xref: /linux/arch/arm64/mm/fault.c (revision 2383050f6a3a2e00636eabfcf66445af653ddd80)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched.h>
30 #include <linux/highmem.h>
31 #include <linux/perf_event.h>
32 
33 #include <asm/cpufeature.h>
34 #include <asm/exception.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 
42 static const char *fault_name(unsigned int esr);
43 
44 /*
45  * Dump out the page tables associated with 'addr' in mm 'mm'.
46  */
47 void show_pte(struct mm_struct *mm, unsigned long addr)
48 {
49 	pgd_t *pgd;
50 
51 	if (!mm)
52 		mm = &init_mm;
53 
54 	pr_alert("pgd = %p\n", mm->pgd);
55 	pgd = pgd_offset(mm, addr);
56 	pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd));
57 
58 	do {
59 		pud_t *pud;
60 		pmd_t *pmd;
61 		pte_t *pte;
62 
63 		if (pgd_none(*pgd) || pgd_bad(*pgd))
64 			break;
65 
66 		pud = pud_offset(pgd, addr);
67 		printk(", *pud=%016llx", pud_val(*pud));
68 		if (pud_none(*pud) || pud_bad(*pud))
69 			break;
70 
71 		pmd = pmd_offset(pud, addr);
72 		printk(", *pmd=%016llx", pmd_val(*pmd));
73 		if (pmd_none(*pmd) || pmd_bad(*pmd))
74 			break;
75 
76 		pte = pte_offset_map(pmd, addr);
77 		printk(", *pte=%016llx", pte_val(*pte));
78 		pte_unmap(pte);
79 	} while(0);
80 
81 	printk("\n");
82 }
83 
84 #ifdef CONFIG_ARM64_HW_AFDBM
85 /*
86  * This function sets the access flags (dirty, accessed), as well as write
87  * permission, and only to a more permissive setting.
88  *
89  * It needs to cope with hardware update of the accessed/dirty state by other
90  * agents in the system and can safely skip the __sync_icache_dcache() call as,
91  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
92  *
93  * Returns whether or not the PTE actually changed.
94  */
95 int ptep_set_access_flags(struct vm_area_struct *vma,
96 			  unsigned long address, pte_t *ptep,
97 			  pte_t entry, int dirty)
98 {
99 	pteval_t old_pteval;
100 	unsigned int tmp;
101 
102 	if (pte_same(*ptep, entry))
103 		return 0;
104 
105 	/* only preserve the access flags and write permission */
106 	pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
107 
108 	/*
109 	 * PTE_RDONLY is cleared by default in the asm below, so set it in
110 	 * back if necessary (read-only or clean PTE).
111 	 */
112 	if (!pte_write(entry) || !pte_sw_dirty(entry))
113 		pte_val(entry) |= PTE_RDONLY;
114 
115 	/*
116 	 * Setting the flags must be done atomically to avoid racing with the
117 	 * hardware update of the access/dirty state.
118 	 */
119 	asm volatile("//	ptep_set_access_flags\n"
120 	"	prfm	pstl1strm, %2\n"
121 	"1:	ldxr	%0, %2\n"
122 	"	and	%0, %0, %3		// clear PTE_RDONLY\n"
123 	"	orr	%0, %0, %4		// set flags\n"
124 	"	stxr	%w1, %0, %2\n"
125 	"	cbnz	%w1, 1b\n"
126 	: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
127 	: "L" (~PTE_RDONLY), "r" (pte_val(entry)));
128 
129 	flush_tlb_fix_spurious_fault(vma, address);
130 	return 1;
131 }
132 #endif
133 
134 /*
135  * The kernel tried to access some page that wasn't present.
136  */
137 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr,
138 			      unsigned int esr, struct pt_regs *regs)
139 {
140 	/*
141 	 * Are we prepared to handle this kernel fault?
142 	 */
143 	if (fixup_exception(regs))
144 		return;
145 
146 	/*
147 	 * No handler, we'll have to terminate things with extreme prejudice.
148 	 */
149 	bust_spinlocks(1);
150 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
151 		 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
152 		 "paging request", addr);
153 
154 	show_pte(mm, addr);
155 	die("Oops", regs, esr);
156 	bust_spinlocks(0);
157 	do_exit(SIGKILL);
158 }
159 
160 /*
161  * Something tried to access memory that isn't in our memory map. User mode
162  * accesses just cause a SIGSEGV
163  */
164 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
165 			    unsigned int esr, unsigned int sig, int code,
166 			    struct pt_regs *regs)
167 {
168 	struct siginfo si;
169 
170 	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
171 		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n",
172 			tsk->comm, task_pid_nr(tsk), fault_name(esr), sig,
173 			addr, esr);
174 		show_pte(tsk->mm, addr);
175 		show_regs(regs);
176 	}
177 
178 	tsk->thread.fault_address = addr;
179 	tsk->thread.fault_code = esr;
180 	si.si_signo = sig;
181 	si.si_errno = 0;
182 	si.si_code = code;
183 	si.si_addr = (void __user *)addr;
184 	force_sig_info(sig, &si, tsk);
185 }
186 
187 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
188 {
189 	struct task_struct *tsk = current;
190 	struct mm_struct *mm = tsk->active_mm;
191 
192 	/*
193 	 * If we are in kernel mode at this point, we have no context to
194 	 * handle this fault with.
195 	 */
196 	if (user_mode(regs))
197 		__do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs);
198 	else
199 		__do_kernel_fault(mm, addr, esr, regs);
200 }
201 
202 #define VM_FAULT_BADMAP		0x010000
203 #define VM_FAULT_BADACCESS	0x020000
204 
205 #define ESR_LNX_EXEC		(1 << 24)
206 
207 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
208 			   unsigned int mm_flags, unsigned long vm_flags,
209 			   struct task_struct *tsk)
210 {
211 	struct vm_area_struct *vma;
212 	int fault;
213 
214 	vma = find_vma(mm, addr);
215 	fault = VM_FAULT_BADMAP;
216 	if (unlikely(!vma))
217 		goto out;
218 	if (unlikely(vma->vm_start > addr))
219 		goto check_stack;
220 
221 	/*
222 	 * Ok, we have a good vm_area for this memory access, so we can handle
223 	 * it.
224 	 */
225 good_area:
226 	/*
227 	 * Check that the permissions on the VMA allow for the fault which
228 	 * occurred. If we encountered a write or exec fault, we must have
229 	 * appropriate permissions, otherwise we allow any permission.
230 	 */
231 	if (!(vma->vm_flags & vm_flags)) {
232 		fault = VM_FAULT_BADACCESS;
233 		goto out;
234 	}
235 
236 	return handle_mm_fault(mm, vma, addr & PAGE_MASK, mm_flags);
237 
238 check_stack:
239 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
240 		goto good_area;
241 out:
242 	return fault;
243 }
244 
245 static inline int permission_fault(unsigned int esr)
246 {
247 	unsigned int ec       = (esr & ESR_ELx_EC_MASK) >> ESR_ELx_EC_SHIFT;
248 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
249 
250 	return (ec == ESR_ELx_EC_DABT_CUR && fsc_type == ESR_ELx_FSC_PERM);
251 }
252 
253 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
254 				   struct pt_regs *regs)
255 {
256 	struct task_struct *tsk;
257 	struct mm_struct *mm;
258 	int fault, sig, code;
259 	unsigned long vm_flags = VM_READ | VM_WRITE | VM_EXEC;
260 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
261 
262 	tsk = current;
263 	mm  = tsk->mm;
264 
265 	/*
266 	 * If we're in an interrupt or have no user context, we must not take
267 	 * the fault.
268 	 */
269 	if (faulthandler_disabled() || !mm)
270 		goto no_context;
271 
272 	if (user_mode(regs))
273 		mm_flags |= FAULT_FLAG_USER;
274 
275 	if (esr & ESR_LNX_EXEC) {
276 		vm_flags = VM_EXEC;
277 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
278 		vm_flags = VM_WRITE;
279 		mm_flags |= FAULT_FLAG_WRITE;
280 	}
281 
282 	if (permission_fault(esr) && (addr < USER_DS)) {
283 		if (get_fs() == KERNEL_DS)
284 			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
285 
286 		if (!search_exception_tables(regs->pc))
287 			die("Accessing user space memory outside uaccess.h routines", regs, esr);
288 	}
289 
290 	/*
291 	 * As per x86, we may deadlock here. However, since the kernel only
292 	 * validly references user space from well defined areas of the code,
293 	 * we can bug out early if this is from code which shouldn't.
294 	 */
295 	if (!down_read_trylock(&mm->mmap_sem)) {
296 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
297 			goto no_context;
298 retry:
299 		down_read(&mm->mmap_sem);
300 	} else {
301 		/*
302 		 * The above down_read_trylock() might have succeeded in which
303 		 * case, we'll have missed the might_sleep() from down_read().
304 		 */
305 		might_sleep();
306 #ifdef CONFIG_DEBUG_VM
307 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
308 			goto no_context;
309 #endif
310 	}
311 
312 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
313 
314 	/*
315 	 * If we need to retry but a fatal signal is pending, handle the
316 	 * signal first. We do not need to release the mmap_sem because it
317 	 * would already be released in __lock_page_or_retry in mm/filemap.c.
318 	 */
319 	if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
320 		return 0;
321 
322 	/*
323 	 * Major/minor page fault accounting is only done on the initial
324 	 * attempt. If we go through a retry, it is extremely likely that the
325 	 * page will be found in page cache at that point.
326 	 */
327 
328 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
329 	if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
330 		if (fault & VM_FAULT_MAJOR) {
331 			tsk->maj_flt++;
332 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
333 				      addr);
334 		} else {
335 			tsk->min_flt++;
336 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
337 				      addr);
338 		}
339 		if (fault & VM_FAULT_RETRY) {
340 			/*
341 			 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
342 			 * starvation.
343 			 */
344 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
345 			mm_flags |= FAULT_FLAG_TRIED;
346 			goto retry;
347 		}
348 	}
349 
350 	up_read(&mm->mmap_sem);
351 
352 	/*
353 	 * Handle the "normal" case first - VM_FAULT_MAJOR
354 	 */
355 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
356 			      VM_FAULT_BADACCESS))))
357 		return 0;
358 
359 	/*
360 	 * If we are in kernel mode at this point, we have no context to
361 	 * handle this fault with.
362 	 */
363 	if (!user_mode(regs))
364 		goto no_context;
365 
366 	if (fault & VM_FAULT_OOM) {
367 		/*
368 		 * We ran out of memory, call the OOM killer, and return to
369 		 * userspace (which will retry the fault, or kill us if we got
370 		 * oom-killed).
371 		 */
372 		pagefault_out_of_memory();
373 		return 0;
374 	}
375 
376 	if (fault & VM_FAULT_SIGBUS) {
377 		/*
378 		 * We had some memory, but were unable to successfully fix up
379 		 * this page fault.
380 		 */
381 		sig = SIGBUS;
382 		code = BUS_ADRERR;
383 	} else {
384 		/*
385 		 * Something tried to access memory that isn't in our memory
386 		 * map.
387 		 */
388 		sig = SIGSEGV;
389 		code = fault == VM_FAULT_BADACCESS ?
390 			SEGV_ACCERR : SEGV_MAPERR;
391 	}
392 
393 	__do_user_fault(tsk, addr, esr, sig, code, regs);
394 	return 0;
395 
396 no_context:
397 	__do_kernel_fault(mm, addr, esr, regs);
398 	return 0;
399 }
400 
401 /*
402  * First Level Translation Fault Handler
403  *
404  * We enter here because the first level page table doesn't contain a valid
405  * entry for the address.
406  *
407  * If the address is in kernel space (>= TASK_SIZE), then we are probably
408  * faulting in the vmalloc() area.
409  *
410  * If the init_task's first level page tables contains the relevant entry, we
411  * copy the it to this task.  If not, we send the process a signal, fixup the
412  * exception, or oops the kernel.
413  *
414  * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
415  * or a critical region, and should only copy the information from the master
416  * page table, nothing more.
417  */
418 static int __kprobes do_translation_fault(unsigned long addr,
419 					  unsigned int esr,
420 					  struct pt_regs *regs)
421 {
422 	if (addr < TASK_SIZE)
423 		return do_page_fault(addr, esr, regs);
424 
425 	do_bad_area(addr, esr, regs);
426 	return 0;
427 }
428 
429 static int do_alignment_fault(unsigned long addr, unsigned int esr,
430 			      struct pt_regs *regs)
431 {
432 	do_bad_area(addr, esr, regs);
433 	return 0;
434 }
435 
436 /*
437  * This abort handler always returns "fault".
438  */
439 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
440 {
441 	return 1;
442 }
443 
444 static const struct fault_info {
445 	int	(*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs);
446 	int	sig;
447 	int	code;
448 	const char *name;
449 } fault_info[] = {
450 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
451 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
452 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
453 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
454 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
455 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
456 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
457 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
458 	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
459 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
460 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
461 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
462 	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
463 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
464 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
465 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
466 	{ do_bad,		SIGBUS,  0,		"synchronous external abort"	},
467 	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
468 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
469 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
470 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
471 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
472 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
473 	{ do_bad,		SIGBUS,  0,		"synchronous abort (translation table walk)" },
474 	{ do_bad,		SIGBUS,  0,		"synchronous parity error"	},
475 	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
476 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
477 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
478 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
479 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
480 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
481 	{ do_bad,		SIGBUS,  0,		"synchronous parity error (translation table walk)" },
482 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
483 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
484 	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
485 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
486 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
487 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
488 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
489 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
490 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
491 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
492 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
493 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
494 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
495 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
496 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
497 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
498 	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
499 	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
500 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
501 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
502 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
503 	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
504 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
505 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
506 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
507 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
508 	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
509 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
510 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
511 	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
512 	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
513 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
514 };
515 
516 static const char *fault_name(unsigned int esr)
517 {
518 	const struct fault_info *inf = fault_info + (esr & 63);
519 	return inf->name;
520 }
521 
522 /*
523  * Dispatch a data abort to the relevant handler.
524  */
525 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
526 					 struct pt_regs *regs)
527 {
528 	const struct fault_info *inf = fault_info + (esr & 63);
529 	struct siginfo info;
530 
531 	if (!inf->fn(addr, esr, regs))
532 		return;
533 
534 	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
535 		 inf->name, esr, addr);
536 
537 	info.si_signo = inf->sig;
538 	info.si_errno = 0;
539 	info.si_code  = inf->code;
540 	info.si_addr  = (void __user *)addr;
541 	arm64_notify_die("", regs, &info, esr);
542 }
543 
544 /*
545  * Handle stack alignment exceptions.
546  */
547 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
548 					   unsigned int esr,
549 					   struct pt_regs *regs)
550 {
551 	struct siginfo info;
552 	struct task_struct *tsk = current;
553 
554 	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
555 		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
556 				    tsk->comm, task_pid_nr(tsk),
557 				    esr_get_class_string(esr), (void *)regs->pc,
558 				    (void *)regs->sp);
559 
560 	info.si_signo = SIGBUS;
561 	info.si_errno = 0;
562 	info.si_code  = BUS_ADRALN;
563 	info.si_addr  = (void __user *)addr;
564 	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
565 }
566 
567 int __init early_brk64(unsigned long addr, unsigned int esr,
568 		       struct pt_regs *regs);
569 
570 /*
571  * __refdata because early_brk64 is __init, but the reference to it is
572  * clobbered at arch_initcall time.
573  * See traps.c and debug-monitors.c:debug_traps_init().
574  */
575 static struct fault_info __refdata debug_fault_info[] = {
576 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
577 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
578 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
579 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
580 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
581 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
582 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
583 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
584 };
585 
586 void __init hook_debug_fault_code(int nr,
587 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
588 				  int sig, int code, const char *name)
589 {
590 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
591 
592 	debug_fault_info[nr].fn		= fn;
593 	debug_fault_info[nr].sig	= sig;
594 	debug_fault_info[nr].code	= code;
595 	debug_fault_info[nr].name	= name;
596 }
597 
598 asmlinkage int __exception do_debug_exception(unsigned long addr,
599 					      unsigned int esr,
600 					      struct pt_regs *regs)
601 {
602 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
603 	struct siginfo info;
604 	int rv;
605 
606 	/*
607 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
608 	 * already disabled to preserve the last enabled/disabled addresses.
609 	 */
610 	if (interrupts_enabled(regs))
611 		trace_hardirqs_off();
612 
613 	if (!inf->fn(addr, esr, regs)) {
614 		rv = 1;
615 	} else {
616 		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
617 			 inf->name, esr, addr);
618 
619 		info.si_signo = inf->sig;
620 		info.si_errno = 0;
621 		info.si_code  = inf->code;
622 		info.si_addr  = (void __user *)addr;
623 		arm64_notify_die("", regs, &info, 0);
624 		rv = 0;
625 	}
626 
627 	if (interrupts_enabled(regs))
628 		trace_hardirqs_on();
629 
630 	return rv;
631 }
632 
633 #ifdef CONFIG_ARM64_PAN
634 void cpu_enable_pan(void *__unused)
635 {
636 	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
637 }
638 #endif /* CONFIG_ARM64_PAN */
639 
640 #ifdef CONFIG_ARM64_UAO
641 /*
642  * Kernel threads have fs=KERNEL_DS by default, and don't need to call
643  * set_fs(), devtmpfs in particular relies on this behaviour.
644  * We need to enable the feature at runtime (instead of adding it to
645  * PSR_MODE_EL1h) as the feature may not be implemented by the cpu.
646  */
647 void cpu_enable_uao(void *__unused)
648 {
649 	asm(SET_PSTATE_UAO(1));
650 }
651 #endif /* CONFIG_ARM64_UAO */
652