1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/bootmem.h> 23 #include <linux/cache.h> 24 #include <linux/export.h> 25 #include <linux/slab.h> 26 #include <linux/genalloc.h> 27 #include <linux/dma-direct.h> 28 #include <linux/dma-contiguous.h> 29 #include <linux/vmalloc.h> 30 #include <linux/swiotlb.h> 31 #include <linux/pci.h> 32 33 #include <asm/cacheflush.h> 34 35 static int swiotlb __ro_after_init; 36 37 static pgprot_t __get_dma_pgprot(unsigned long attrs, pgprot_t prot, 38 bool coherent) 39 { 40 if (!coherent || (attrs & DMA_ATTR_WRITE_COMBINE)) 41 return pgprot_writecombine(prot); 42 return prot; 43 } 44 45 static struct gen_pool *atomic_pool __ro_after_init; 46 47 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 48 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 49 50 static int __init early_coherent_pool(char *p) 51 { 52 atomic_pool_size = memparse(p, &p); 53 return 0; 54 } 55 early_param("coherent_pool", early_coherent_pool); 56 57 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 58 { 59 unsigned long val; 60 void *ptr = NULL; 61 62 if (!atomic_pool) { 63 WARN(1, "coherent pool not initialised!\n"); 64 return NULL; 65 } 66 67 val = gen_pool_alloc(atomic_pool, size); 68 if (val) { 69 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 70 71 *ret_page = phys_to_page(phys); 72 ptr = (void *)val; 73 memset(ptr, 0, size); 74 } 75 76 return ptr; 77 } 78 79 static bool __in_atomic_pool(void *start, size_t size) 80 { 81 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 82 } 83 84 static int __free_from_pool(void *start, size_t size) 85 { 86 if (!__in_atomic_pool(start, size)) 87 return 0; 88 89 gen_pool_free(atomic_pool, (unsigned long)start, size); 90 91 return 1; 92 } 93 94 static void *__dma_alloc(struct device *dev, size_t size, 95 dma_addr_t *dma_handle, gfp_t flags, 96 unsigned long attrs) 97 { 98 struct page *page; 99 void *ptr, *coherent_ptr; 100 bool coherent = is_device_dma_coherent(dev); 101 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 102 103 size = PAGE_ALIGN(size); 104 105 if (!coherent && !gfpflags_allow_blocking(flags)) { 106 struct page *page = NULL; 107 void *addr = __alloc_from_pool(size, &page, flags); 108 109 if (addr) 110 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 111 112 return addr; 113 } 114 115 ptr = swiotlb_alloc(dev, size, dma_handle, flags, attrs); 116 if (!ptr) 117 goto no_mem; 118 119 /* no need for non-cacheable mapping if coherent */ 120 if (coherent) 121 return ptr; 122 123 /* remove any dirty cache lines on the kernel alias */ 124 __dma_flush_area(ptr, size); 125 126 /* create a coherent mapping */ 127 page = virt_to_page(ptr); 128 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 129 prot, __builtin_return_address(0)); 130 if (!coherent_ptr) 131 goto no_map; 132 133 return coherent_ptr; 134 135 no_map: 136 swiotlb_free(dev, size, ptr, *dma_handle, attrs); 137 no_mem: 138 return NULL; 139 } 140 141 static void __dma_free(struct device *dev, size_t size, 142 void *vaddr, dma_addr_t dma_handle, 143 unsigned long attrs) 144 { 145 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 146 147 size = PAGE_ALIGN(size); 148 149 if (!is_device_dma_coherent(dev)) { 150 if (__free_from_pool(vaddr, size)) 151 return; 152 vunmap(vaddr); 153 } 154 swiotlb_free(dev, size, swiotlb_addr, dma_handle, attrs); 155 } 156 157 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 158 unsigned long offset, size_t size, 159 enum dma_data_direction dir, 160 unsigned long attrs) 161 { 162 dma_addr_t dev_addr; 163 164 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 165 if (!is_device_dma_coherent(dev) && 166 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 167 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 168 169 return dev_addr; 170 } 171 172 173 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 174 size_t size, enum dma_data_direction dir, 175 unsigned long attrs) 176 { 177 if (!is_device_dma_coherent(dev) && 178 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 179 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 180 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 181 } 182 183 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 184 int nelems, enum dma_data_direction dir, 185 unsigned long attrs) 186 { 187 struct scatterlist *sg; 188 int i, ret; 189 190 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 191 if (!is_device_dma_coherent(dev) && 192 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 193 for_each_sg(sgl, sg, ret, i) 194 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 195 sg->length, dir); 196 197 return ret; 198 } 199 200 static void __swiotlb_unmap_sg_attrs(struct device *dev, 201 struct scatterlist *sgl, int nelems, 202 enum dma_data_direction dir, 203 unsigned long attrs) 204 { 205 struct scatterlist *sg; 206 int i; 207 208 if (!is_device_dma_coherent(dev) && 209 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 210 for_each_sg(sgl, sg, nelems, i) 211 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 212 sg->length, dir); 213 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 214 } 215 216 static void __swiotlb_sync_single_for_cpu(struct device *dev, 217 dma_addr_t dev_addr, size_t size, 218 enum dma_data_direction dir) 219 { 220 if (!is_device_dma_coherent(dev)) 221 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 222 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 223 } 224 225 static void __swiotlb_sync_single_for_device(struct device *dev, 226 dma_addr_t dev_addr, size_t size, 227 enum dma_data_direction dir) 228 { 229 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 230 if (!is_device_dma_coherent(dev)) 231 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 232 } 233 234 static void __swiotlb_sync_sg_for_cpu(struct device *dev, 235 struct scatterlist *sgl, int nelems, 236 enum dma_data_direction dir) 237 { 238 struct scatterlist *sg; 239 int i; 240 241 if (!is_device_dma_coherent(dev)) 242 for_each_sg(sgl, sg, nelems, i) 243 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 244 sg->length, dir); 245 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 246 } 247 248 static void __swiotlb_sync_sg_for_device(struct device *dev, 249 struct scatterlist *sgl, int nelems, 250 enum dma_data_direction dir) 251 { 252 struct scatterlist *sg; 253 int i; 254 255 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 256 if (!is_device_dma_coherent(dev)) 257 for_each_sg(sgl, sg, nelems, i) 258 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 259 sg->length, dir); 260 } 261 262 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma, 263 unsigned long pfn, size_t size) 264 { 265 int ret = -ENXIO; 266 unsigned long nr_vma_pages = vma_pages(vma); 267 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 268 unsigned long off = vma->vm_pgoff; 269 270 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 271 ret = remap_pfn_range(vma, vma->vm_start, 272 pfn + off, 273 vma->vm_end - vma->vm_start, 274 vma->vm_page_prot); 275 } 276 277 return ret; 278 } 279 280 static int __swiotlb_mmap(struct device *dev, 281 struct vm_area_struct *vma, 282 void *cpu_addr, dma_addr_t dma_addr, size_t size, 283 unsigned long attrs) 284 { 285 int ret; 286 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 287 288 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 289 is_device_dma_coherent(dev)); 290 291 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 292 return ret; 293 294 return __swiotlb_mmap_pfn(vma, pfn, size); 295 } 296 297 static int __swiotlb_get_sgtable_page(struct sg_table *sgt, 298 struct page *page, size_t size) 299 { 300 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 301 302 if (!ret) 303 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0); 304 305 return ret; 306 } 307 308 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 309 void *cpu_addr, dma_addr_t handle, size_t size, 310 unsigned long attrs) 311 { 312 struct page *page = phys_to_page(dma_to_phys(dev, handle)); 313 314 return __swiotlb_get_sgtable_page(sgt, page, size); 315 } 316 317 static int __swiotlb_dma_supported(struct device *hwdev, u64 mask) 318 { 319 if (swiotlb) 320 return swiotlb_dma_supported(hwdev, mask); 321 return 1; 322 } 323 324 static int __swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t addr) 325 { 326 if (swiotlb) 327 return swiotlb_dma_mapping_error(hwdev, addr); 328 return 0; 329 } 330 331 static const struct dma_map_ops arm64_swiotlb_dma_ops = { 332 .alloc = __dma_alloc, 333 .free = __dma_free, 334 .mmap = __swiotlb_mmap, 335 .get_sgtable = __swiotlb_get_sgtable, 336 .map_page = __swiotlb_map_page, 337 .unmap_page = __swiotlb_unmap_page, 338 .map_sg = __swiotlb_map_sg_attrs, 339 .unmap_sg = __swiotlb_unmap_sg_attrs, 340 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 341 .sync_single_for_device = __swiotlb_sync_single_for_device, 342 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 343 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 344 .dma_supported = __swiotlb_dma_supported, 345 .mapping_error = __swiotlb_dma_mapping_error, 346 }; 347 348 static int __init atomic_pool_init(void) 349 { 350 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 351 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 352 struct page *page; 353 void *addr; 354 unsigned int pool_size_order = get_order(atomic_pool_size); 355 356 if (dev_get_cma_area(NULL)) 357 page = dma_alloc_from_contiguous(NULL, nr_pages, 358 pool_size_order, false); 359 else 360 page = alloc_pages(GFP_DMA32, pool_size_order); 361 362 if (page) { 363 int ret; 364 void *page_addr = page_address(page); 365 366 memset(page_addr, 0, atomic_pool_size); 367 __dma_flush_area(page_addr, atomic_pool_size); 368 369 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 370 if (!atomic_pool) 371 goto free_page; 372 373 addr = dma_common_contiguous_remap(page, atomic_pool_size, 374 VM_USERMAP, prot, atomic_pool_init); 375 376 if (!addr) 377 goto destroy_genpool; 378 379 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 380 page_to_phys(page), 381 atomic_pool_size, -1); 382 if (ret) 383 goto remove_mapping; 384 385 gen_pool_set_algo(atomic_pool, 386 gen_pool_first_fit_order_align, 387 NULL); 388 389 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 390 atomic_pool_size / 1024); 391 return 0; 392 } 393 goto out; 394 395 remove_mapping: 396 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 397 destroy_genpool: 398 gen_pool_destroy(atomic_pool); 399 atomic_pool = NULL; 400 free_page: 401 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 402 __free_pages(page, pool_size_order); 403 out: 404 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 405 atomic_pool_size / 1024); 406 return -ENOMEM; 407 } 408 409 /******************************************** 410 * The following APIs are for dummy DMA ops * 411 ********************************************/ 412 413 static void *__dummy_alloc(struct device *dev, size_t size, 414 dma_addr_t *dma_handle, gfp_t flags, 415 unsigned long attrs) 416 { 417 return NULL; 418 } 419 420 static void __dummy_free(struct device *dev, size_t size, 421 void *vaddr, dma_addr_t dma_handle, 422 unsigned long attrs) 423 { 424 } 425 426 static int __dummy_mmap(struct device *dev, 427 struct vm_area_struct *vma, 428 void *cpu_addr, dma_addr_t dma_addr, size_t size, 429 unsigned long attrs) 430 { 431 return -ENXIO; 432 } 433 434 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 435 unsigned long offset, size_t size, 436 enum dma_data_direction dir, 437 unsigned long attrs) 438 { 439 return 0; 440 } 441 442 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 443 size_t size, enum dma_data_direction dir, 444 unsigned long attrs) 445 { 446 } 447 448 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 449 int nelems, enum dma_data_direction dir, 450 unsigned long attrs) 451 { 452 return 0; 453 } 454 455 static void __dummy_unmap_sg(struct device *dev, 456 struct scatterlist *sgl, int nelems, 457 enum dma_data_direction dir, 458 unsigned long attrs) 459 { 460 } 461 462 static void __dummy_sync_single(struct device *dev, 463 dma_addr_t dev_addr, size_t size, 464 enum dma_data_direction dir) 465 { 466 } 467 468 static void __dummy_sync_sg(struct device *dev, 469 struct scatterlist *sgl, int nelems, 470 enum dma_data_direction dir) 471 { 472 } 473 474 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 475 { 476 return 1; 477 } 478 479 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 480 { 481 return 0; 482 } 483 484 const struct dma_map_ops dummy_dma_ops = { 485 .alloc = __dummy_alloc, 486 .free = __dummy_free, 487 .mmap = __dummy_mmap, 488 .map_page = __dummy_map_page, 489 .unmap_page = __dummy_unmap_page, 490 .map_sg = __dummy_map_sg, 491 .unmap_sg = __dummy_unmap_sg, 492 .sync_single_for_cpu = __dummy_sync_single, 493 .sync_single_for_device = __dummy_sync_single, 494 .sync_sg_for_cpu = __dummy_sync_sg, 495 .sync_sg_for_device = __dummy_sync_sg, 496 .mapping_error = __dummy_mapping_error, 497 .dma_supported = __dummy_dma_supported, 498 }; 499 EXPORT_SYMBOL(dummy_dma_ops); 500 501 static int __init arm64_dma_init(void) 502 { 503 if (swiotlb_force == SWIOTLB_FORCE || 504 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 505 swiotlb = 1; 506 507 WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(), 508 TAINT_CPU_OUT_OF_SPEC, 509 "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)", 510 ARCH_DMA_MINALIGN, cache_line_size()); 511 512 return atomic_pool_init(); 513 } 514 arch_initcall(arm64_dma_init); 515 516 #ifdef CONFIG_IOMMU_DMA 517 #include <linux/dma-iommu.h> 518 #include <linux/platform_device.h> 519 #include <linux/amba/bus.h> 520 521 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 522 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 523 { 524 __dma_flush_area(virt, PAGE_SIZE); 525 } 526 527 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 528 dma_addr_t *handle, gfp_t gfp, 529 unsigned long attrs) 530 { 531 bool coherent = is_device_dma_coherent(dev); 532 int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs); 533 size_t iosize = size; 534 void *addr; 535 536 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 537 return NULL; 538 539 size = PAGE_ALIGN(size); 540 541 /* 542 * Some drivers rely on this, and we probably don't want the 543 * possibility of stale kernel data being read by devices anyway. 544 */ 545 gfp |= __GFP_ZERO; 546 547 if (!gfpflags_allow_blocking(gfp)) { 548 struct page *page; 549 /* 550 * In atomic context we can't remap anything, so we'll only 551 * get the virtually contiguous buffer we need by way of a 552 * physically contiguous allocation. 553 */ 554 if (coherent) { 555 page = alloc_pages(gfp, get_order(size)); 556 addr = page ? page_address(page) : NULL; 557 } else { 558 addr = __alloc_from_pool(size, &page, gfp); 559 } 560 if (!addr) 561 return NULL; 562 563 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 564 if (iommu_dma_mapping_error(dev, *handle)) { 565 if (coherent) 566 __free_pages(page, get_order(size)); 567 else 568 __free_from_pool(addr, size); 569 addr = NULL; 570 } 571 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 572 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 573 struct page *page; 574 575 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 576 get_order(size), gfp & __GFP_NOWARN); 577 if (!page) 578 return NULL; 579 580 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 581 if (iommu_dma_mapping_error(dev, *handle)) { 582 dma_release_from_contiguous(dev, page, 583 size >> PAGE_SHIFT); 584 return NULL; 585 } 586 addr = dma_common_contiguous_remap(page, size, VM_USERMAP, 587 prot, 588 __builtin_return_address(0)); 589 if (addr) { 590 memset(addr, 0, size); 591 if (!coherent) 592 __dma_flush_area(page_to_virt(page), iosize); 593 } else { 594 iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs); 595 dma_release_from_contiguous(dev, page, 596 size >> PAGE_SHIFT); 597 } 598 } else { 599 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 600 struct page **pages; 601 602 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 603 handle, flush_page); 604 if (!pages) 605 return NULL; 606 607 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 608 __builtin_return_address(0)); 609 if (!addr) 610 iommu_dma_free(dev, pages, iosize, handle); 611 } 612 return addr; 613 } 614 615 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 616 dma_addr_t handle, unsigned long attrs) 617 { 618 size_t iosize = size; 619 620 size = PAGE_ALIGN(size); 621 /* 622 * @cpu_addr will be one of 4 things depending on how it was allocated: 623 * - A remapped array of pages for contiguous allocations. 624 * - A remapped array of pages from iommu_dma_alloc(), for all 625 * non-atomic allocations. 626 * - A non-cacheable alias from the atomic pool, for atomic 627 * allocations by non-coherent devices. 628 * - A normal lowmem address, for atomic allocations by 629 * coherent devices. 630 * Hence how dodgy the below logic looks... 631 */ 632 if (__in_atomic_pool(cpu_addr, size)) { 633 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 634 __free_from_pool(cpu_addr, size); 635 } else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 636 struct page *page = vmalloc_to_page(cpu_addr); 637 638 iommu_dma_unmap_page(dev, handle, iosize, 0, attrs); 639 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT); 640 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 641 } else if (is_vmalloc_addr(cpu_addr)){ 642 struct vm_struct *area = find_vm_area(cpu_addr); 643 644 if (WARN_ON(!area || !area->pages)) 645 return; 646 iommu_dma_free(dev, area->pages, iosize, &handle); 647 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 648 } else { 649 iommu_dma_unmap_page(dev, handle, iosize, 0, 0); 650 __free_pages(virt_to_page(cpu_addr), get_order(size)); 651 } 652 } 653 654 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 655 void *cpu_addr, dma_addr_t dma_addr, size_t size, 656 unsigned long attrs) 657 { 658 struct vm_struct *area; 659 int ret; 660 661 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 662 is_device_dma_coherent(dev)); 663 664 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) 665 return ret; 666 667 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 668 /* 669 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 670 * hence in the vmalloc space. 671 */ 672 unsigned long pfn = vmalloc_to_pfn(cpu_addr); 673 return __swiotlb_mmap_pfn(vma, pfn, size); 674 } 675 676 area = find_vm_area(cpu_addr); 677 if (WARN_ON(!area || !area->pages)) 678 return -ENXIO; 679 680 return iommu_dma_mmap(area->pages, size, vma); 681 } 682 683 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 684 void *cpu_addr, dma_addr_t dma_addr, 685 size_t size, unsigned long attrs) 686 { 687 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 688 struct vm_struct *area = find_vm_area(cpu_addr); 689 690 if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) { 691 /* 692 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped, 693 * hence in the vmalloc space. 694 */ 695 struct page *page = vmalloc_to_page(cpu_addr); 696 return __swiotlb_get_sgtable_page(sgt, page, size); 697 } 698 699 if (WARN_ON(!area || !area->pages)) 700 return -ENXIO; 701 702 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 703 GFP_KERNEL); 704 } 705 706 static void __iommu_sync_single_for_cpu(struct device *dev, 707 dma_addr_t dev_addr, size_t size, 708 enum dma_data_direction dir) 709 { 710 phys_addr_t phys; 711 712 if (is_device_dma_coherent(dev)) 713 return; 714 715 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 716 __dma_unmap_area(phys_to_virt(phys), size, dir); 717 } 718 719 static void __iommu_sync_single_for_device(struct device *dev, 720 dma_addr_t dev_addr, size_t size, 721 enum dma_data_direction dir) 722 { 723 phys_addr_t phys; 724 725 if (is_device_dma_coherent(dev)) 726 return; 727 728 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 729 __dma_map_area(phys_to_virt(phys), size, dir); 730 } 731 732 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 733 unsigned long offset, size_t size, 734 enum dma_data_direction dir, 735 unsigned long attrs) 736 { 737 bool coherent = is_device_dma_coherent(dev); 738 int prot = dma_info_to_prot(dir, coherent, attrs); 739 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 740 741 if (!iommu_dma_mapping_error(dev, dev_addr) && 742 (attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 743 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 744 745 return dev_addr; 746 } 747 748 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 749 size_t size, enum dma_data_direction dir, 750 unsigned long attrs) 751 { 752 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 753 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 754 755 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 756 } 757 758 static void __iommu_sync_sg_for_cpu(struct device *dev, 759 struct scatterlist *sgl, int nelems, 760 enum dma_data_direction dir) 761 { 762 struct scatterlist *sg; 763 int i; 764 765 if (is_device_dma_coherent(dev)) 766 return; 767 768 for_each_sg(sgl, sg, nelems, i) 769 __dma_unmap_area(sg_virt(sg), sg->length, dir); 770 } 771 772 static void __iommu_sync_sg_for_device(struct device *dev, 773 struct scatterlist *sgl, int nelems, 774 enum dma_data_direction dir) 775 { 776 struct scatterlist *sg; 777 int i; 778 779 if (is_device_dma_coherent(dev)) 780 return; 781 782 for_each_sg(sgl, sg, nelems, i) 783 __dma_map_area(sg_virt(sg), sg->length, dir); 784 } 785 786 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 787 int nelems, enum dma_data_direction dir, 788 unsigned long attrs) 789 { 790 bool coherent = is_device_dma_coherent(dev); 791 792 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 793 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 794 795 return iommu_dma_map_sg(dev, sgl, nelems, 796 dma_info_to_prot(dir, coherent, attrs)); 797 } 798 799 static void __iommu_unmap_sg_attrs(struct device *dev, 800 struct scatterlist *sgl, int nelems, 801 enum dma_data_direction dir, 802 unsigned long attrs) 803 { 804 if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0) 805 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 806 807 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 808 } 809 810 static const struct dma_map_ops iommu_dma_ops = { 811 .alloc = __iommu_alloc_attrs, 812 .free = __iommu_free_attrs, 813 .mmap = __iommu_mmap_attrs, 814 .get_sgtable = __iommu_get_sgtable, 815 .map_page = __iommu_map_page, 816 .unmap_page = __iommu_unmap_page, 817 .map_sg = __iommu_map_sg_attrs, 818 .unmap_sg = __iommu_unmap_sg_attrs, 819 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 820 .sync_single_for_device = __iommu_sync_single_for_device, 821 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 822 .sync_sg_for_device = __iommu_sync_sg_for_device, 823 .map_resource = iommu_dma_map_resource, 824 .unmap_resource = iommu_dma_unmap_resource, 825 .mapping_error = iommu_dma_mapping_error, 826 }; 827 828 static int __init __iommu_dma_init(void) 829 { 830 return iommu_dma_init(); 831 } 832 arch_initcall(__iommu_dma_init); 833 834 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 835 const struct iommu_ops *ops) 836 { 837 struct iommu_domain *domain; 838 839 if (!ops) 840 return; 841 842 /* 843 * The IOMMU core code allocates the default DMA domain, which the 844 * underlying IOMMU driver needs to support via the dma-iommu layer. 845 */ 846 domain = iommu_get_domain_for_dev(dev); 847 848 if (!domain) 849 goto out_err; 850 851 if (domain->type == IOMMU_DOMAIN_DMA) { 852 if (iommu_dma_init_domain(domain, dma_base, size, dev)) 853 goto out_err; 854 855 dev->dma_ops = &iommu_dma_ops; 856 } 857 858 return; 859 860 out_err: 861 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 862 dev_name(dev)); 863 } 864 865 void arch_teardown_dma_ops(struct device *dev) 866 { 867 dev->dma_ops = NULL; 868 } 869 870 #else 871 872 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 873 const struct iommu_ops *iommu) 874 { } 875 876 #endif /* CONFIG_IOMMU_DMA */ 877 878 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 879 const struct iommu_ops *iommu, bool coherent) 880 { 881 if (!dev->dma_ops) 882 dev->dma_ops = &arm64_swiotlb_dma_ops; 883 884 dev->archdata.dma_coherent = coherent; 885 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 886 887 #ifdef CONFIG_XEN 888 if (xen_initial_domain()) { 889 dev->archdata.dev_dma_ops = dev->dma_ops; 890 dev->dma_ops = xen_dma_ops; 891 } 892 #endif 893 } 894