlb_page(vma, address);
244 	return 1;
245 }
246 
247 static bool is_el1_instruction_abort(unsigned long esr)
248 {
249 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
250 }
251 
252 static bool is_el1_data_abort(unsigned long esr)
253 {
254 	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
255 }
256 
257 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
258 					   struct pt_regs *regs)
259 {
260 	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
261 		return false;
262 
263 	if (esr_fsc_is_permission_fault(esr))
264 		return true;
265 
266 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
267 		return esr_fsc_is_translation_fault(esr) &&
268 			(regs->pstate & PSR_PAN_BIT);
269 
270 	return false;
271 }
272 
273 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
274 							unsigned long esr,
275 							struct pt_regs *regs)
276 {
277 	unsigned long flags;
278 	u64 par, dfsc;
279 
280 	if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr))
281 		return false;
282 
283 	local_irq_save(flags);
284 	asm volatile("at s1e1r, %0" :: "r" (addr));
285 	isb();
286 	par = read_sysreg_par();
287 	local_irq_restore(flags);
288 
289 	/*
290 	 * If we now have a valid translation, treat the translation fault as
291 	 * spurious.
292 	 */
293 	if (!(par & SYS_PAR_EL1_F))
294 		return true;
295 
296 	/*
297 	 * If we got a different type of fault from the AT instruction,
298 	 * treat the translation fault as spurious.
299 	 */
300 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
301 	return !esr_fsc_is_translation_fault(dfsc);
302 }
303 
304 static void die_kernel_fault(const char *msg, unsigned long addr,
305 			     unsigned long esr, struct pt_regs *regs)
306 {
307 	bust_spinlocks(1);
308 
309 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
310 		 addr);
311 
312 	kasan_non_canonical_hook(addr);
313 
314 	mem_abort_decode(esr);
315 
316 	show_pte(addr);
317 	die("Oops", regs, esr);
318 	bust_spinlocks(0);
319 	make_task_dead(SIGKILL);
320 }
321 
322 #ifdef CONFIG_KASAN_HW_TAGS
323 static void report_tag_fault(unsigned long addr, unsigned long esr,
324 			     struct pt_regs *regs)
325 {
326 	/*
327 	 * SAS bits aren't set for all faults reported in EL1, so we can't
328 	 * find out access size.
329 	 */
330 	bool is_write = !!(esr & ESR_ELx_WNR);
331 	kasan_report((void *)addr, 0, is_write, regs->pc);
332 }
333 #else
334 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
335 static inline void report_tag_fault(unsigned long addr, unsigned long esr,
336 				    struct pt_regs *regs) { }
337 #endif
338 
339 static void do_tag_recovery(unsigned long addr, unsigned long esr,
340 			   struct pt_regs *regs)
341 {
342 
343 	report_tag_fault(addr, esr, regs);
344 
345 	/*
346 	 * Disable MTE Tag Checking on the local CPU for the current EL.
347 	 * It will be done lazily on the other CPUs when they will hit a
348 	 * tag fault.
349 	 */
350 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
351 			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
352 	isb();
353 }
354 
355 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
356 {
357 	unsigned long fsc = esr & ESR_ELx_FSC;
358 
359 	if (!is_el1_data_abort(esr))
360 		return false;
361 
362 	if (fsc == ESR_ELx_FSC_MTE)
363 		return true;
364 
365 	return false;
366 }
367 
368 static void __do_kernel_fault(unsigned long addr, unsigned long esr,
369 			      struct pt_regs *regs)
370 {
371 	const char *msg;
372 
373 	/*
374 	 * Are we prepared to handle this kernel fault?
375 	 * We are almost certainly not prepared to handle instruction faults.
376 	 */
377 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
378 		return;
379 
380 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
381 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
382 		return;
383 
384 	if (is_el1_mte_sync_tag_check_fault(esr)) {
385 		do_tag_recovery(addr, esr, regs);
386 
387 		return;
388 	}
389 
390 	if (is_el1_permission_fault(addr, esr, regs)) {
391 		if (esr & ESR_ELx_WNR)
392 			msg = "write to read-only memory";
393 		else if (is_el1_instruction_abort(esr))
394 			msg = "execute from non-executable memory";
395 		else
396 			msg = "read from unreadable memory";
397 	} else if (addr < PAGE_SIZE) {
398 		msg = "NULL pointer dereference";
399 	} else {
400 		if (esr_fsc_is_translation_fault(esr) &&
401 		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
402 			return;
403 
404 		msg = "paging request";
405 	}
406 
407 	if (efi_runtime_fixup_exception(regs, msg))
408 		return;
409 
410 	die_kernel_fault(msg, addr, esr, regs);
411 }
412 
413 static void set_thread_esr(unsigned long address, unsigned long esr)
414 {
415 	current->thread.fault_address = address;
416 
417 	/*
418 	 * If the faulting address is in the kernel, we must sanitize the ESR.
419 	 * From userspace's point of view, kernel-only mappings don't exist
420 	 * at all, so we report them as level 0 translation faults.
421 	 * (This is not quite the way that "no mapping there at all" behaves:
422 	 * an alignment fault not caused by the memory type would take
423 	 * precedence over translation fault for a real access to empty
424 	 * space. Unfortunately we can't easily distinguish "alignment fault
425 	 * not caused by memory type" from "alignment fault caused by memory
426 	 * type", so we ignore this wrinkle and just return the translation
427 	 * fault.)
428 	 */
429 	if (!is_ttbr0_addr(current->thread.fault_address)) {
430 		switch (ESR_ELx_EC(esr)) {
431 		case ESR_ELx_EC_DABT_LOW:
432 			/*
433 			 * These bits provide only information about the
434 			 * faulting instruction, which userspace knows already.
435 			 * We explicitly clear bits which are architecturally
436 			 * RES0 in case they are given meanings in future.
437 			 * We always report the ESR as if the fault was taken
438 			 * to EL1 and so ISV and the bits in ISS[23:14] are
439 			 * clear. (In fact it always will be a fault to EL1.)
440 			 */
441 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
442 				ESR_ELx_CM | ESR_ELx_WNR;
443 			esr |= ESR_ELx_FSC_FAULT;
444 			break;
445 		case ESR_ELx_EC_IABT_LOW:
446 			/*
447 			 * Claim a level 0 translation fault.
448 			 * All other bits are architecturally RES0 for faults
449 			 * reported with that DFSC value, so we clear them.
450 			 */
451 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
452 			esr |= ESR_ELx_FSC_FAULT;
453 			break;
454 		default:
455 			/*
456 			 * This should never happen (entry.S only brings us
457 			 * into this code for insn and data aborts from a lower
458 			 * exception level). Fail safe by not providing an ESR
459 			 * context record at all.
460 			 */
461 			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
462 			esr = 0;
463 			break;
464 		}
465 	}
466 
467 	current->thread.fault_code = esr;
468 }
469 
470 static void do_bad_area(unsigned long far, unsigned long esr,
471 			struct pt_regs *regs)
472 {
473 	unsigned long addr = untagged_addr(far);
474 
475 	/*
476 	 * If we are in kernel mode at this point, we have no context to
477 	 * handle this fault with.
478 	 */
479 	if (user_mode(regs)) {
480 		const struct fault_info *inf = esr_to_fault_info(esr);
481 
482 		set_thread_esr(addr, esr);
483 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
484 	} else {
485 		__do_kernel_fault(addr, esr, regs);
486 	}
487 }
488 
489 static bool is_el0_instruction_abort(unsigned long esr)
490 {
491 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
492 }
493 
494 /*
495  * Note: not valid for EL1 DC IVAC, but we never use that such that it
496  * should fault. EL0 cannot issue DC IVAC (undef).
497  */
498 static bool is_write_abort(unsigned long esr)
499 {
500 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
501 }
502 
503 static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
504 				   struct pt_regs *regs)
505 {
506 	const struct fault_info *inf;
507 	struct mm_struct *mm = current->mm;
508 	vm_fault_t fault;
509 	unsigned long vm_flags;
510 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
511 	unsigned long addr = untagged_addr(far);
512 	struct vm_area_struct *vma;
513 	int si_code;
514 
515 	if (kprobe_page_fault(regs, esr))
516 		return 0;
517 
518 	/*
519 	 * If we're in an interrupt or have no user context, we must not take
520 	 * the fault.
521 	 */
522 	if (faulthandler_disabled() || !mm)
523 		goto no_context;
524 
525 	if (user_mode(regs))
526 		mm_flags |= FAULT_FLAG_USER;
527 
528 	/*
529 	 * vm_flags tells us what bits we must have in vma->vm_flags
530 	 * for the fault to be benign, __do_page_fault() would check
531 	 * vma->vm_flags & vm_flags and returns an error if the
532 	 * intersection is empty
533 	 */
534 	if (is_el0_instruction_abort(esr)) {
535 		/* It was exec fault */
536 		vm_flags = VM_EXEC;
537 		mm_flags |= FAULT_FLAG_INSTRUCTION;
538 	} else if (is_write_abort(esr)) {
539 		/* It was write fault */
540 		vm_flags = VM_WRITE;
541 		mm_flags |= FAULT_FLAG_WRITE;
542 	} else {
543 		/* It was read fault */
544 		vm_flags = VM_READ;
545 		/* Write implies read */
546 		vm_flags |= VM_WRITE;
547 		/* If EPAN is absent then exec implies read */
548 		if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN))
549 			vm_flags |= VM_EXEC;
550 	}
551 
552 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
553 		if (is_el1_instruction_abort(esr))
554 			die_kernel_fault("execution of user memory",
555 					 addr, esr, regs);
556 
557 		if (!search_exception_tables(regs->pc))
558 			die_kernel_fault("access to user memory outside uaccess routines",
559 					 addr, esr, regs);
560 	}
561 
562 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
563 
564 	if (!(mm_flags & FAULT_FLAG_USER))
565 		goto lock_mmap;
566 
567 	vma = lock_vma_under_rcu(mm, addr);
568 	if (!vma)
569 		goto lock_mmap;
570 
571 	if (!(vma->vm_flags & vm_flags)) {
572 		vma_end_read(vma);
573 		fault = 0;
574 		si_code = SEGV_ACCERR;
575 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
576 		goto bad_area;
577 	}
578 	fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs);
579 	if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED)))
580 		vma_end_read(vma);
581 
582 	if (!(fault & VM_FAULT_RETRY)) {
583 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
584 		goto done;
585 	}
586 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
587 	if (fault & VM_FAULT_MAJOR)
588 		mm_flags |= FAULT_FLAG_TRIED;
589 
590 	/* Quick path to respond to signals */
591 	if (fault_signal_pending(fault, regs)) {
592 		if (!user_mode(regs))
593 			goto no_context;
594 		return 0;
595 	}
596 lock_mmap:
597 
598 retry:
599 	vma = lock_mm_and_find_vma(mm, addr, regs);
600 	if (unlikely(!vma)) {
601 		fault = 0;
602 		si_code = SEGV_MAPERR;
603 		goto bad_area;
604 	}
605 
606 	if (!(vma->vm_flags & vm_flags)) {
607 		mmap_read_unlock(mm);
608 		fault = 0;
609 		si_code = SEGV_ACCERR;
610 		goto bad_area;
611 	}
612 
613 	fault = handle_mm_fault(vma, addr, mm_flags, regs);
614 	/* Quick path to respond to signals */
615 	if (fault_signal_pending(fault, regs)) {
616 		if (!user_mode(regs))
617 			goto no_context;
618 		return 0;
619 	}
620 
621 	/* The fault is fully completed (including releasing mmap lock) */
622 	if (fault & VM_FAULT_COMPLETED)
623 		return 0;
624 
625 	if (fault & VM_FAULT_RETRY) {
626 		mm_flags |= FAULT_FLAG_TRIED;
627 		goto retry;
628 	}
629 	mmap_read_unlock(mm);
630 
631 done:
632 	/* Handle the "normal" (no error) case first. */
633 	if (likely(!(fault & VM_FAULT_ERROR)))
634 		return 0;
635 
636 	si_code = SEGV_MAPERR;
637 bad_area:
638 	/*
639 	 * If we are in kernel mode at this point, we have no context to
640 	 * handle this fault with.
641 	 */
642 	if (!user_mode(regs))
643 		goto no_context;
644 
645 	if (fault & VM_FAULT_OOM) {
646 		/*
647 		 * We ran out of memory, call the OOM killer, and return to
648 		 * userspace (which will retry the fault, or kill us if we got
649 		 * oom-killed).
650 		 */
651 		pagefault_out_of_memory();
652 		return 0;
653 	}
654 
655 	inf = esr_to_fault_info(esr);
656 	set_thread_esr(addr, esr);
657 	if (fault & VM_FAULT_SIGBUS) {
658 		/*
659 		 * We had some memory, but were unable to successfully fix up
660 		 * this page fault.
661 		 */
662 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
663 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
664 		unsigned int lsb;
665 
666 		lsb = PAGE_SHIFT;
667 		if (fault & VM_FAULT_HWPOISON_LARGE)
668 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
669 
670 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
671 	} else {
672 		/* Something tried to access memory that out of memory map */
673 		arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name);
674 	}
675 
676 	return 0;
677 
678 no_context:
679 	__do_kernel_fault(addr, esr, regs);
680 	return 0;
681 }
682 
683 static int __kprobes do_translation_fault(unsigned long far,
684 					  unsigned long esr,
685 					  struct pt_regs *regs)
686 {
687 	unsigned long addr = untagged_addr(far);
688 
689 	if (is_ttbr0_addr(addr))
690 		return do_page_fault(far, esr, regs);
691 
692 	do_bad_area(far, esr, regs);
693 	return 0;
694 }
695 
696 static int do_alignment_fault(unsigned long far, unsigned long esr,
697 			      struct pt_regs *regs)
698 {
699 	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
700 	    compat_user_mode(regs))
701 		return do_compat_alignment_fixup(far, regs);
702 	do_bad_area(far, esr, regs);
703 	return 0;
704 }
705 
706 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
707 {
708 	return 1; /* "fault" */
709 }
710 
711 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
712 {
713 	const struct fault_info *inf;
714 	unsigned long siaddr;
715 
716 	inf = esr_to_fault_info(esr);
717 
718 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
719 		/*
720 		 * APEI claimed this as a firmware-first notification.
721 		 * Some processing deferred to task_work before ret_to_user().
722 		 */
723 		return 0;
724 	}
725 
726 	if (esr & ESR_ELx_FnV) {
727 		siaddr = 0;
728 	} else {
729 		/*
730 		 * The architecture specifies that the tag bits of FAR_EL1 are
731 		 * UNKNOWN for synchronous external aborts. Mask them out now
732 		 * so that userspace doesn't see them.
733 		 */
734 		siaddr  = untagged_addr(far);
735 	}
736 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
737 
738 	return 0;
739 }
740 
741 static int do_tag_check_fault(unsigned long far, unsigned long esr,
742 			      struct pt_regs *regs)
743 {
744 	/*
745 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
746 	 * for tag check faults. Set them to corresponding bits in the untagged
747 	 * address.
748 	 */
749 	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
750 	do_bad_area(far, esr, regs);
751 	return 0;
752 }
753 
754 static const struct fault_info fault_info[] = {
755 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
756 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
757 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
758 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
759 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
760 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
761 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
762 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
763 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 access flag fault"	},
764 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
765 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
766 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
767 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 0 permission fault"	},
768 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
769 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
770 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
771 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
772 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
773 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
774 	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 (translation table walk)"	},
775 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
776 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
777 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
778 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
779 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
780 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
781 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
782 	{ do_sea,		SIGKILL, SI_KERNEL,	"level -1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
783 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
784 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
785 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
786 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
787 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
788 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
789 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
790 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
791 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
792 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
793 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
794 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
795 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
796 	{ do_bad,		SIGKILL, SI_KERNEL,	"level -1 address size fault"	},
797 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
798 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level -1 translation fault"	},
799 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
800 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
801 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
802 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
803 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
804 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
805 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
806 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
807 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
808 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
809 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
810 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
811 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
812 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
813 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
814 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
815 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
816 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
817 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
818 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
819 };
820 
821 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
822 {
823 	const struct fault_info *inf = esr_to_fault_info(esr);
824 	unsigned long addr = untagged_addr(far);
825 
826 	if (!inf->fn(far, esr, regs))
827 		return;
828 
829 	if (!user_mode(regs))
830 		die_kernel_fault(inf->name, addr, esr, regs);
831 
832 	/*
833 	 * At this point we have an unrecognized fault type whose tag bits may
834 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
835 	 * address to the signal handler.
836 	 */
837 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
838 }
839 NOKPROBE_SYMBOL(do_mem_abort);
840 
841 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
842 {
843 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
844 			 addr, esr);
845 }
846 NOKPROBE_SYMBOL(do_sp_pc_abort);
847 
848 /*
849  * __refdata because early_brk64 is __init, but the reference to it is
850  * clobbered at arch_initcall time.
851  * See traps.c and debug-monitors.c:debug_traps_init().
852  */
853 static struct fault_info __refdata debug_fault_info[] = {
854 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
855 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
856 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
857 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
858 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
859 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
860 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
861 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
862 };
863 
864 void __init hook_debug_fault_code(int nr,
865 				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
866 				  int sig, int code, const char *name)
867 {
868 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
869 
870 	debug_fault_info[nr].fn		= fn;
871 	debug_fault_info[nr].sig	= sig;
872 	debug_fault_info[nr].code	= code;
873 	debug_fault_info[nr].name	= name;
874 }
875 
876 /*
877  * In debug exception context, we explicitly disable preemption despite
878  * having interrupts disabled.
879  * This serves two purposes: it makes it much less likely that we would
880  * accidentally schedule in exception context and it will force a warning
881  * if we somehow manage to schedule by accident.
882  */
883 static void debug_exception_enter(struct pt_regs *regs)
884 {
885 	preempt_disable();
886 
887 	/* This code is a bit fragile.  Test it. */
888 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
889 }
890 NOKPROBE_SYMBOL(debug_exception_enter);
891 
892 static void debug_exception_exit(struct pt_regs *regs)
893 {
894 	preempt_enable_no_resched();
895 }
896 NOKPROBE_SYMBOL(debug_exception_exit);
897 
898 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
899 			struct pt_regs *regs)
900 {
901 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
902 	unsigned long pc = instruction_pointer(regs);
903 
904 	debug_exception_enter(regs);
905 
906 	if (user_mode(regs) && !is_ttbr0_addr(pc))
907 		arm64_apply_bp_hardening();
908 
909 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
910 		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
911 	}
912 
913 	debug_exception_exit(regs);
914 }
915 NOKPROBE_SYMBOL(do_debug_exception);
916 
917 /*
918  * Used during anonymous page fault handling.
919  */
920 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
921 						unsigned long vaddr)
922 {
923 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
924 
925 	/*
926 	 * If the page is mapped with PROT_MTE, initialise the tags at the
927 	 * point of allocation and page zeroing as this is usually faster than
928 	 * separate DC ZVA and STGM.
929 	 */
930 	if (vma->vm_flags & VM_MTE)
931 		flags |= __GFP_ZEROTAGS;
932 
933 	return vma_alloc_folio(flags, 0, vma, vaddr, false);
934 }
935 
936 void tag_clear_highpage(struct page *page)
937 {
938 	/* Newly allocated page, shouldn't have been tagged yet */
939 	WARN_ON_ONCE(!try_page_mte_tagging(page));
940 	mte_zero_clear_page_tags(page_address(page));
941 	set_page_mte_tagged(page);
942 }
943