xref: /linux/arch/arm64/mm/dma-mapping.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 
32 #include <asm/cacheflush.h>
33 
34 static int swiotlb __ro_after_init;
35 
36 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
37 				 bool coherent)
38 {
39 	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
40 		return pgprot_writecombine(prot);
41 	return prot;
42 }
43 
44 static struct gen_pool *atomic_pool;
45 
46 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
47 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
48 
49 static int __init early_coherent_pool(char *p)
50 {
51 	atomic_pool_size = memparse(p, &p);
52 	return 0;
53 }
54 early_param("coherent_pool", early_coherent_pool);
55 
56 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
57 {
58 	unsigned long val;
59 	void *ptr = NULL;
60 
61 	if (!atomic_pool) {
62 		WARN(1, "coherent pool not initialised!\n");
63 		return NULL;
64 	}
65 
66 	val = gen_pool_alloc(atomic_pool, size);
67 	if (val) {
68 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
69 
70 		*ret_page = phys_to_page(phys);
71 		ptr = (void *)val;
72 		memset(ptr, 0, size);
73 	}
74 
75 	return ptr;
76 }
77 
78 static bool __in_atomic_pool(void *start, size_t size)
79 {
80 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
81 }
82 
83 static int __free_from_pool(void *start, size_t size)
84 {
85 	if (!__in_atomic_pool(start, size))
86 		return 0;
87 
88 	gen_pool_free(atomic_pool, (unsigned long)start, size);
89 
90 	return 1;
91 }
92 
93 static void *__dma_alloc_coherent(struct device *dev, size_t size,
94 				  dma_addr_t *dma_handle, gfp_t flags,
95 				  unsigned long attrs)
96 {
97 	if (dev == NULL) {
98 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
99 		return NULL;
100 	}
101 
102 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
103 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
104 		flags |= GFP_DMA;
105 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
106 		struct page *page;
107 		void *addr;
108 
109 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
110 						 get_order(size), flags);
111 		if (!page)
112 			return NULL;
113 
114 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
115 		addr = page_address(page);
116 		memset(addr, 0, size);
117 		return addr;
118 	} else {
119 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
120 	}
121 }
122 
123 static void __dma_free_coherent(struct device *dev, size_t size,
124 				void *vaddr, dma_addr_t dma_handle,
125 				unsigned long attrs)
126 {
127 	bool freed;
128 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
129 
130 	if (dev == NULL) {
131 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
132 		return;
133 	}
134 
135 	freed = dma_release_from_contiguous(dev,
136 					phys_to_page(paddr),
137 					size >> PAGE_SHIFT);
138 	if (!freed)
139 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
140 }
141 
142 static void *__dma_alloc(struct device *dev, size_t size,
143 			 dma_addr_t *dma_handle, gfp_t flags,
144 			 unsigned long attrs)
145 {
146 	struct page *page;
147 	void *ptr, *coherent_ptr;
148 	bool coherent = is_device_dma_coherent(dev);
149 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
150 
151 	size = PAGE_ALIGN(size);
152 
153 	if (!coherent && !gfpflags_allow_blocking(flags)) {
154 		struct page *page = NULL;
155 		void *addr = __alloc_from_pool(size, &page, flags);
156 
157 		if (addr)
158 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
159 
160 		return addr;
161 	}
162 
163 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
164 	if (!ptr)
165 		goto no_mem;
166 
167 	/* no need for non-cacheable mapping if coherent */
168 	if (coherent)
169 		return ptr;
170 
171 	/* remove any dirty cache lines on the kernel alias */
172 	__dma_flush_area(ptr, size);
173 
174 	/* create a coherent mapping */
175 	page = virt_to_page(ptr);
176 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
177 						   prot, NULL);
178 	if (!coherent_ptr)
179 		goto no_map;
180 
181 	return coherent_ptr;
182 
183 no_map:
184 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
185 no_mem:
186 	*dma_handle = DMA_ERROR_CODE;
187 	return NULL;
188 }
189 
190 static void __dma_free(struct device *dev, size_t size,
191 		       void *vaddr, dma_addr_t dma_handle,
192 		       unsigned long attrs)
193 {
194 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
195 
196 	size = PAGE_ALIGN(size);
197 
198 	if (!is_device_dma_coherent(dev)) {
199 		if (__free_from_pool(vaddr, size))
200 			return;
201 		vunmap(vaddr);
202 	}
203 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
204 }
205 
206 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
207 				     unsigned long offset, size_t size,
208 				     enum dma_data_direction dir,
209 				     unsigned long attrs)
210 {
211 	dma_addr_t dev_addr;
212 
213 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
214 	if (!is_device_dma_coherent(dev) &&
215 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
216 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
217 
218 	return dev_addr;
219 }
220 
221 
222 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
223 				 size_t size, enum dma_data_direction dir,
224 				 unsigned long attrs)
225 {
226 	if (!is_device_dma_coherent(dev) &&
227 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
228 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
229 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
230 }
231 
232 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
233 				  int nelems, enum dma_data_direction dir,
234 				  unsigned long attrs)
235 {
236 	struct scatterlist *sg;
237 	int i, ret;
238 
239 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
240 	if (!is_device_dma_coherent(dev) &&
241 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
242 		for_each_sg(sgl, sg, ret, i)
243 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
244 				       sg->length, dir);
245 
246 	return ret;
247 }
248 
249 static void __swiotlb_unmap_sg_attrs(struct device *dev,
250 				     struct scatterlist *sgl, int nelems,
251 				     enum dma_data_direction dir,
252 				     unsigned long attrs)
253 {
254 	struct scatterlist *sg;
255 	int i;
256 
257 	if (!is_device_dma_coherent(dev) &&
258 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
259 		for_each_sg(sgl, sg, nelems, i)
260 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
261 					 sg->length, dir);
262 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
263 }
264 
265 static void __swiotlb_sync_single_for_cpu(struct device *dev,
266 					  dma_addr_t dev_addr, size_t size,
267 					  enum dma_data_direction dir)
268 {
269 	if (!is_device_dma_coherent(dev))
270 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
271 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
272 }
273 
274 static void __swiotlb_sync_single_for_device(struct device *dev,
275 					     dma_addr_t dev_addr, size_t size,
276 					     enum dma_data_direction dir)
277 {
278 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
279 	if (!is_device_dma_coherent(dev))
280 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
281 }
282 
283 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
284 				      struct scatterlist *sgl, int nelems,
285 				      enum dma_data_direction dir)
286 {
287 	struct scatterlist *sg;
288 	int i;
289 
290 	if (!is_device_dma_coherent(dev))
291 		for_each_sg(sgl, sg, nelems, i)
292 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
293 					 sg->length, dir);
294 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
295 }
296 
297 static void __swiotlb_sync_sg_for_device(struct device *dev,
298 					 struct scatterlist *sgl, int nelems,
299 					 enum dma_data_direction dir)
300 {
301 	struct scatterlist *sg;
302 	int i;
303 
304 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
305 	if (!is_device_dma_coherent(dev))
306 		for_each_sg(sgl, sg, nelems, i)
307 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
308 				       sg->length, dir);
309 }
310 
311 static int __swiotlb_mmap(struct device *dev,
312 			  struct vm_area_struct *vma,
313 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
314 			  unsigned long attrs)
315 {
316 	int ret = -ENXIO;
317 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
318 					PAGE_SHIFT;
319 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
320 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
321 	unsigned long off = vma->vm_pgoff;
322 
323 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
324 					     is_device_dma_coherent(dev));
325 
326 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
327 		return ret;
328 
329 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
330 		ret = remap_pfn_range(vma, vma->vm_start,
331 				      pfn + off,
332 				      vma->vm_end - vma->vm_start,
333 				      vma->vm_page_prot);
334 	}
335 
336 	return ret;
337 }
338 
339 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
340 				 void *cpu_addr, dma_addr_t handle, size_t size,
341 				 unsigned long attrs)
342 {
343 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
344 
345 	if (!ret)
346 		sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
347 			    PAGE_ALIGN(size), 0);
348 
349 	return ret;
350 }
351 
352 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
353 {
354 	if (swiotlb)
355 		return swiotlb_dma_supported(hwdev, mask);
356 	return 1;
357 }
358 
359 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
360 {
361 	if (swiotlb)
362 		return swiotlb_dma_mapping_error(hwdev, addr);
363 	return 0;
364 }
365 
366 static const struct dma_map_ops swiotlb_dma_ops = {
367 	.alloc = __dma_alloc,
368 	.free = __dma_free,
369 	.mmap = __swiotlb_mmap,
370 	.get_sgtable = __swiotlb_get_sgtable,
371 	.map_page = __swiotlb_map_page,
372 	.unmap_page = __swiotlb_unmap_page,
373 	.map_sg = __swiotlb_map_sg_attrs,
374 	.unmap_sg = __swiotlb_unmap_sg_attrs,
375 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
376 	.sync_single_for_device = __swiotlb_sync_single_for_device,
377 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
378 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
379 	.dma_supported = __swiotlb_dma_supported,
380 	.mapping_error = __swiotlb_dma_mapping_error,
381 };
382 
383 static int __init atomic_pool_init(void)
384 {
385 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
386 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
387 	struct page *page;
388 	void *addr;
389 	unsigned int pool_size_order = get_order(atomic_pool_size);
390 
391 	if (dev_get_cma_area(NULL))
392 		page = dma_alloc_from_contiguous(NULL, nr_pages,
393 						 pool_size_order, GFP_KERNEL);
394 	else
395 		page = alloc_pages(GFP_DMA, pool_size_order);
396 
397 	if (page) {
398 		int ret;
399 		void *page_addr = page_address(page);
400 
401 		memset(page_addr, 0, atomic_pool_size);
402 		__dma_flush_area(page_addr, atomic_pool_size);
403 
404 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
405 		if (!atomic_pool)
406 			goto free_page;
407 
408 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
409 					VM_USERMAP, prot, atomic_pool_init);
410 
411 		if (!addr)
412 			goto destroy_genpool;
413 
414 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
415 					page_to_phys(page),
416 					atomic_pool_size, -1);
417 		if (ret)
418 			goto remove_mapping;
419 
420 		gen_pool_set_algo(atomic_pool,
421 				  gen_pool_first_fit_order_align,
422 				  (void *)PAGE_SHIFT);
423 
424 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
425 			atomic_pool_size / 1024);
426 		return 0;
427 	}
428 	goto out;
429 
430 remove_mapping:
431 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
432 destroy_genpool:
433 	gen_pool_destroy(atomic_pool);
434 	atomic_pool = NULL;
435 free_page:
436 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
437 		__free_pages(page, pool_size_order);
438 out:
439 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
440 		atomic_pool_size / 1024);
441 	return -ENOMEM;
442 }
443 
444 /********************************************
445  * The following APIs are for dummy DMA ops *
446  ********************************************/
447 
448 static void *__dummy_alloc(struct device *dev, size_t size,
449 			   dma_addr_t *dma_handle, gfp_t flags,
450 			   unsigned long attrs)
451 {
452 	return NULL;
453 }
454 
455 static void __dummy_free(struct device *dev, size_t size,
456 			 void *vaddr, dma_addr_t dma_handle,
457 			 unsigned long attrs)
458 {
459 }
460 
461 static int __dummy_mmap(struct device *dev,
462 			struct vm_area_struct *vma,
463 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
464 			unsigned long attrs)
465 {
466 	return -ENXIO;
467 }
468 
469 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
470 				   unsigned long offset, size_t size,
471 				   enum dma_data_direction dir,
472 				   unsigned long attrs)
473 {
474 	return DMA_ERROR_CODE;
475 }
476 
477 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
478 			       size_t size, enum dma_data_direction dir,
479 			       unsigned long attrs)
480 {
481 }
482 
483 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
484 			  int nelems, enum dma_data_direction dir,
485 			  unsigned long attrs)
486 {
487 	return 0;
488 }
489 
490 static void __dummy_unmap_sg(struct device *dev,
491 			     struct scatterlist *sgl, int nelems,
492 			     enum dma_data_direction dir,
493 			     unsigned long attrs)
494 {
495 }
496 
497 static void __dummy_sync_single(struct device *dev,
498 				dma_addr_t dev_addr, size_t size,
499 				enum dma_data_direction dir)
500 {
501 }
502 
503 static void __dummy_sync_sg(struct device *dev,
504 			    struct scatterlist *sgl, int nelems,
505 			    enum dma_data_direction dir)
506 {
507 }
508 
509 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
510 {
511 	return 1;
512 }
513 
514 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
515 {
516 	return 0;
517 }
518 
519 const struct dma_map_ops dummy_dma_ops = {
520 	.alloc                  = __dummy_alloc,
521 	.free                   = __dummy_free,
522 	.mmap                   = __dummy_mmap,
523 	.map_page               = __dummy_map_page,
524 	.unmap_page             = __dummy_unmap_page,
525 	.map_sg                 = __dummy_map_sg,
526 	.unmap_sg               = __dummy_unmap_sg,
527 	.sync_single_for_cpu    = __dummy_sync_single,
528 	.sync_single_for_device = __dummy_sync_single,
529 	.sync_sg_for_cpu        = __dummy_sync_sg,
530 	.sync_sg_for_device     = __dummy_sync_sg,
531 	.mapping_error          = __dummy_mapping_error,
532 	.dma_supported          = __dummy_dma_supported,
533 };
534 EXPORT_SYMBOL(dummy_dma_ops);
535 
536 static int __init arm64_dma_init(void)
537 {
538 	if (swiotlb_force == SWIOTLB_FORCE ||
539 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
540 		swiotlb = 1;
541 
542 	return atomic_pool_init();
543 }
544 arch_initcall(arm64_dma_init);
545 
546 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
547 
548 static int __init dma_debug_do_init(void)
549 {
550 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
551 	return 0;
552 }
553 fs_initcall(dma_debug_do_init);
554 
555 
556 #ifdef CONFIG_IOMMU_DMA
557 #include <linux/dma-iommu.h>
558 #include <linux/platform_device.h>
559 #include <linux/amba/bus.h>
560 
561 /* Thankfully, all cache ops are by VA so we can ignore phys here */
562 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
563 {
564 	__dma_flush_area(virt, PAGE_SIZE);
565 }
566 
567 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
568 				 dma_addr_t *handle, gfp_t gfp,
569 				 unsigned long attrs)
570 {
571 	bool coherent = is_device_dma_coherent(dev);
572 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
573 	size_t iosize = size;
574 	void *addr;
575 
576 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
577 		return NULL;
578 
579 	size = PAGE_ALIGN(size);
580 
581 	/*
582 	 * Some drivers rely on this, and we probably don't want the
583 	 * possibility of stale kernel data being read by devices anyway.
584 	 */
585 	gfp |= __GFP_ZERO;
586 
587 	if (gfpflags_allow_blocking(gfp)) {
588 		struct page **pages;
589 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
590 
591 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
592 					handle, flush_page);
593 		if (!pages)
594 			return NULL;
595 
596 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
597 					      __builtin_return_address(0));
598 		if (!addr)
599 			iommu_dma_free(dev, pages, iosize, handle);
600 	} else {
601 		struct page *page;
602 		/*
603 		 * In atomic context we can't remap anything, so we'll only
604 		 * get the virtually contiguous buffer we need by way of a
605 		 * physically contiguous allocation.
606 		 */
607 		if (coherent) {
608 			page = alloc_pages(gfp, get_order(size));
609 			addr = page ? page_address(page) : NULL;
610 		} else {
611 			addr = __alloc_from_pool(size, &page, gfp);
612 		}
613 		if (!addr)
614 			return NULL;
615 
616 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
617 		if (iommu_dma_mapping_error(dev, *handle)) {
618 			if (coherent)
619 				__free_pages(page, get_order(size));
620 			else
621 				__free_from_pool(addr, size);
622 			addr = NULL;
623 		}
624 	}
625 	return addr;
626 }
627 
628 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
629 			       dma_addr_t handle, unsigned long attrs)
630 {
631 	size_t iosize = size;
632 
633 	size = PAGE_ALIGN(size);
634 	/*
635 	 * @cpu_addr will be one of 3 things depending on how it was allocated:
636 	 * - A remapped array of pages from iommu_dma_alloc(), for all
637 	 *   non-atomic allocations.
638 	 * - A non-cacheable alias from the atomic pool, for atomic
639 	 *   allocations by non-coherent devices.
640 	 * - A normal lowmem address, for atomic allocations by
641 	 *   coherent devices.
642 	 * Hence how dodgy the below logic looks...
643 	 */
644 	if (__in_atomic_pool(cpu_addr, size)) {
645 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
646 		__free_from_pool(cpu_addr, size);
647 	} else if (is_vmalloc_addr(cpu_addr)){
648 		struct vm_struct *area = find_vm_area(cpu_addr);
649 
650 		if (WARN_ON(!area || !area->pages))
651 			return;
652 		iommu_dma_free(dev, area->pages, iosize, &handle);
653 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
654 	} else {
655 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
656 		__free_pages(virt_to_page(cpu_addr), get_order(size));
657 	}
658 }
659 
660 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
661 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
662 			      unsigned long attrs)
663 {
664 	struct vm_struct *area;
665 	int ret;
666 
667 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
668 					     is_device_dma_coherent(dev));
669 
670 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
671 		return ret;
672 
673 	area = find_vm_area(cpu_addr);
674 	if (WARN_ON(!area || !area->pages))
675 		return -ENXIO;
676 
677 	return iommu_dma_mmap(area->pages, size, vma);
678 }
679 
680 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
681 			       void *cpu_addr, dma_addr_t dma_addr,
682 			       size_t size, unsigned long attrs)
683 {
684 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
685 	struct vm_struct *area = find_vm_area(cpu_addr);
686 
687 	if (WARN_ON(!area || !area->pages))
688 		return -ENXIO;
689 
690 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
691 					 GFP_KERNEL);
692 }
693 
694 static void __iommu_sync_single_for_cpu(struct device *dev,
695 					dma_addr_t dev_addr, size_t size,
696 					enum dma_data_direction dir)
697 {
698 	phys_addr_t phys;
699 
700 	if (is_device_dma_coherent(dev))
701 		return;
702 
703 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
704 	__dma_unmap_area(phys_to_virt(phys), size, dir);
705 }
706 
707 static void __iommu_sync_single_for_device(struct device *dev,
708 					   dma_addr_t dev_addr, size_t size,
709 					   enum dma_data_direction dir)
710 {
711 	phys_addr_t phys;
712 
713 	if (is_device_dma_coherent(dev))
714 		return;
715 
716 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
717 	__dma_map_area(phys_to_virt(phys), size, dir);
718 }
719 
720 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
721 				   unsigned long offset, size_t size,
722 				   enum dma_data_direction dir,
723 				   unsigned long attrs)
724 {
725 	bool coherent = is_device_dma_coherent(dev);
726 	int prot = dma_info_to_prot(dir, coherent, attrs);
727 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
728 
729 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
730 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
731 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
732 
733 	return dev_addr;
734 }
735 
736 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
737 			       size_t size, enum dma_data_direction dir,
738 			       unsigned long attrs)
739 {
740 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
741 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
742 
743 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
744 }
745 
746 static void __iommu_sync_sg_for_cpu(struct device *dev,
747 				    struct scatterlist *sgl, int nelems,
748 				    enum dma_data_direction dir)
749 {
750 	struct scatterlist *sg;
751 	int i;
752 
753 	if (is_device_dma_coherent(dev))
754 		return;
755 
756 	for_each_sg(sgl, sg, nelems, i)
757 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
758 }
759 
760 static void __iommu_sync_sg_for_device(struct device *dev,
761 				       struct scatterlist *sgl, int nelems,
762 				       enum dma_data_direction dir)
763 {
764 	struct scatterlist *sg;
765 	int i;
766 
767 	if (is_device_dma_coherent(dev))
768 		return;
769 
770 	for_each_sg(sgl, sg, nelems, i)
771 		__dma_map_area(sg_virt(sg), sg->length, dir);
772 }
773 
774 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
775 				int nelems, enum dma_data_direction dir,
776 				unsigned long attrs)
777 {
778 	bool coherent = is_device_dma_coherent(dev);
779 
780 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
781 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
782 
783 	return iommu_dma_map_sg(dev, sgl, nelems,
784 				dma_info_to_prot(dir, coherent, attrs));
785 }
786 
787 static void __iommu_unmap_sg_attrs(struct device *dev,
788 				   struct scatterlist *sgl, int nelems,
789 				   enum dma_data_direction dir,
790 				   unsigned long attrs)
791 {
792 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
793 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
794 
795 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
796 }
797 
798 static const struct dma_map_ops iommu_dma_ops = {
799 	.alloc = __iommu_alloc_attrs,
800 	.free = __iommu_free_attrs,
801 	.mmap = __iommu_mmap_attrs,
802 	.get_sgtable = __iommu_get_sgtable,
803 	.map_page = __iommu_map_page,
804 	.unmap_page = __iommu_unmap_page,
805 	.map_sg = __iommu_map_sg_attrs,
806 	.unmap_sg = __iommu_unmap_sg_attrs,
807 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
808 	.sync_single_for_device = __iommu_sync_single_for_device,
809 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
810 	.sync_sg_for_device = __iommu_sync_sg_for_device,
811 	.map_resource = iommu_dma_map_resource,
812 	.unmap_resource = iommu_dma_unmap_resource,
813 	.mapping_error = iommu_dma_mapping_error,
814 };
815 
816 /*
817  * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
818  * everything it needs to - the device is only partially created and the
819  * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
820  * need this delayed attachment dance. Once IOMMU probe ordering is sorted
821  * to move the arch_setup_dma_ops() call later, all the notifier bits below
822  * become unnecessary, and will go away.
823  */
824 struct iommu_dma_notifier_data {
825 	struct list_head list;
826 	struct device *dev;
827 	const struct iommu_ops *ops;
828 	u64 dma_base;
829 	u64 size;
830 };
831 static LIST_HEAD(iommu_dma_masters);
832 static DEFINE_MUTEX(iommu_dma_notifier_lock);
833 
834 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
835 			   u64 dma_base, u64 size)
836 {
837 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
838 
839 	/*
840 	 * If the IOMMU driver has the DMA domain support that we require,
841 	 * then the IOMMU core will have already configured a group for this
842 	 * device, and allocated the default domain for that group.
843 	 */
844 	if (!domain)
845 		goto out_err;
846 
847 	if (domain->type == IOMMU_DOMAIN_DMA) {
848 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
849 			goto out_err;
850 
851 		dev->dma_ops = &iommu_dma_ops;
852 	}
853 
854 	return true;
855 out_err:
856 	pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
857 		 dev_name(dev));
858 	return false;
859 }
860 
861 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
862 			      u64 dma_base, u64 size)
863 {
864 	struct iommu_dma_notifier_data *iommudata;
865 
866 	iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
867 	if (!iommudata)
868 		return;
869 
870 	iommudata->dev = dev;
871 	iommudata->ops = ops;
872 	iommudata->dma_base = dma_base;
873 	iommudata->size = size;
874 
875 	mutex_lock(&iommu_dma_notifier_lock);
876 	list_add(&iommudata->list, &iommu_dma_masters);
877 	mutex_unlock(&iommu_dma_notifier_lock);
878 }
879 
880 static int __iommu_attach_notifier(struct notifier_block *nb,
881 				   unsigned long action, void *data)
882 {
883 	struct iommu_dma_notifier_data *master, *tmp;
884 
885 	if (action != BUS_NOTIFY_BIND_DRIVER)
886 		return 0;
887 
888 	mutex_lock(&iommu_dma_notifier_lock);
889 	list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
890 		if (data == master->dev && do_iommu_attach(master->dev,
891 				master->ops, master->dma_base, master->size)) {
892 			list_del(&master->list);
893 			kfree(master);
894 			break;
895 		}
896 	}
897 	mutex_unlock(&iommu_dma_notifier_lock);
898 	return 0;
899 }
900 
901 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
902 {
903 	struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
904 	int ret;
905 
906 	if (!nb)
907 		return -ENOMEM;
908 
909 	nb->notifier_call = __iommu_attach_notifier;
910 
911 	ret = bus_register_notifier(bus, nb);
912 	if (ret) {
913 		pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
914 			bus->name);
915 		kfree(nb);
916 	}
917 	return ret;
918 }
919 
920 static int __init __iommu_dma_init(void)
921 {
922 	int ret;
923 
924 	ret = iommu_dma_init();
925 	if (!ret)
926 		ret = register_iommu_dma_ops_notifier(&platform_bus_type);
927 	if (!ret)
928 		ret = register_iommu_dma_ops_notifier(&amba_bustype);
929 #ifdef CONFIG_PCI
930 	if (!ret)
931 		ret = register_iommu_dma_ops_notifier(&pci_bus_type);
932 #endif
933 	return ret;
934 }
935 arch_initcall(__iommu_dma_init);
936 
937 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
938 				  const struct iommu_ops *ops)
939 {
940 	struct iommu_group *group;
941 
942 	if (!ops)
943 		return;
944 	/*
945 	 * TODO: As a concession to the future, we're ready to handle being
946 	 * called both early and late (i.e. after bus_add_device). Once all
947 	 * the platform bus code is reworked to call us late and the notifier
948 	 * junk above goes away, move the body of do_iommu_attach here.
949 	 */
950 	group = iommu_group_get(dev);
951 	if (group) {
952 		do_iommu_attach(dev, ops, dma_base, size);
953 		iommu_group_put(group);
954 	} else {
955 		queue_iommu_attach(dev, ops, dma_base, size);
956 	}
957 }
958 
959 void arch_teardown_dma_ops(struct device *dev)
960 {
961 	dev->dma_ops = NULL;
962 }
963 
964 #else
965 
966 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
967 				  const struct iommu_ops *iommu)
968 { }
969 
970 #endif  /* CONFIG_IOMMU_DMA */
971 
972 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
973 			const struct iommu_ops *iommu, bool coherent)
974 {
975 	if (!dev->dma_ops)
976 		dev->dma_ops = &swiotlb_dma_ops;
977 
978 	dev->archdata.dma_coherent = coherent;
979 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
980 }
981