1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/kfence.h> 14 #include <linux/signal.h> 15 #include <linux/mm.h> 16 #include <linux/hardirq.h> 17 #include <linux/init.h> 18 #include <linux/kasan.h> 19 #include <linux/kprobes.h> 20 #include <linux/uaccess.h> 21 #include <linux/page-flags.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/highmem.h> 25 #include <linux/perf_event.h> 26 #include <linux/preempt.h> 27 #include <linux/hugetlb.h> 28 29 #include <asm/acpi.h> 30 #include <asm/bug.h> 31 #include <asm/cmpxchg.h> 32 #include <asm/cpufeature.h> 33 #include <asm/efi.h> 34 #include <asm/exception.h> 35 #include <asm/daifflags.h> 36 #include <asm/debug-monitors.h> 37 #include <asm/esr.h> 38 #include <asm/kprobes.h> 39 #include <asm/mte.h> 40 #include <asm/processor.h> 41 #include <asm/sysreg.h> 42 #include <asm/system_misc.h> 43 #include <asm/tlbflush.h> 44 #include <asm/traps.h> 45 46 struct fault_info { 47 int (*fn)(unsigned long far, unsigned long esr, 48 struct pt_regs *regs); 49 int sig; 50 int code; 51 const char *name; 52 }; 53 54 static const struct fault_info fault_info[]; 55 static struct fault_info debug_fault_info[]; 56 57 static inline const struct fault_info *esr_to_fault_info(unsigned long esr) 58 { 59 return fault_info + (esr & ESR_ELx_FSC); 60 } 61 62 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr) 63 { 64 return debug_fault_info + DBG_ESR_EVT(esr); 65 } 66 67 static void data_abort_decode(unsigned long esr) 68 { 69 unsigned long iss2 = ESR_ELx_ISS2(esr); 70 71 pr_alert("Data abort info:\n"); 72 73 if (esr & ESR_ELx_ISV) { 74 pr_alert(" Access size = %u byte(s)\n", 75 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 76 pr_alert(" SSE = %lu, SRT = %lu\n", 77 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 78 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 79 pr_alert(" SF = %lu, AR = %lu\n", 80 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 81 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 82 } else { 83 pr_alert(" ISV = 0, ISS = 0x%08lx, ISS2 = 0x%08lx\n", 84 esr & ESR_ELx_ISS_MASK, iss2); 85 } 86 87 pr_alert(" CM = %lu, WnR = %lu, TnD = %lu, TagAccess = %lu\n", 88 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 89 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT, 90 (iss2 & ESR_ELx_TnD) >> ESR_ELx_TnD_SHIFT, 91 (iss2 & ESR_ELx_TagAccess) >> ESR_ELx_TagAccess_SHIFT); 92 93 pr_alert(" GCS = %ld, Overlay = %lu, DirtyBit = %lu, Xs = %llu\n", 94 (iss2 & ESR_ELx_GCS) >> ESR_ELx_GCS_SHIFT, 95 (iss2 & ESR_ELx_Overlay) >> ESR_ELx_Overlay_SHIFT, 96 (iss2 & ESR_ELx_DirtyBit) >> ESR_ELx_DirtyBit_SHIFT, 97 (iss2 & ESR_ELx_Xs_MASK) >> ESR_ELx_Xs_SHIFT); 98 } 99 100 static void mem_abort_decode(unsigned long esr) 101 { 102 pr_alert("Mem abort info:\n"); 103 104 pr_alert(" ESR = 0x%016lx\n", esr); 105 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 106 ESR_ELx_EC(esr), esr_get_class_string(esr), 107 (esr & ESR_ELx_IL) ? 32 : 16); 108 pr_alert(" SET = %lu, FnV = %lu\n", 109 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 110 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 111 pr_alert(" EA = %lu, S1PTW = %lu\n", 112 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 113 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 114 pr_alert(" FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC), 115 esr_to_fault_info(esr)->name); 116 117 if (esr_is_data_abort(esr)) 118 data_abort_decode(esr); 119 } 120 121 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 122 { 123 /* Either init_pg_dir or swapper_pg_dir */ 124 if (mm == &init_mm) 125 return __pa_symbol(mm->pgd); 126 127 return (unsigned long)virt_to_phys(mm->pgd); 128 } 129 130 /* 131 * Dump out the page tables associated with 'addr' in the currently active mm. 132 */ 133 static void show_pte(unsigned long addr) 134 { 135 struct mm_struct *mm; 136 pgd_t *pgdp; 137 pgd_t pgd; 138 139 if (is_ttbr0_addr(addr)) { 140 /* TTBR0 */ 141 mm = current->active_mm; 142 if (mm == &init_mm) { 143 pr_alert("[%016lx] user address but active_mm is swapper\n", 144 addr); 145 return; 146 } 147 } else if (is_ttbr1_addr(addr)) { 148 /* TTBR1 */ 149 mm = &init_mm; 150 } else { 151 pr_alert("[%016lx] address between user and kernel address ranges\n", 152 addr); 153 return; 154 } 155 156 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 157 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 158 vabits_actual, mm_to_pgd_phys(mm)); 159 pgdp = pgd_offset(mm, addr); 160 pgd = READ_ONCE(*pgdp); 161 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 162 163 do { 164 p4d_t *p4dp, p4d; 165 pud_t *pudp, pud; 166 pmd_t *pmdp, pmd; 167 pte_t *ptep, pte; 168 169 if (pgd_none(pgd) || pgd_bad(pgd)) 170 break; 171 172 p4dp = p4d_offset(pgdp, addr); 173 p4d = READ_ONCE(*p4dp); 174 pr_cont(", p4d=%016llx", p4d_val(p4d)); 175 if (p4d_none(p4d) || p4d_bad(p4d)) 176 break; 177 178 pudp = pud_offset(p4dp, addr); 179 pud = READ_ONCE(*pudp); 180 pr_cont(", pud=%016llx", pud_val(pud)); 181 if (pud_none(pud) || pud_bad(pud)) 182 break; 183 184 pmdp = pmd_offset(pudp, addr); 185 pmd = READ_ONCE(*pmdp); 186 pr_cont(", pmd=%016llx", pmd_val(pmd)); 187 if (pmd_none(pmd) || pmd_bad(pmd)) 188 break; 189 190 ptep = pte_offset_map(pmdp, addr); 191 if (!ptep) 192 break; 193 194 pte = __ptep_get(ptep); 195 pr_cont(", pte=%016llx", pte_val(pte)); 196 pte_unmap(ptep); 197 } while(0); 198 199 pr_cont("\n"); 200 } 201 202 /* 203 * This function sets the access flags (dirty, accessed), as well as write 204 * permission, and only to a more permissive setting. 205 * 206 * It needs to cope with hardware update of the accessed/dirty state by other 207 * agents in the system and can safely skip the __sync_icache_dcache() call as, 208 * like __set_ptes(), the PTE is never changed from no-exec to exec here. 209 * 210 * Returns whether or not the PTE actually changed. 211 */ 212 int __ptep_set_access_flags(struct vm_area_struct *vma, 213 unsigned long address, pte_t *ptep, 214 pte_t entry, int dirty) 215 { 216 pteval_t old_pteval, pteval; 217 pte_t pte = __ptep_get(ptep); 218 219 if (pte_same(pte, entry)) 220 return 0; 221 222 /* only preserve the access flags and write permission */ 223 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 224 225 /* 226 * Setting the flags must be done atomically to avoid racing with the 227 * hardware update of the access/dirty state. The PTE_RDONLY bit must 228 * be set to the most permissive (lowest value) of *ptep and entry 229 * (calculated as: a & b == ~(~a | ~b)). 230 */ 231 pte_val(entry) ^= PTE_RDONLY; 232 pteval = pte_val(pte); 233 do { 234 old_pteval = pteval; 235 pteval ^= PTE_RDONLY; 236 pteval |= pte_val(entry); 237 pteval ^= PTE_RDONLY; 238 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 239 } while (pteval != old_pteval); 240 241 /* Invalidate a stale read-only entry */ 242 if (dirty) 243 flush_tlb_page(vma, address); 244 return 1; 245 } 246 247 static bool is_el1_instruction_abort(unsigned long esr) 248 { 249 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 250 } 251 252 static bool is_el1_data_abort(unsigned long esr) 253 { 254 return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR; 255 } 256 257 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr, 258 struct pt_regs *regs) 259 { 260 if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr)) 261 return false; 262 263 if (esr_fsc_is_permission_fault(esr)) 264 return true; 265 266 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 267 return esr_fsc_is_translation_fault(esr) && 268 (regs->pstate & PSR_PAN_BIT); 269 270 return false; 271 } 272 273 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 274 unsigned long esr, 275 struct pt_regs *regs) 276 { 277 unsigned long flags; 278 u64 par, dfsc; 279 280 if (!is_el1_data_abort(esr) || !esr_fsc_is_translation_fault(esr)) 281 return false; 282 283 local_irq_save(flags); 284 asm volatile("at s1e1r, %0" :: "r" (addr)); 285 isb(); 286 par = read_sysreg_par(); 287 local_irq_restore(flags); 288 289 /* 290 * If we now have a valid translation, treat the translation fault as 291 * spurious. 292 */ 293 if (!(par & SYS_PAR_EL1_F)) 294 return true; 295 296 /* 297 * If we got a different type of fault from the AT instruction, 298 * treat the translation fault as spurious. 299 */ 300 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 301 return !esr_fsc_is_translation_fault(dfsc); 302 } 303 304 static void die_kernel_fault(const char *msg, unsigned long addr, 305 unsigned long esr, struct pt_regs *regs) 306 { 307 bust_spinlocks(1); 308 309 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 310 addr); 311 312 kasan_non_canonical_hook(addr); 313 314 mem_abort_decode(esr); 315 316 show_pte(addr); 317 die("Oops", regs, esr); 318 bust_spinlocks(0); 319 make_task_dead(SIGKILL); 320 } 321 322 #ifdef CONFIG_KASAN_HW_TAGS 323 static void report_tag_fault(unsigned long addr, unsigned long esr, 324 struct pt_regs *regs) 325 { 326 /* 327 * SAS bits aren't set for all faults reported in EL1, so we can't 328 * find out access size. 329 */ 330 bool is_write = !!(esr & ESR_ELx_WNR); 331 kasan_report((void *)addr, 0, is_write, regs->pc); 332 } 333 #else 334 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ 335 static inline void report_tag_fault(unsigned long addr, unsigned long esr, 336 struct pt_regs *regs) { } 337 #endif 338 339 static void do_tag_recovery(unsigned long addr, unsigned long esr, 340 struct pt_regs *regs) 341 { 342 343 report_tag_fault(addr, esr, regs); 344 345 /* 346 * Disable MTE Tag Checking on the local CPU for the current EL. 347 * It will be done lazily on the other CPUs when they will hit a 348 * tag fault. 349 */ 350 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK, 351 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE)); 352 isb(); 353 } 354 355 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr) 356 { 357 unsigned long fsc = esr & ESR_ELx_FSC; 358 359 if (!is_el1_data_abort(esr)) 360 return false; 361 362 if (fsc == ESR_ELx_FSC_MTE) 363 return true; 364 365 return false; 366 } 367 368 static void __do_kernel_fault(unsigned long addr, unsigned long esr, 369 struct pt_regs *regs) 370 { 371 const char *msg; 372 373 /* 374 * Are we prepared to handle this kernel fault? 375 * We are almost certainly not prepared to handle instruction faults. 376 */ 377 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 378 return; 379 380 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 381 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 382 return; 383 384 if (is_el1_mte_sync_tag_check_fault(esr)) { 385 do_tag_recovery(addr, esr, regs); 386 387 return; 388 } 389 390 if (is_el1_permission_fault(addr, esr, regs)) { 391 if (esr & ESR_ELx_WNR) 392 msg = "write to read-only memory"; 393 else if (is_el1_instruction_abort(esr)) 394 msg = "execute from non-executable memory"; 395 else 396 msg = "read from unreadable memory"; 397 } else if (addr < PAGE_SIZE) { 398 msg = "NULL pointer dereference"; 399 } else { 400 if (esr_fsc_is_translation_fault(esr) && 401 kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs)) 402 return; 403 404 msg = "paging request"; 405 } 406 407 if (efi_runtime_fixup_exception(regs, msg)) 408 return; 409 410 die_kernel_fault(msg, addr, esr, regs); 411 } 412 413 static void set_thread_esr(unsigned long address, unsigned long esr) 414 { 415 current->thread.fault_address = address; 416 417 /* 418 * If the faulting address is in the kernel, we must sanitize the ESR. 419 * From userspace's point of view, kernel-only mappings don't exist 420 * at all, so we report them as level 0 translation faults. 421 * (This is not quite the way that "no mapping there at all" behaves: 422 * an alignment fault not caused by the memory type would take 423 * precedence over translation fault for a real access to empty 424 * space. Unfortunately we can't easily distinguish "alignment fault 425 * not caused by memory type" from "alignment fault caused by memory 426 * type", so we ignore this wrinkle and just return the translation 427 * fault.) 428 */ 429 if (!is_ttbr0_addr(current->thread.fault_address)) { 430 switch (ESR_ELx_EC(esr)) { 431 case ESR_ELx_EC_DABT_LOW: 432 /* 433 * These bits provide only information about the 434 * faulting instruction, which userspace knows already. 435 * We explicitly clear bits which are architecturally 436 * RES0 in case they are given meanings in future. 437 * We always report the ESR as if the fault was taken 438 * to EL1 and so ISV and the bits in ISS[23:14] are 439 * clear. (In fact it always will be a fault to EL1.) 440 */ 441 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 442 ESR_ELx_CM | ESR_ELx_WNR; 443 esr |= ESR_ELx_FSC_FAULT; 444 break; 445 case ESR_ELx_EC_IABT_LOW: 446 /* 447 * Claim a level 0 translation fault. 448 * All other bits are architecturally RES0 for faults 449 * reported with that DFSC value, so we clear them. 450 */ 451 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 452 esr |= ESR_ELx_FSC_FAULT; 453 break; 454 default: 455 /* 456 * This should never happen (entry.S only brings us 457 * into this code for insn and data aborts from a lower 458 * exception level). Fail safe by not providing an ESR 459 * context record at all. 460 */ 461 WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr); 462 esr = 0; 463 break; 464 } 465 } 466 467 current->thread.fault_code = esr; 468 } 469 470 static void do_bad_area(unsigned long far, unsigned long esr, 471 struct pt_regs *regs) 472 { 473 unsigned long addr = untagged_addr(far); 474 475 /* 476 * If we are in kernel mode at this point, we have no context to 477 * handle this fault with. 478 */ 479 if (user_mode(regs)) { 480 const struct fault_info *inf = esr_to_fault_info(esr); 481 482 set_thread_esr(addr, esr); 483 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); 484 } else { 485 __do_kernel_fault(addr, esr, regs); 486 } 487 } 488 489 static bool is_el0_instruction_abort(unsigned long esr) 490 { 491 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 492 } 493 494 /* 495 * Note: not valid for EL1 DC IVAC, but we never use that such that it 496 * should fault. EL0 cannot issue DC IVAC (undef). 497 */ 498 static bool is_write_abort(unsigned long esr) 499 { 500 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 501 } 502 503 static int __kprobes do_page_fault(unsigned long far, unsigned long esr, 504 struct pt_regs *regs) 505 { 506 const struct fault_info *inf; 507 struct mm_struct *mm = current->mm; 508 vm_fault_t fault; 509 unsigned long vm_flags; 510 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 511 unsigned long addr = untagged_addr(far); 512 struct vm_area_struct *vma; 513 int si_code; 514 515 if (kprobe_page_fault(regs, esr)) 516 return 0; 517 518 /* 519 * If we're in an interrupt or have no user context, we must not take 520 * the fault. 521 */ 522 if (faulthandler_disabled() || !mm) 523 goto no_context; 524 525 if (user_mode(regs)) 526 mm_flags |= FAULT_FLAG_USER; 527 528 /* 529 * vm_flags tells us what bits we must have in vma->vm_flags 530 * for the fault to be benign, __do_page_fault() would check 531 * vma->vm_flags & vm_flags and returns an error if the 532 * intersection is empty 533 */ 534 if (is_el0_instruction_abort(esr)) { 535 /* It was exec fault */ 536 vm_flags = VM_EXEC; 537 mm_flags |= FAULT_FLAG_INSTRUCTION; 538 } else if (is_write_abort(esr)) { 539 /* It was write fault */ 540 vm_flags = VM_WRITE; 541 mm_flags |= FAULT_FLAG_WRITE; 542 } else { 543 /* It was read fault */ 544 vm_flags = VM_READ; 545 /* Write implies read */ 546 vm_flags |= VM_WRITE; 547 /* If EPAN is absent then exec implies read */ 548 if (!alternative_has_cap_unlikely(ARM64_HAS_EPAN)) 549 vm_flags |= VM_EXEC; 550 } 551 552 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 553 if (is_el1_instruction_abort(esr)) 554 die_kernel_fault("execution of user memory", 555 addr, esr, regs); 556 557 if (!search_exception_tables(regs->pc)) 558 die_kernel_fault("access to user memory outside uaccess routines", 559 addr, esr, regs); 560 } 561 562 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 563 564 if (!(mm_flags & FAULT_FLAG_USER)) 565 goto lock_mmap; 566 567 vma = lock_vma_under_rcu(mm, addr); 568 if (!vma) 569 goto lock_mmap; 570 571 if (!(vma->vm_flags & vm_flags)) { 572 vma_end_read(vma); 573 fault = 0; 574 si_code = SEGV_ACCERR; 575 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 576 goto bad_area; 577 } 578 fault = handle_mm_fault(vma, addr, mm_flags | FAULT_FLAG_VMA_LOCK, regs); 579 if (!(fault & (VM_FAULT_RETRY | VM_FAULT_COMPLETED))) 580 vma_end_read(vma); 581 582 if (!(fault & VM_FAULT_RETRY)) { 583 count_vm_vma_lock_event(VMA_LOCK_SUCCESS); 584 goto done; 585 } 586 count_vm_vma_lock_event(VMA_LOCK_RETRY); 587 if (fault & VM_FAULT_MAJOR) 588 mm_flags |= FAULT_FLAG_TRIED; 589 590 /* Quick path to respond to signals */ 591 if (fault_signal_pending(fault, regs)) { 592 if (!user_mode(regs)) 593 goto no_context; 594 return 0; 595 } 596 lock_mmap: 597 598 retry: 599 vma = lock_mm_and_find_vma(mm, addr, regs); 600 if (unlikely(!vma)) { 601 fault = 0; 602 si_code = SEGV_MAPERR; 603 goto bad_area; 604 } 605 606 if (!(vma->vm_flags & vm_flags)) { 607 mmap_read_unlock(mm); 608 fault = 0; 609 si_code = SEGV_ACCERR; 610 goto bad_area; 611 } 612 613 fault = handle_mm_fault(vma, addr, mm_flags, regs); 614 /* Quick path to respond to signals */ 615 if (fault_signal_pending(fault, regs)) { 616 if (!user_mode(regs)) 617 goto no_context; 618 return 0; 619 } 620 621 /* The fault is fully completed (including releasing mmap lock) */ 622 if (fault & VM_FAULT_COMPLETED) 623 return 0; 624 625 if (fault & VM_FAULT_RETRY) { 626 mm_flags |= FAULT_FLAG_TRIED; 627 goto retry; 628 } 629 mmap_read_unlock(mm); 630 631 done: 632 /* Handle the "normal" (no error) case first. */ 633 if (likely(!(fault & VM_FAULT_ERROR))) 634 return 0; 635 636 si_code = SEGV_MAPERR; 637 bad_area: 638 /* 639 * If we are in kernel mode at this point, we have no context to 640 * handle this fault with. 641 */ 642 if (!user_mode(regs)) 643 goto no_context; 644 645 if (fault & VM_FAULT_OOM) { 646 /* 647 * We ran out of memory, call the OOM killer, and return to 648 * userspace (which will retry the fault, or kill us if we got 649 * oom-killed). 650 */ 651 pagefault_out_of_memory(); 652 return 0; 653 } 654 655 inf = esr_to_fault_info(esr); 656 set_thread_esr(addr, esr); 657 if (fault & VM_FAULT_SIGBUS) { 658 /* 659 * We had some memory, but were unable to successfully fix up 660 * this page fault. 661 */ 662 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); 663 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 664 unsigned int lsb; 665 666 lsb = PAGE_SHIFT; 667 if (fault & VM_FAULT_HWPOISON_LARGE) 668 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 669 670 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); 671 } else { 672 /* Something tried to access memory that out of memory map */ 673 arm64_force_sig_fault(SIGSEGV, si_code, far, inf->name); 674 } 675 676 return 0; 677 678 no_context: 679 __do_kernel_fault(addr, esr, regs); 680 return 0; 681 } 682 683 static int __kprobes do_translation_fault(unsigned long far, 684 unsigned long esr, 685 struct pt_regs *regs) 686 { 687 unsigned long addr = untagged_addr(far); 688 689 if (is_ttbr0_addr(addr)) 690 return do_page_fault(far, esr, regs); 691 692 do_bad_area(far, esr, regs); 693 return 0; 694 } 695 696 static int do_alignment_fault(unsigned long far, unsigned long esr, 697 struct pt_regs *regs) 698 { 699 if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) && 700 compat_user_mode(regs)) 701 return do_compat_alignment_fixup(far, regs); 702 do_bad_area(far, esr, regs); 703 return 0; 704 } 705 706 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs) 707 { 708 return 1; /* "fault" */ 709 } 710 711 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs) 712 { 713 const struct fault_info *inf; 714 unsigned long siaddr; 715 716 inf = esr_to_fault_info(esr); 717 718 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 719 /* 720 * APEI claimed this as a firmware-first notification. 721 * Some processing deferred to task_work before ret_to_user(). 722 */ 723 return 0; 724 } 725 726 if (esr & ESR_ELx_FnV) { 727 siaddr = 0; 728 } else { 729 /* 730 * The architecture specifies that the tag bits of FAR_EL1 are 731 * UNKNOWN for synchronous external aborts. Mask them out now 732 * so that userspace doesn't see them. 733 */ 734 siaddr = untagged_addr(far); 735 } 736 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 737 738 return 0; 739 } 740 741 static int do_tag_check_fault(unsigned long far, unsigned long esr, 742 struct pt_regs *regs) 743 { 744 /* 745 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN 746 * for tag check faults. Set them to corresponding bits in the untagged 747 * address. 748 */ 749 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); 750 do_bad_area(far, esr, regs); 751 return 0; 752 } 753 754 static const struct fault_info fault_info[] = { 755 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 756 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 757 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 758 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 759 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 760 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 761 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 762 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 763 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 access flag fault" }, 764 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 765 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 766 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 767 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 0 permission fault" }, 768 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 769 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 770 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 771 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 772 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 773 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 774 { do_sea, SIGKILL, SI_KERNEL, "level -1 (translation table walk)" }, 775 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 776 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 777 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 778 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 779 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 780 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 781 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 782 { do_sea, SIGKILL, SI_KERNEL, "level -1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 783 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 784 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 785 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 786 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 787 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 788 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 789 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 790 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 791 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 792 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 793 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 794 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 795 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 796 { do_bad, SIGKILL, SI_KERNEL, "level -1 address size fault" }, 797 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 798 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level -1 translation fault" }, 799 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 800 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 801 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 802 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 803 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 804 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 805 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 806 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 807 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 808 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 809 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 810 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 811 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 812 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 813 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 814 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 815 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 816 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 817 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 818 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 819 }; 820 821 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs) 822 { 823 const struct fault_info *inf = esr_to_fault_info(esr); 824 unsigned long addr = untagged_addr(far); 825 826 if (!inf->fn(far, esr, regs)) 827 return; 828 829 if (!user_mode(regs)) 830 die_kernel_fault(inf->name, addr, esr, regs); 831 832 /* 833 * At this point we have an unrecognized fault type whose tag bits may 834 * have been defined as UNKNOWN. Therefore we only expose the untagged 835 * address to the signal handler. 836 */ 837 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); 838 } 839 NOKPROBE_SYMBOL(do_mem_abort); 840 841 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs) 842 { 843 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, 844 addr, esr); 845 } 846 NOKPROBE_SYMBOL(do_sp_pc_abort); 847 848 /* 849 * __refdata because early_brk64 is __init, but the reference to it is 850 * clobbered at arch_initcall time. 851 * See traps.c and debug-monitors.c:debug_traps_init(). 852 */ 853 static struct fault_info __refdata debug_fault_info[] = { 854 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 855 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 856 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 857 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 858 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 859 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 860 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 861 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 862 }; 863 864 void __init hook_debug_fault_code(int nr, 865 int (*fn)(unsigned long, unsigned long, struct pt_regs *), 866 int sig, int code, const char *name) 867 { 868 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 869 870 debug_fault_info[nr].fn = fn; 871 debug_fault_info[nr].sig = sig; 872 debug_fault_info[nr].code = code; 873 debug_fault_info[nr].name = name; 874 } 875 876 /* 877 * In debug exception context, we explicitly disable preemption despite 878 * having interrupts disabled. 879 * This serves two purposes: it makes it much less likely that we would 880 * accidentally schedule in exception context and it will force a warning 881 * if we somehow manage to schedule by accident. 882 */ 883 static void debug_exception_enter(struct pt_regs *regs) 884 { 885 preempt_disable(); 886 887 /* This code is a bit fragile. Test it. */ 888 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 889 } 890 NOKPROBE_SYMBOL(debug_exception_enter); 891 892 static void debug_exception_exit(struct pt_regs *regs) 893 { 894 preempt_enable_no_resched(); 895 } 896 NOKPROBE_SYMBOL(debug_exception_exit); 897 898 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr, 899 struct pt_regs *regs) 900 { 901 const struct fault_info *inf = esr_to_debug_fault_info(esr); 902 unsigned long pc = instruction_pointer(regs); 903 904 debug_exception_enter(regs); 905 906 if (user_mode(regs) && !is_ttbr0_addr(pc)) 907 arm64_apply_bp_hardening(); 908 909 if (inf->fn(addr_if_watchpoint, esr, regs)) { 910 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); 911 } 912 913 debug_exception_exit(regs); 914 } 915 NOKPROBE_SYMBOL(do_debug_exception); 916 917 /* 918 * Used during anonymous page fault handling. 919 */ 920 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma, 921 unsigned long vaddr) 922 { 923 gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO; 924 925 /* 926 * If the page is mapped with PROT_MTE, initialise the tags at the 927 * point of allocation and page zeroing as this is usually faster than 928 * separate DC ZVA and STGM. 929 */ 930 if (vma->vm_flags & VM_MTE) 931 flags |= __GFP_ZEROTAGS; 932 933 return vma_alloc_folio(flags, 0, vma, vaddr, false); 934 } 935 936 void tag_clear_highpage(struct page *page) 937 { 938 /* Newly allocated page, shouldn't have been tagged yet */ 939 WARN_ON_ONCE(!try_page_mte_tagging(page)); 940 mte_zero_clear_page_tags(page_address(page)); 941 set_page_mte_tagged(page); 942 } 943