xref: /linux/arch/arm64/mm/dma-mapping.c (revision 2209fda323e2fd2a2d0885595fd5097717f8d2aa)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/bootmem.h>
23 #include <linux/cache.h>
24 #include <linux/export.h>
25 #include <linux/slab.h>
26 #include <linux/genalloc.h>
27 #include <linux/dma-direct.h>
28 #include <linux/dma-noncoherent.h>
29 #include <linux/dma-contiguous.h>
30 #include <linux/vmalloc.h>
31 #include <linux/swiotlb.h>
32 #include <linux/pci.h>
33 
34 #include <asm/cacheflush.h>
35 
36 static struct gen_pool *atomic_pool __ro_after_init;
37 
38 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
39 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
40 
41 static int __init early_coherent_pool(char *p)
42 {
43 	atomic_pool_size = memparse(p, &p);
44 	return 0;
45 }
46 early_param("coherent_pool", early_coherent_pool);
47 
48 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
49 {
50 	unsigned long val;
51 	void *ptr = NULL;
52 
53 	if (!atomic_pool) {
54 		WARN(1, "coherent pool not initialised!\n");
55 		return NULL;
56 	}
57 
58 	val = gen_pool_alloc(atomic_pool, size);
59 	if (val) {
60 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
61 
62 		*ret_page = phys_to_page(phys);
63 		ptr = (void *)val;
64 		memset(ptr, 0, size);
65 	}
66 
67 	return ptr;
68 }
69 
70 static bool __in_atomic_pool(void *start, size_t size)
71 {
72 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
73 }
74 
75 static int __free_from_pool(void *start, size_t size)
76 {
77 	if (!__in_atomic_pool(start, size))
78 		return 0;
79 
80 	gen_pool_free(atomic_pool, (unsigned long)start, size);
81 
82 	return 1;
83 }
84 
85 void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
86 		gfp_t flags, unsigned long attrs)
87 {
88 	struct page *page;
89 	void *ptr, *coherent_ptr;
90 	pgprot_t prot = pgprot_writecombine(PAGE_KERNEL);
91 
92 	size = PAGE_ALIGN(size);
93 
94 	if (!gfpflags_allow_blocking(flags)) {
95 		struct page *page = NULL;
96 		void *addr = __alloc_from_pool(size, &page, flags);
97 
98 		if (addr)
99 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
100 
101 		return addr;
102 	}
103 
104 	ptr = dma_direct_alloc_pages(dev, size, dma_handle, flags, attrs);
105 	if (!ptr)
106 		goto no_mem;
107 
108 	/* remove any dirty cache lines on the kernel alias */
109 	__dma_flush_area(ptr, size);
110 
111 	/* create a coherent mapping */
112 	page = virt_to_page(ptr);
113 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
114 						   prot, __builtin_return_address(0));
115 	if (!coherent_ptr)
116 		goto no_map;
117 
118 	return coherent_ptr;
119 
120 no_map:
121 	dma_direct_free_pages(dev, size, ptr, *dma_handle, attrs);
122 no_mem:
123 	return NULL;
124 }
125 
126 void arch_dma_free(struct device *dev, size_t size, void *vaddr,
127 		dma_addr_t dma_handle, unsigned long attrs)
128 {
129 	if (!__free_from_pool(vaddr, PAGE_ALIGN(size))) {
130 		void *kaddr = phys_to_virt(dma_to_phys(dev, dma_handle));
131 
132 		vunmap(vaddr);
133 		dma_direct_free_pages(dev, size, kaddr, dma_handle, attrs);
134 	}
135 }
136 
137 long arch_dma_coherent_to_pfn(struct device *dev, void *cpu_addr,
138 		dma_addr_t dma_addr)
139 {
140 	return __phys_to_pfn(dma_to_phys(dev, dma_addr));
141 }
142 
143 pgprot_t arch_dma_mmap_pgprot(struct device *dev, pgprot_t prot,
144 		unsigned long attrs)
145 {
146 	if (!dev_is_dma_coherent(dev) || (attrs & DMA_ATTR_WRITE_COMBINE))
147 		return pgprot_writecombine(prot);
148 	return prot;
149 }
150 
151 void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr,
152 		size_t size, enum dma_data_direction dir)
153 {
154 	__dma_map_area(phys_to_virt(paddr), size, dir);
155 }
156 
157 void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
158 		size_t size, enum dma_data_direction dir)
159 {
160 	__dma_unmap_area(phys_to_virt(paddr), size, dir);
161 }
162 
163 static int __swiotlb_get_sgtable_page(struct sg_table *sgt,
164 				      struct page *page, size_t size)
165 {
166 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
167 
168 	if (!ret)
169 		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
170 
171 	return ret;
172 }
173 
174 static int __swiotlb_mmap_pfn(struct vm_area_struct *vma,
175 			      unsigned long pfn, size_t size)
176 {
177 	int ret = -ENXIO;
178 	unsigned long nr_vma_pages = vma_pages(vma);
179 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
180 	unsigned long off = vma->vm_pgoff;
181 
182 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
183 		ret = remap_pfn_range(vma, vma->vm_start,
184 				      pfn + off,
185 				      vma->vm_end - vma->vm_start,
186 				      vma->vm_page_prot);
187 	}
188 
189 	return ret;
190 }
191 
192 static int __init atomic_pool_init(void)
193 {
194 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
195 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
196 	struct page *page;
197 	void *addr;
198 	unsigned int pool_size_order = get_order(atomic_pool_size);
199 
200 	if (dev_get_cma_area(NULL))
201 		page = dma_alloc_from_contiguous(NULL, nr_pages,
202 						 pool_size_order, false);
203 	else
204 		page = alloc_pages(GFP_DMA32, pool_size_order);
205 
206 	if (page) {
207 		int ret;
208 		void *page_addr = page_address(page);
209 
210 		memset(page_addr, 0, atomic_pool_size);
211 		__dma_flush_area(page_addr, atomic_pool_size);
212 
213 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
214 		if (!atomic_pool)
215 			goto free_page;
216 
217 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
218 					VM_USERMAP, prot, atomic_pool_init);
219 
220 		if (!addr)
221 			goto destroy_genpool;
222 
223 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
224 					page_to_phys(page),
225 					atomic_pool_size, -1);
226 		if (ret)
227 			goto remove_mapping;
228 
229 		gen_pool_set_algo(atomic_pool,
230 				  gen_pool_first_fit_order_align,
231 				  NULL);
232 
233 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
234 			atomic_pool_size / 1024);
235 		return 0;
236 	}
237 	goto out;
238 
239 remove_mapping:
240 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
241 destroy_genpool:
242 	gen_pool_destroy(atomic_pool);
243 	atomic_pool = NULL;
244 free_page:
245 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
246 		__free_pages(page, pool_size_order);
247 out:
248 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
249 		atomic_pool_size / 1024);
250 	return -ENOMEM;
251 }
252 
253 /********************************************
254  * The following APIs are for dummy DMA ops *
255  ********************************************/
256 
257 static void *__dummy_alloc(struct device *dev, size_t size,
258 			   dma_addr_t *dma_handle, gfp_t flags,
259 			   unsigned long attrs)
260 {
261 	return NULL;
262 }
263 
264 static void __dummy_free(struct device *dev, size_t size,
265 			 void *vaddr, dma_addr_t dma_handle,
266 			 unsigned long attrs)
267 {
268 }
269 
270 static int __dummy_mmap(struct device *dev,
271 			struct vm_area_struct *vma,
272 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
273 			unsigned long attrs)
274 {
275 	return -ENXIO;
276 }
277 
278 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
279 				   unsigned long offset, size_t size,
280 				   enum dma_data_direction dir,
281 				   unsigned long attrs)
282 {
283 	return 0;
284 }
285 
286 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
287 			       size_t size, enum dma_data_direction dir,
288 			       unsigned long attrs)
289 {
290 }
291 
292 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
293 			  int nelems, enum dma_data_direction dir,
294 			  unsigned long attrs)
295 {
296 	return 0;
297 }
298 
299 static void __dummy_unmap_sg(struct device *dev,
300 			     struct scatterlist *sgl, int nelems,
301 			     enum dma_data_direction dir,
302 			     unsigned long attrs)
303 {
304 }
305 
306 static void __dummy_sync_single(struct device *dev,
307 				dma_addr_t dev_addr, size_t size,
308 				enum dma_data_direction dir)
309 {
310 }
311 
312 static void __dummy_sync_sg(struct device *dev,
313 			    struct scatterlist *sgl, int nelems,
314 			    enum dma_data_direction dir)
315 {
316 }
317 
318 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
319 {
320 	return 1;
321 }
322 
323 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
324 {
325 	return 0;
326 }
327 
328 const struct dma_map_ops dummy_dma_ops = {
329 	.alloc                  = __dummy_alloc,
330 	.free                   = __dummy_free,
331 	.mmap                   = __dummy_mmap,
332 	.map_page               = __dummy_map_page,
333 	.unmap_page             = __dummy_unmap_page,
334 	.map_sg                 = __dummy_map_sg,
335 	.unmap_sg               = __dummy_unmap_sg,
336 	.sync_single_for_cpu    = __dummy_sync_single,
337 	.sync_single_for_device = __dummy_sync_single,
338 	.sync_sg_for_cpu        = __dummy_sync_sg,
339 	.sync_sg_for_device     = __dummy_sync_sg,
340 	.mapping_error          = __dummy_mapping_error,
341 	.dma_supported          = __dummy_dma_supported,
342 };
343 EXPORT_SYMBOL(dummy_dma_ops);
344 
345 static int __init arm64_dma_init(void)
346 {
347 	WARN_TAINT(ARCH_DMA_MINALIGN < cache_line_size(),
348 		   TAINT_CPU_OUT_OF_SPEC,
349 		   "ARCH_DMA_MINALIGN smaller than CTR_EL0.CWG (%d < %d)",
350 		   ARCH_DMA_MINALIGN, cache_line_size());
351 
352 	return atomic_pool_init();
353 }
354 arch_initcall(arm64_dma_init);
355 
356 #ifdef CONFIG_IOMMU_DMA
357 #include <linux/dma-iommu.h>
358 #include <linux/platform_device.h>
359 #include <linux/amba/bus.h>
360 
361 /* Thankfully, all cache ops are by VA so we can ignore phys here */
362 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
363 {
364 	__dma_flush_area(virt, PAGE_SIZE);
365 }
366 
367 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
368 				 dma_addr_t *handle, gfp_t gfp,
369 				 unsigned long attrs)
370 {
371 	bool coherent = dev_is_dma_coherent(dev);
372 	int ioprot = dma_info_to_prot(DMA_BIDIRECTIONAL, coherent, attrs);
373 	size_t iosize = size;
374 	void *addr;
375 
376 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
377 		return NULL;
378 
379 	size = PAGE_ALIGN(size);
380 
381 	/*
382 	 * Some drivers rely on this, and we probably don't want the
383 	 * possibility of stale kernel data being read by devices anyway.
384 	 */
385 	gfp |= __GFP_ZERO;
386 
387 	if (!gfpflags_allow_blocking(gfp)) {
388 		struct page *page;
389 		/*
390 		 * In atomic context we can't remap anything, so we'll only
391 		 * get the virtually contiguous buffer we need by way of a
392 		 * physically contiguous allocation.
393 		 */
394 		if (coherent) {
395 			page = alloc_pages(gfp, get_order(size));
396 			addr = page ? page_address(page) : NULL;
397 		} else {
398 			addr = __alloc_from_pool(size, &page, gfp);
399 		}
400 		if (!addr)
401 			return NULL;
402 
403 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
404 		if (iommu_dma_mapping_error(dev, *handle)) {
405 			if (coherent)
406 				__free_pages(page, get_order(size));
407 			else
408 				__free_from_pool(addr, size);
409 			addr = NULL;
410 		}
411 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
412 		pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
413 		struct page *page;
414 
415 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
416 					get_order(size), gfp & __GFP_NOWARN);
417 		if (!page)
418 			return NULL;
419 
420 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
421 		if (iommu_dma_mapping_error(dev, *handle)) {
422 			dma_release_from_contiguous(dev, page,
423 						    size >> PAGE_SHIFT);
424 			return NULL;
425 		}
426 		addr = dma_common_contiguous_remap(page, size, VM_USERMAP,
427 						   prot,
428 						   __builtin_return_address(0));
429 		if (addr) {
430 			memset(addr, 0, size);
431 			if (!coherent)
432 				__dma_flush_area(page_to_virt(page), iosize);
433 		} else {
434 			iommu_dma_unmap_page(dev, *handle, iosize, 0, attrs);
435 			dma_release_from_contiguous(dev, page,
436 						    size >> PAGE_SHIFT);
437 		}
438 	} else {
439 		pgprot_t prot = arch_dma_mmap_pgprot(dev, PAGE_KERNEL, attrs);
440 		struct page **pages;
441 
442 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
443 					handle, flush_page);
444 		if (!pages)
445 			return NULL;
446 
447 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
448 					      __builtin_return_address(0));
449 		if (!addr)
450 			iommu_dma_free(dev, pages, iosize, handle);
451 	}
452 	return addr;
453 }
454 
455 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
456 			       dma_addr_t handle, unsigned long attrs)
457 {
458 	size_t iosize = size;
459 
460 	size = PAGE_ALIGN(size);
461 	/*
462 	 * @cpu_addr will be one of 4 things depending on how it was allocated:
463 	 * - A remapped array of pages for contiguous allocations.
464 	 * - A remapped array of pages from iommu_dma_alloc(), for all
465 	 *   non-atomic allocations.
466 	 * - A non-cacheable alias from the atomic pool, for atomic
467 	 *   allocations by non-coherent devices.
468 	 * - A normal lowmem address, for atomic allocations by
469 	 *   coherent devices.
470 	 * Hence how dodgy the below logic looks...
471 	 */
472 	if (__in_atomic_pool(cpu_addr, size)) {
473 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
474 		__free_from_pool(cpu_addr, size);
475 	} else if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
476 		struct page *page = vmalloc_to_page(cpu_addr);
477 
478 		iommu_dma_unmap_page(dev, handle, iosize, 0, attrs);
479 		dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
480 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
481 	} else if (is_vmalloc_addr(cpu_addr)){
482 		struct vm_struct *area = find_vm_area(cpu_addr);
483 
484 		if (WARN_ON(!area || !area->pages))
485 			return;
486 		iommu_dma_free(dev, area->pages, iosize, &handle);
487 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
488 	} else {
489 		iommu_dma_unmap_page(dev, handle, iosize, 0, 0);
490 		__free_pages(virt_to_page(cpu_addr), get_order(size));
491 	}
492 }
493 
494 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
495 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
496 			      unsigned long attrs)
497 {
498 	struct vm_struct *area;
499 	int ret;
500 
501 	vma->vm_page_prot = arch_dma_mmap_pgprot(dev, vma->vm_page_prot, attrs);
502 
503 	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
504 		return ret;
505 
506 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
507 		/*
508 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
509 		 * hence in the vmalloc space.
510 		 */
511 		unsigned long pfn = vmalloc_to_pfn(cpu_addr);
512 		return __swiotlb_mmap_pfn(vma, pfn, size);
513 	}
514 
515 	area = find_vm_area(cpu_addr);
516 	if (WARN_ON(!area || !area->pages))
517 		return -ENXIO;
518 
519 	return iommu_dma_mmap(area->pages, size, vma);
520 }
521 
522 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
523 			       void *cpu_addr, dma_addr_t dma_addr,
524 			       size_t size, unsigned long attrs)
525 {
526 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
527 	struct vm_struct *area = find_vm_area(cpu_addr);
528 
529 	if (attrs & DMA_ATTR_FORCE_CONTIGUOUS) {
530 		/*
531 		 * DMA_ATTR_FORCE_CONTIGUOUS allocations are always remapped,
532 		 * hence in the vmalloc space.
533 		 */
534 		struct page *page = vmalloc_to_page(cpu_addr);
535 		return __swiotlb_get_sgtable_page(sgt, page, size);
536 	}
537 
538 	if (WARN_ON(!area || !area->pages))
539 		return -ENXIO;
540 
541 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
542 					 GFP_KERNEL);
543 }
544 
545 static void __iommu_sync_single_for_cpu(struct device *dev,
546 					dma_addr_t dev_addr, size_t size,
547 					enum dma_data_direction dir)
548 {
549 	phys_addr_t phys;
550 
551 	if (dev_is_dma_coherent(dev))
552 		return;
553 
554 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
555 	arch_sync_dma_for_cpu(dev, phys, size, dir);
556 }
557 
558 static void __iommu_sync_single_for_device(struct device *dev,
559 					   dma_addr_t dev_addr, size_t size,
560 					   enum dma_data_direction dir)
561 {
562 	phys_addr_t phys;
563 
564 	if (dev_is_dma_coherent(dev))
565 		return;
566 
567 	phys = iommu_iova_to_phys(iommu_get_dma_domain(dev), dev_addr);
568 	arch_sync_dma_for_device(dev, phys, size, dir);
569 }
570 
571 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
572 				   unsigned long offset, size_t size,
573 				   enum dma_data_direction dir,
574 				   unsigned long attrs)
575 {
576 	bool coherent = dev_is_dma_coherent(dev);
577 	int prot = dma_info_to_prot(dir, coherent, attrs);
578 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
579 
580 	if (!coherent && !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
581 	    !iommu_dma_mapping_error(dev, dev_addr))
582 		__dma_map_area(page_address(page) + offset, size, dir);
583 
584 	return dev_addr;
585 }
586 
587 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
588 			       size_t size, enum dma_data_direction dir,
589 			       unsigned long attrs)
590 {
591 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
592 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
593 
594 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
595 }
596 
597 static void __iommu_sync_sg_for_cpu(struct device *dev,
598 				    struct scatterlist *sgl, int nelems,
599 				    enum dma_data_direction dir)
600 {
601 	struct scatterlist *sg;
602 	int i;
603 
604 	if (dev_is_dma_coherent(dev))
605 		return;
606 
607 	for_each_sg(sgl, sg, nelems, i)
608 		arch_sync_dma_for_cpu(dev, sg_phys(sg), sg->length, dir);
609 }
610 
611 static void __iommu_sync_sg_for_device(struct device *dev,
612 				       struct scatterlist *sgl, int nelems,
613 				       enum dma_data_direction dir)
614 {
615 	struct scatterlist *sg;
616 	int i;
617 
618 	if (dev_is_dma_coherent(dev))
619 		return;
620 
621 	for_each_sg(sgl, sg, nelems, i)
622 		arch_sync_dma_for_device(dev, sg_phys(sg), sg->length, dir);
623 }
624 
625 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
626 				int nelems, enum dma_data_direction dir,
627 				unsigned long attrs)
628 {
629 	bool coherent = dev_is_dma_coherent(dev);
630 
631 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
632 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
633 
634 	return iommu_dma_map_sg(dev, sgl, nelems,
635 				dma_info_to_prot(dir, coherent, attrs));
636 }
637 
638 static void __iommu_unmap_sg_attrs(struct device *dev,
639 				   struct scatterlist *sgl, int nelems,
640 				   enum dma_data_direction dir,
641 				   unsigned long attrs)
642 {
643 	if ((attrs & DMA_ATTR_SKIP_CPU_SYNC) == 0)
644 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
645 
646 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
647 }
648 
649 static const struct dma_map_ops iommu_dma_ops = {
650 	.alloc = __iommu_alloc_attrs,
651 	.free = __iommu_free_attrs,
652 	.mmap = __iommu_mmap_attrs,
653 	.get_sgtable = __iommu_get_sgtable,
654 	.map_page = __iommu_map_page,
655 	.unmap_page = __iommu_unmap_page,
656 	.map_sg = __iommu_map_sg_attrs,
657 	.unmap_sg = __iommu_unmap_sg_attrs,
658 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
659 	.sync_single_for_device = __iommu_sync_single_for_device,
660 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
661 	.sync_sg_for_device = __iommu_sync_sg_for_device,
662 	.map_resource = iommu_dma_map_resource,
663 	.unmap_resource = iommu_dma_unmap_resource,
664 	.mapping_error = iommu_dma_mapping_error,
665 };
666 
667 static int __init __iommu_dma_init(void)
668 {
669 	return iommu_dma_init();
670 }
671 arch_initcall(__iommu_dma_init);
672 
673 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
674 				  const struct iommu_ops *ops)
675 {
676 	struct iommu_domain *domain;
677 
678 	if (!ops)
679 		return;
680 
681 	/*
682 	 * The IOMMU core code allocates the default DMA domain, which the
683 	 * underlying IOMMU driver needs to support via the dma-iommu layer.
684 	 */
685 	domain = iommu_get_domain_for_dev(dev);
686 
687 	if (!domain)
688 		goto out_err;
689 
690 	if (domain->type == IOMMU_DOMAIN_DMA) {
691 		if (iommu_dma_init_domain(domain, dma_base, size, dev))
692 			goto out_err;
693 
694 		dev->dma_ops = &iommu_dma_ops;
695 	}
696 
697 	return;
698 
699 out_err:
700 	 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
701 		 dev_name(dev));
702 }
703 
704 void arch_teardown_dma_ops(struct device *dev)
705 {
706 	dev->dma_ops = NULL;
707 }
708 
709 #else
710 
711 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
712 				  const struct iommu_ops *iommu)
713 { }
714 
715 #endif  /* CONFIG_IOMMU_DMA */
716 
717 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
718 			const struct iommu_ops *iommu, bool coherent)
719 {
720 	if (!dev->dma_ops)
721 		dev->dma_ops = &swiotlb_dma_ops;
722 
723 	dev->dma_coherent = coherent;
724 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
725 
726 #ifdef CONFIG_XEN
727 	if (xen_initial_domain()) {
728 		dev->archdata.dev_dma_ops = dev->dma_ops;
729 		dev->dma_ops = xen_dma_ops;
730 	}
731 #endif
732 }
733