xref: /linux/arch/arm64/mm/dma-mapping.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-contiguous.h>
29 #include <linux/vmalloc.h>
30 #include <linux/swiotlb.h>
31 #include <linux/pci.h>
32 
33 #include <asm/cacheflush.h>
34 
35 static int swiotlb __ro_after_init;
36 
37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot,
38 				 bool coherent)
39 {
40 	if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE))
41 		return pgprot_writecombine(prot);
42 	return prot;
43 }
44 
45 static struct gen_pool *atomic_pool __ro_after_init;
46 
47 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
49 
50 static int __init early_coherent_pool(char *p)
51 {
52 	atomic_pool_size = memparse(p, &p);
53 	return 0;
54 }
55 early_param("coherent_pool", early_coherent_pool);
56 
57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
58 {
59 	unsigned long val;
60 	void *ptr = NULL;
61 
62 	if (!atomic_pool) {
63 		WARN(1, "coherent pool not initialised!\n");
64 		return NULL;
65 	}
66 
67 	val = gen_pool_alloc(atomic_pool, size);
68 	if (val) {
69 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
70 
71 		*ret_page = phys_to_page(phys);
72 		ptr = (void *)val;
73 		memset(ptr, 0, size);
74 	}
75 
76 	return ptr;
77 }
78 
79 static bool __in_atomic_pool(void *start, size_t size)
80 {
81 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
82 }
83 
84 static int __free_from_pool(void *start, size_t size)
85 {
86 	if (!__in_atomic_pool(start, size))
87 		return 0;
88 
89 	gen_pool_free(atomic_pool, (unsigned long)start, size);
90 
91 	return 1;
92 }
93 
94 static void *__dma_alloc(struct device *dev, size_t size,
95 			 dma_addr_t *dma_handle, gfp_t flags,
96 			 unsigned long attrs)
97 {
98 	struct page *page;
99 	void *ptr, *coherent_ptr;
100 	bool coherent = is_device_dma_coherent(dev);
101 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
102 
103 	size = PAGE_ALIGN(size);
104 
105 	if (!coherent && !gfpflags_allow_blocking(flags)) {
106 		struct page *page = NULL;
107 		void *addr = __alloc_from_pool(size, &page, flags);
108 
109 		if (addr)
110 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
111 
112 		return addr;
113 	}
114 
115 	ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs);
116 	if (!ptr)
117 		goto no_mem;
118 
119 	/* no need for non-cacheable mapping if coherent */
120 	if (coherent)
121 		return ptr;
122 
123 	/* remove any dirty cache lines on the kernel alias */
124 	__dma_flush_area(ptr, size);
125 
126 	/* create a coherent mapping */
127 	page = virt_to_page(ptr);
128 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
129 						   prot, __builtin_return_address(0));
130 	if (!coherent_ptr)
131 		goto no_map;
132 
133 	return coherent_ptr;
134 
135 no_map:
136 	swiotlb_free(dev, size, ptr, *dma_handle, attrs);
137 no_mem:
138 	return NULL;
139 }
140 
141 static void __dma_free(struct device *dev, size_t size,
142 		       void *vaddr, dma_addr_t dma_handle,
143 		       unsigned long attrs)
144 {
145 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
146 
147 	size = PAGE_ALIGN(size);
148 
149 	if (!is_device_dma_coherent(dev)) {
150 		if (__free_from_pool(vaddr, size))
151 			return;
152 		vunmap(vaddr);
153 	}
154 	swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs);
155 }
156 
157 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
158 				     unsigned long offset, size_t size,
159 				     enum dma_data_direction dir,
160 				     unsigned long attrs)
161 {
162 	dma_addr_t dev_addr;
163 
164 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
165 	if (!is_device_dma_coherent(dev) &&
166 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
167 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
168 
169 	return dev_addr;
170 }
171 
172 
173 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
174 				 size_t size, enum dma_data_direction dir,
175 				 unsigned long attrs)
176 {
177 	if (!is_device_dma_coherent(dev) &&
178 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
179 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
180 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
181 }
182 
183 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
184 				  int nelems, enum dma_data_direction dir,
185 				  unsigned long attrs)
186 {
187 	struct scatterlist *sg;
188 	int i, ret;
189 
190 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
191 	if (!is_device_dma_coherent(dev) &&
192 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
193 		for_each_sg(sgl, sg, ret, i)
194 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
195 				       sg->length, dir);
196 
197 	return ret;
198 }
199 
200 static void __swiotlb_unmap_sg_attrs(struct device *dev,
201 				     struct scatterlist *sgl, int nelems,
202 				     enum dma_data_direction dir,
203 				     unsigned long attrs)
204 {
205 	struct scatterlist *sg;
206 	int i;
207 
208 	if (!is_device_dma_coherent(dev) &&
209 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
210 		for_each_sg(sgl, sg, nelems, i)
211 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
212 					 sg->length, dir);
213 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
214 }
215 
216 static void __swiotlb_sync_single_for_cpu(struct device *dev,
217 					  dma_addr_t dev_addr, size_t size,
218 					  enum dma_data_direction dir)
219 {
220 	if (!is_device_dma_coherent(dev))
221 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
222 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
223 }
224 
225 static void __swiotlb_sync_single_for_device(struct device *dev,
226 					     dma_addr_t dev_addr, size_t size,
227 					     enum dma_data_direction dir)
228 {
229 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
230 	if (!is_device_dma_coherent(dev))
231 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
232 }
233 
234 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
235 				      struct scatterlist *sgl, int nelems,
236 				      enum dma_data_direction dir)
237 {
238 	struct scatterlist *sg;
239 	int i;
240 
241 	if (!is_device_dma_coherent(dev))
242 		for_each_sg(sgl, sg, nelems, i)
243 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
244 					 sg->length, dir);
245 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
246 }
247 
248 static void __swiotlb_sync_sg_for_device(struct device *dev,
249 					 struct scatterlist *sgl, int nelems,
250 					 enum dma_data_direction dir)
251 {
252 	struct scatterlist *sg;
253 	int i;
254 
255 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
256 	if (!is_device_dma_coherent(dev))
257 		for_each_sg(sgl, sg, nelems, i)
258 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
259 				       sg->length, dir);
260 }
261 
262 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
263 			      unsigned long pfn, size_t size)
264 {
265 	int ret = -ENXIO;
266 	unsigned long nr_vma_pages = vma_pages(vma);
267 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
268 	unsigned long off = vma->vm_pgoff;
269 
270 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
271 		ret = remap_pfn_range(vma, vma->vm_start,
272 				      pfn + off,
273 				      vma->vm_end - vma->vm_start,
274 				      vma->vm_page_prot);
275 	}
276 
277 	return ret;
278 }
279 
280 static int __swiotlb_mmap(struct device *dev,
281 			  struct vm_area_struct *vma,
282 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
283 			  unsigned long attrs)
284 {
285 	int ret;
286 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
287 
288 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
289 					     is_device_dma_coherent(dev));
290 
291 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
292 		return ret;
293 
294 	return __swiotlb_mmap_pfn(vma, pfn, size);
295 }
296 
297 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
298 				      struct page *page, size_t size)
299 {
300 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
301 
302 	if (!ret)
303 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
304 
305 	return ret;
306 }
307 
308 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
309 				 void *cpu_addr, dma_addr_t handle, size_t size,
310 				 unsigned long attrs)
311 {
312 	struct page *page = phys_to_page(dma_to_phys(dev, handle));
313 
314 	return __swiotlb_get_sgtable_page(sgt, page, size);
315 }
316 
317 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask)
318 {
319 	if (swiotlb)
320 		return swiotlb_dma_supported(hwdev, mask);
321 	return 1;
322 }
323 
324 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr)
325 {
326 	if (swiotlb)
327 		return swiotlb_dma_mapping_error(hwdev, addr);
328 	return 0;
329 }
330 
331 static const struct dma_map_ops arm64_swiotlb_dma_ops = {
332 	.alloc = __dma_alloc,
333 	.free = __dma_free,
334 	.mmap = __swiotlb_mmap,
335 	.get_sgtable = __swiotlb_get_sgtable,
336 	.map_page = __swiotlb_map_page,
337 	.unmap_page = __swiotlb_unmap_page,
338 	.map_sg = __swiotlb_map_sg_attrs,
339 	.unmap_sg = __swiotlb_unmap_sg_attrs,
340 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
341 	.sync_single_for_device = __swiotlb_sync_single_for_device,
342 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
343 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
344 	.dma_supported = __swiotlb_dma_supported,
345 	.mapping_error = __swiotlb_dma_mapping_error,
346 };
347 
348 static int __init atomic_pool_init(void)
349 {
350 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
351 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
352 	struct page *page;
353 	void *addr;
354 	unsigned int pool_size_order = get_order(atomic_pool_size);
355 
356 	if (dev_get_cma_area(NULL))
357 		page = dma_alloc_from_contiguous(NULL, nr_pages,
358 						 pool_size_order, false);
359 	else
360 		page = alloc_pages(GFP_DMA32, pool_size_order);
361 
362 	if (page) {
363 		int ret;
364 		void *page_addr = page_address(page);
365 
366 		memset(page_addr, 0, atomic_pool_size);
367 		__dma_flush_area(page_addr, atomic_pool_size);
368 
369 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
370 		if (!atomic_pool)
371 			goto free_page;
372 
373 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
374 					VM_USERMAP, prot, atomic_pool_init);
375 
376 		if (!addr)
377 			goto destroy_genpool;
378 
379 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
380 					page_to_phys(page),
381 					atomic_pool_size, -1);
382 		if (ret)
383 			goto remove_mapping;
384 
385 		gen_pool_set_algo(atomic_pool,
386 				  gen_pool_first_fit_order_align,
387 				  NULL);
388 
389 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
390 			atomic_pool_size / 1024);
391 		return 0;
392 	}
393 	goto out;
394 
395 remove_mapping:
396 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
397 destroy_genpool:
398 	gen_pool_destroy(atomic_pool);
399 	atomic_pool = NULL;
400 free_page:
401 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
402 		__free_pages(page, pool_size_order);
403 out:
404 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
405 		atomic_pool_size / 1024);
406 	return -ENOMEM;
407 }
408 
409 /********************************************
410  * The following APIs are for dummy DMA ops *
411  ********************************************/
412 
413 static void *__dummy_alloc(struct device *dev, size_t size,
414 			   dma_addr_t *dma_handle, gfp_t flags,
415 			   unsigned long attrs)
416 {
417 	return NULL;
418 }
419 
420 static void __dummy_free(struct device *dev, size_t size,
421 			 void *vaddr, dma_addr_t dma_handle,
422 			 unsigned long attrs)
423 {
424 }
425 
426 static int __dummy_mmap(struct device *dev,
427 			struct vm_area_struct *vma,
428 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
429 			unsigned long attrs)
430 {
431 	return -ENXIO;
432 }
433 
434 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
435 				   unsigned long offset, size_t size,
436 				   enum dma_data_direction dir,
437 				   unsigned long attrs)
438 {
439 	return 0;
440 }
441 
442 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
443 			       size_t size, enum dma_data_direction dir,
444 			       unsigned long attrs)
445 {
446 }
447 
448 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
449 			  int nelems, enum dma_data_direction dir,
450 			  unsigned long attrs)
451 {
452 	return 0;
453 }
454 
455 static void __dummy_unmap_sg(struct device *dev,
456 			     struct scatterlist *sgl, int nelems,
457 			     enum dma_data_direction dir,
458 			     unsigned long attrs)
459 {
460 }
461 
462 static void __dummy_sync_single(struct device *dev,
463 				dma_addr_t dev_addr, size_t size,
464 				enum dma_data_direction dir)
465 {
466 }
467 
468 static void __dummy_sync_sg(struct device *dev,
469 			    struct scatterlist *sgl, int nelems,
470 			    enum dma_data_direction dir)
471 {
472 }
473 
474 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
475 {
476 	return 1;
477 }
478 
479 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
480 {
481 	return 0;
482 }
483 
484 const struct dma_map_ops dummy_dma_ops = {
485 	.alloc                  = __dummy_alloc,
486 	.free                   = __dummy_free,
487 	.mmap                   = __dummy_mmap,
488 	.map_page               = __dummy_map_page,
489 	.unmap_page             = __dummy_unmap_page,
490 	.map_sg                 = __dummy_map_sg,
491 	.unmap_sg               = __dummy_unmap_sg,
492 	.sync_single_for_cpu    = __dummy_sync_single,
493 	.sync_single_for_device = __dummy_sync_single,
494 	.sync_sg_for_cpu        = __dummy_sync_sg,
495 	.sync_sg_for_device     = __dummy_sync_sg,
496 	.mapping_error          = __dummy_mapping_error,
497 	.dma_supported          = __dummy_dma_supported,
498 };
499 EXPORT_SYMBOL(dummy_dma_ops);
500 
501 static int __init arm64_dma_init(void)
502 {
503 	if (swiotlb_force == SWIOTLB_FORCE ||
504 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
505 		swiotlb = 1;
506 
507 	WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
508 		   TAINT_CPU_OUT_OF_SPEC,
509 		   "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
510 		   ARCH_DMA_MINALIGN, cache_line_size());
511 
512 	return atomic_pool_init();
513 }
514 arch_initcall(arm64_dma_init);
515 
516 #ifdef CONFIG_IOMMU_DMA
517 #include <linux/dma-iommu.h>
518 #include <linux/platform_device.h>
519 #include <linux/amba/bus.h>
520 
521 /* Thankfully, all cache ops are by VA so we can ignore phys here */
522 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
523 {
524 	__dma_flush_area(virt, PAGE_SIZE);
525 }
526 
527 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
528 				 dma_addr_t *handle, gfp_t gfp,
529 				 unsigned long attrs)
530 {
531 	bool coherent = is_device_dma_coherent(dev);
532 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
533 	size_t iosize = size;
534 	void *addr;
535 
536 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
537 		return NULL;
538 
539 	size = PAGE_ALIGN(size);
540 
541 	/*
542 	 * Some drivers rely on this, and we probably don't want the
543 	 * possibility of stale kernel data being read by devices anyway.
544 	 */
545 	gfp |= __GFP_ZERO;
546 
547 	if (!gfpflags_allow_blocking(gfp)) {
548 		struct page *page;
549 		/*
550 		 * In atomic context we can't remap anything, so we'll only
551 		 * get the virtually contiguous buffer we need by way of a
552 		 * physically contiguous allocation.
553 		 */
554 		if (coherent) {
555 			page = alloc_pages(gfp, get_order(size));
556 			addr = page ? page_address(page) : NULL;
557 		} else {
558 			addr = __alloc_from_pool(size, &page, gfp);
559 		}
560 		if (!addr)
561 			return NULL;
562 
563 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
564 		if (iommu_dma_mapping_error(dev, *handle)) {
565 			if (coherent)
566 				__free_pages(page, get_order(size));
567 			else
568 				__free_from_pool(addr, size);
569 			addr = NULL;
570 		}
571 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
572 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
573 		struct page *page;
574 
575 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
576 					get_order(size), gfp & __GFP_NOWARN);
577 		if (!page)
578 			return NULL;
579 
580 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
581 		if (iommu_dma_mapping_error(dev, *handle)) {
582 			dma_release_from_contiguous(dev, page,
583 						    size >> PAGE_SHIFT);
584 			return NULL;
585 		}
586 		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
587 						   prot,
588 						   __builtin_return_address(0));
589 		if (addr) {
590 			memset(addr, 0, size);
591 			if (!coherent)
592 				__dma_flush_area(page_to_virt(page), iosize);
593 		} else {
594 			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
595 			dma_release_from_contiguous(dev, page,
596 						    size >> PAGE_SHIFT);
597 		}
598 	} else {
599 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
600 		struct page **pages;
601 
602 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
603 					handle, flush_page);
604 		if (!pages)
605 			return NULL;
606 
607 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
608 					      __builtin_return_address(0));
609 		if (!addr)
610 			iommu_dma_free(dev, pages, iosize, handle);
611 	}
612 	return addr;
613 }
614 
615 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
616 			       dma_addr_t handle, unsigned long attrs)
617 {
618 	size_t iosize = size;
619 
620 	size = PAGE_ALIGN(size);
621 	/*
622 	 * @cpu_addr will be one of 4 things depending on how it was allocated:
623 	 * - A remapped array of pages for contiguous allocations.
624 	 * - A remapped array of pages from iommu_dma_alloc(), for all
625 	 *   non-atomic allocations.
626 	 * - A non-cacheable alias from the atomic pool, for atomic
627 	 *   allocations by non-coherent devices.
628 	 * - A normal lowmem address, for atomic allocations by
629 	 *   coherent devices.
630 	 * Hence how dodgy the below logic looks...
631 	 */
632 	if (__in_atomic_pool(cpu_addr, size)) {
633 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
634 		__free_from_pool(cpu_addr, size);
635 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
636 		struct page *page = vmalloc_to_page(cpu_addr);
637 
638 		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
639 		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
640 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
641 	} else if (is_vmalloc_addr(cpu_addr)){
642 		struct vm_struct *area = find_vm_area(cpu_addr);
643 
644 		if (WARN_ON(!area || !area->pages))
645 			return;
646 		iommu_dma_free(dev, area->pages, iosize, &handle);
647 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
648 	} else {
649 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
650 		__free_pages(virt_to_page(cpu_addr), get_order(size));
651 	}
652 }
653 
654 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
655 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
656 			      unsigned long attrs)
657 {
658 	struct vm_struct *area;
659 	int ret;
660 
661 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
662 					     is_device_dma_coherent(dev));
663 
664 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
665 		return ret;
666 
667 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
668 		/*
669 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
670 		 * hence in the vmalloc space.
671 		 */
672 		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
673 		return __swiotlb_mmap_pfn(vma, pfn, size);
674 	}
675 
676 	area = find_vm_area(cpu_addr);
677 	if (WARN_ON(!area || !area->pages))
678 		return -ENXIO;
679 
680 	return iommu_dma_mmap(area->pages, size, vma);
681 }
682 
683 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
684 			       void *cpu_addr, dma_addr_t dma_addr,
685 			       size_t size, unsigned long attrs)
686 {
687 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
688 	struct vm_struct *area = find_vm_area(cpu_addr);
689 
690 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
691 		/*
692 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
693 		 * hence in the vmalloc space.
694 		 */
695 		struct page *page = vmalloc_to_page(cpu_addr);
696 		return __swiotlb_get_sgtable_page(sgt, page, size);
697 	}
698 
699 	if (WARN_ON(!area || !area->pages))
700 		return -ENXIO;
701 
702 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
703 					 GFP_KERNEL);
704 }
705 
706 static void __iommu_sync_single_for_cpu(struct device *dev,
707 					dma_addr_t dev_addr, size_t size,
708 					enum dma_data_direction dir)
709 {
710 	phys_addr_t phys;
711 
712 	if (is_device_dma_coherent(dev))
713 		return;
714 
715 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
716 	__dma_unmap_area(phys_to_virt(phys), size, dir);
717 }
718 
719 static void __iommu_sync_single_for_device(struct device *dev,
720 					   dma_addr_t dev_addr, size_t size,
721 					   enum dma_data_direction dir)
722 {
723 	phys_addr_t phys;
724 
725 	if (is_device_dma_coherent(dev))
726 		return;
727 
728 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
729 	__dma_map_area(phys_to_virt(phys), size, dir);
730 }
731 
732 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
733 				   unsigned long offset, size_t size,
734 				   enum dma_data_direction dir,
735 				   unsigned long attrs)
736 {
737 	bool coherent = is_device_dma_coherent(dev);
738 	int prot = dma_info_to_prot(dir, coherent, attrs);
739 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
740 
741 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
742 	    (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
743 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
744 
745 	return dev_addr;
746 }
747 
748 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
749 			       size_t size, enum dma_data_direction dir,
750 			       unsigned long attrs)
751 {
752 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
753 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
754 
755 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
756 }
757 
758 static void __iommu_sync_sg_for_cpu(struct device *dev,
759 				    struct scatterlist *sgl, int nelems,
760 				    enum dma_data_direction dir)
761 {
762 	struct scatterlist *sg;
763 	int i;
764 
765 	if (is_device_dma_coherent(dev))
766 		return;
767 
768 	for_each_sg(sgl, sg, nelems, i)
769 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
770 }
771 
772 static void __iommu_sync_sg_for_device(struct device *dev,
773 				       struct scatterlist *sgl, int nelems,
774 				       enum dma_data_direction dir)
775 {
776 	struct scatterlist *sg;
777 	int i;
778 
779 	if (is_device_dma_coherent(dev))
780 		return;
781 
782 	for_each_sg(sgl, sg, nelems, i)
783 		__dma_map_area(sg_virt(sg), sg->length, dir);
784 }
785 
786 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
787 				int nelems, enum dma_data_direction dir,
788 				unsigned long attrs)
789 {
790 	bool coherent = is_device_dma_coherent(dev);
791 
792 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
793 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
794 
795 	return iommu_dma_map_sg(dev, sgl, nelems,
796 				dma_info_to_prot(dir, coherent, attrs));
797 }
798 
799 static void __iommu_unmap_sg_attrs(struct device *dev,
800 				   struct scatterlist *sgl, int nelems,
801 				   enum dma_data_direction dir,
802 				   unsigned long attrs)
803 {
804 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
805 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
806 
807 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
808 }
809 
810 static const struct dma_map_ops iommu_dma_ops = {
811 	.alloc = __iommu_alloc_attrs,
812 	.free = __iommu_free_attrs,
813 	.mmap = __iommu_mmap_attrs,
814 	.get_sgtable = __iommu_get_sgtable,
815 	.map_page = __iommu_map_page,
816 	.unmap_page = __iommu_unmap_page,
817 	.map_sg = __iommu_map_sg_attrs,
818 	.unmap_sg = __iommu_unmap_sg_attrs,
819 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
820 	.sync_single_for_device = __iommu_sync_single_for_device,
821 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
822 	.sync_sg_for_device = __iommu_sync_sg_for_device,
823 	.map_resource = iommu_dma_map_resource,
824 	.unmap_resource = iommu_dma_unmap_resource,
825 	.mapping_error = iommu_dma_mapping_error,
826 };
827 
828 static int __init __iommu_dma_init(void)
829 {
830 	return iommu_dma_init();
831 }
832 arch_initcall(__iommu_dma_init);
833 
834 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
835 				  const struct iommu_ops *ops)
836 {
837 	struct iommu_domain *domain;
838 
839 	if (!ops)
840 		return;
841 
842 	/*
843 	 * The IOMMU core code allocates the default DMA domain, which the
844 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
845 	 */
846 	domain = iommu_get_domain_for_dev(dev);
847 
848 	if (!domain)
849 		goto out_err;
850 
851 	if (domain->type == IOMMU_DOMAIN_DMA) {
852 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
853 			goto out_err;
854 
855 		dev->dma_ops = &iommu_dma_ops;
856 	}
857 
858 	return;
859 
860 out_err:
861 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
862 		 dev_name(dev));
863 }
864 
865 void arch_teardown_dma_ops(struct device *dev)
866 {
867 	dev->dma_ops = NULL;
868 }
869 
870 #else
871 
872 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
873 				  const struct iommu_ops *iommu)
874 { }
875 
876 #endif  /* CONFIG_IOMMU_DMA */
877 
878 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
879 			const struct iommu_ops *iommu, bool coherent)
880 {
881 	if (!dev->dma_ops)
882 		dev->dma_ops = &arm64_swiotlb_dma_ops;
883 
884 	dev->archdata.dma_coherent = coherent;
885 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
886 
887 #ifdef CONFIG_XEN
888 	if (xen_initial_domain()) {
889 		dev->archdata.dev_dma_ops = dev->dma_ops;
890 		dev->dma_ops = xen_dma_ops;
891 	}
892 #endif
893 }
894