1 /* 2 * SWIOTLB-based DMA API implementation 3 * 4 * Copyright (C) 2012 ARM Ltd. 5 * Author: Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/gfp.h> 21 #include <linux/acpi.h> 22 #include <linux/export.h> 23 #include <linux/slab.h> 24 #include <linux/genalloc.h> 25 #include <linux/dma-mapping.h> 26 #include <linux/dma-contiguous.h> 27 #include <linux/vmalloc.h> 28 #include <linux/swiotlb.h> 29 30 #include <asm/cacheflush.h> 31 32 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot, 33 bool coherent) 34 { 35 if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs)) 36 return pgprot_writecombine(prot); 37 return prot; 38 } 39 40 static struct gen_pool *atomic_pool; 41 42 #define DEFAULT_DMA_COHERENT_POOL_SIZE SZ_256K 43 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE; 44 45 static int __init early_coherent_pool(char *p) 46 { 47 atomic_pool_size = memparse(p, &p); 48 return 0; 49 } 50 early_param("coherent_pool", early_coherent_pool); 51 52 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags) 53 { 54 unsigned long val; 55 void *ptr = NULL; 56 57 if (!atomic_pool) { 58 WARN(1, "coherent pool not initialised!\n"); 59 return NULL; 60 } 61 62 val = gen_pool_alloc(atomic_pool, size); 63 if (val) { 64 phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val); 65 66 *ret_page = phys_to_page(phys); 67 ptr = (void *)val; 68 memset(ptr, 0, size); 69 } 70 71 return ptr; 72 } 73 74 static bool __in_atomic_pool(void *start, size_t size) 75 { 76 return addr_in_gen_pool(atomic_pool, (unsigned long)start, size); 77 } 78 79 static int __free_from_pool(void *start, size_t size) 80 { 81 if (!__in_atomic_pool(start, size)) 82 return 0; 83 84 gen_pool_free(atomic_pool, (unsigned long)start, size); 85 86 return 1; 87 } 88 89 static void *__dma_alloc_coherent(struct device *dev, size_t size, 90 dma_addr_t *dma_handle, gfp_t flags, 91 struct dma_attrs *attrs) 92 { 93 if (dev == NULL) { 94 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 95 return NULL; 96 } 97 98 if (IS_ENABLED(CONFIG_ZONE_DMA) && 99 dev->coherent_dma_mask <= DMA_BIT_MASK(32)) 100 flags |= GFP_DMA; 101 if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) { 102 struct page *page; 103 void *addr; 104 105 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT, 106 get_order(size)); 107 if (!page) 108 return NULL; 109 110 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 111 addr = page_address(page); 112 memset(addr, 0, size); 113 return addr; 114 } else { 115 return swiotlb_alloc_coherent(dev, size, dma_handle, flags); 116 } 117 } 118 119 static void __dma_free_coherent(struct device *dev, size_t size, 120 void *vaddr, dma_addr_t dma_handle, 121 struct dma_attrs *attrs) 122 { 123 bool freed; 124 phys_addr_t paddr = dma_to_phys(dev, dma_handle); 125 126 if (dev == NULL) { 127 WARN_ONCE(1, "Use an actual device structure for DMA allocation\n"); 128 return; 129 } 130 131 freed = dma_release_from_contiguous(dev, 132 phys_to_page(paddr), 133 size >> PAGE_SHIFT); 134 if (!freed) 135 swiotlb_free_coherent(dev, size, vaddr, dma_handle); 136 } 137 138 static void *__dma_alloc(struct device *dev, size_t size, 139 dma_addr_t *dma_handle, gfp_t flags, 140 struct dma_attrs *attrs) 141 { 142 struct page *page; 143 void *ptr, *coherent_ptr; 144 bool coherent = is_device_dma_coherent(dev); 145 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false); 146 147 size = PAGE_ALIGN(size); 148 149 if (!coherent && !gfpflags_allow_blocking(flags)) { 150 struct page *page = NULL; 151 void *addr = __alloc_from_pool(size, &page, flags); 152 153 if (addr) 154 *dma_handle = phys_to_dma(dev, page_to_phys(page)); 155 156 return addr; 157 } 158 159 ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs); 160 if (!ptr) 161 goto no_mem; 162 163 /* no need for non-cacheable mapping if coherent */ 164 if (coherent) 165 return ptr; 166 167 /* remove any dirty cache lines on the kernel alias */ 168 __dma_flush_range(ptr, ptr + size); 169 170 /* create a coherent mapping */ 171 page = virt_to_page(ptr); 172 coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP, 173 prot, NULL); 174 if (!coherent_ptr) 175 goto no_map; 176 177 return coherent_ptr; 178 179 no_map: 180 __dma_free_coherent(dev, size, ptr, *dma_handle, attrs); 181 no_mem: 182 *dma_handle = DMA_ERROR_CODE; 183 return NULL; 184 } 185 186 static void __dma_free(struct device *dev, size_t size, 187 void *vaddr, dma_addr_t dma_handle, 188 struct dma_attrs *attrs) 189 { 190 void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle)); 191 192 size = PAGE_ALIGN(size); 193 194 if (!is_device_dma_coherent(dev)) { 195 if (__free_from_pool(vaddr, size)) 196 return; 197 vunmap(vaddr); 198 } 199 __dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs); 200 } 201 202 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page, 203 unsigned long offset, size_t size, 204 enum dma_data_direction dir, 205 struct dma_attrs *attrs) 206 { 207 dma_addr_t dev_addr; 208 209 dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs); 210 if (!is_device_dma_coherent(dev)) 211 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 212 213 return dev_addr; 214 } 215 216 217 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr, 218 size_t size, enum dma_data_direction dir, 219 struct dma_attrs *attrs) 220 { 221 if (!is_device_dma_coherent(dev)) 222 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 223 swiotlb_unmap_page(dev, dev_addr, size, dir, attrs); 224 } 225 226 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 227 int nelems, enum dma_data_direction dir, 228 struct dma_attrs *attrs) 229 { 230 struct scatterlist *sg; 231 int i, ret; 232 233 ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs); 234 if (!is_device_dma_coherent(dev)) 235 for_each_sg(sgl, sg, ret, i) 236 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 237 sg->length, dir); 238 239 return ret; 240 } 241 242 static void __swiotlb_unmap_sg_attrs(struct device *dev, 243 struct scatterlist *sgl, int nelems, 244 enum dma_data_direction dir, 245 struct dma_attrs *attrs) 246 { 247 struct scatterlist *sg; 248 int i; 249 250 if (!is_device_dma_coherent(dev)) 251 for_each_sg(sgl, sg, nelems, i) 252 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 253 sg->length, dir); 254 swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs); 255 } 256 257 static void __swiotlb_sync_single_for_cpu(struct device *dev, 258 dma_addr_t dev_addr, size_t size, 259 enum dma_data_direction dir) 260 { 261 if (!is_device_dma_coherent(dev)) 262 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 263 swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir); 264 } 265 266 static void __swiotlb_sync_single_for_device(struct device *dev, 267 dma_addr_t dev_addr, size_t size, 268 enum dma_data_direction dir) 269 { 270 swiotlb_sync_single_for_device(dev, dev_addr, size, dir); 271 if (!is_device_dma_coherent(dev)) 272 __dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir); 273 } 274 275 static void __swiotlb_sync_sg_for_cpu(struct device *dev, 276 struct scatterlist *sgl, int nelems, 277 enum dma_data_direction dir) 278 { 279 struct scatterlist *sg; 280 int i; 281 282 if (!is_device_dma_coherent(dev)) 283 for_each_sg(sgl, sg, nelems, i) 284 __dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 285 sg->length, dir); 286 swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir); 287 } 288 289 static void __swiotlb_sync_sg_for_device(struct device *dev, 290 struct scatterlist *sgl, int nelems, 291 enum dma_data_direction dir) 292 { 293 struct scatterlist *sg; 294 int i; 295 296 swiotlb_sync_sg_for_device(dev, sgl, nelems, dir); 297 if (!is_device_dma_coherent(dev)) 298 for_each_sg(sgl, sg, nelems, i) 299 __dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)), 300 sg->length, dir); 301 } 302 303 static int __swiotlb_mmap(struct device *dev, 304 struct vm_area_struct *vma, 305 void *cpu_addr, dma_addr_t dma_addr, size_t size, 306 struct dma_attrs *attrs) 307 { 308 int ret = -ENXIO; 309 unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >> 310 PAGE_SHIFT; 311 unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT; 312 unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT; 313 unsigned long off = vma->vm_pgoff; 314 315 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 316 is_device_dma_coherent(dev)); 317 318 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 319 return ret; 320 321 if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) { 322 ret = remap_pfn_range(vma, vma->vm_start, 323 pfn + off, 324 vma->vm_end - vma->vm_start, 325 vma->vm_page_prot); 326 } 327 328 return ret; 329 } 330 331 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt, 332 void *cpu_addr, dma_addr_t handle, size_t size, 333 struct dma_attrs *attrs) 334 { 335 int ret = sg_alloc_table(sgt, 1, GFP_KERNEL); 336 337 if (!ret) 338 sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)), 339 PAGE_ALIGN(size), 0); 340 341 return ret; 342 } 343 344 static struct dma_map_ops swiotlb_dma_ops = { 345 .alloc = __dma_alloc, 346 .free = __dma_free, 347 .mmap = __swiotlb_mmap, 348 .get_sgtable = __swiotlb_get_sgtable, 349 .map_page = __swiotlb_map_page, 350 .unmap_page = __swiotlb_unmap_page, 351 .map_sg = __swiotlb_map_sg_attrs, 352 .unmap_sg = __swiotlb_unmap_sg_attrs, 353 .sync_single_for_cpu = __swiotlb_sync_single_for_cpu, 354 .sync_single_for_device = __swiotlb_sync_single_for_device, 355 .sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu, 356 .sync_sg_for_device = __swiotlb_sync_sg_for_device, 357 .dma_supported = swiotlb_dma_supported, 358 .mapping_error = swiotlb_dma_mapping_error, 359 }; 360 361 static int __init atomic_pool_init(void) 362 { 363 pgprot_t prot = __pgprot(PROT_NORMAL_NC); 364 unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT; 365 struct page *page; 366 void *addr; 367 unsigned int pool_size_order = get_order(atomic_pool_size); 368 369 if (dev_get_cma_area(NULL)) 370 page = dma_alloc_from_contiguous(NULL, nr_pages, 371 pool_size_order); 372 else 373 page = alloc_pages(GFP_DMA, pool_size_order); 374 375 if (page) { 376 int ret; 377 void *page_addr = page_address(page); 378 379 memset(page_addr, 0, atomic_pool_size); 380 __dma_flush_range(page_addr, page_addr + atomic_pool_size); 381 382 atomic_pool = gen_pool_create(PAGE_SHIFT, -1); 383 if (!atomic_pool) 384 goto free_page; 385 386 addr = dma_common_contiguous_remap(page, atomic_pool_size, 387 VM_USERMAP, prot, atomic_pool_init); 388 389 if (!addr) 390 goto destroy_genpool; 391 392 ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr, 393 page_to_phys(page), 394 atomic_pool_size, -1); 395 if (ret) 396 goto remove_mapping; 397 398 gen_pool_set_algo(atomic_pool, 399 gen_pool_first_fit_order_align, 400 (void *)PAGE_SHIFT); 401 402 pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n", 403 atomic_pool_size / 1024); 404 return 0; 405 } 406 goto out; 407 408 remove_mapping: 409 dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP); 410 destroy_genpool: 411 gen_pool_destroy(atomic_pool); 412 atomic_pool = NULL; 413 free_page: 414 if (!dma_release_from_contiguous(NULL, page, nr_pages)) 415 __free_pages(page, pool_size_order); 416 out: 417 pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n", 418 atomic_pool_size / 1024); 419 return -ENOMEM; 420 } 421 422 /******************************************** 423 * The following APIs are for dummy DMA ops * 424 ********************************************/ 425 426 static void *__dummy_alloc(struct device *dev, size_t size, 427 dma_addr_t *dma_handle, gfp_t flags, 428 struct dma_attrs *attrs) 429 { 430 return NULL; 431 } 432 433 static void __dummy_free(struct device *dev, size_t size, 434 void *vaddr, dma_addr_t dma_handle, 435 struct dma_attrs *attrs) 436 { 437 } 438 439 static int __dummy_mmap(struct device *dev, 440 struct vm_area_struct *vma, 441 void *cpu_addr, dma_addr_t dma_addr, size_t size, 442 struct dma_attrs *attrs) 443 { 444 return -ENXIO; 445 } 446 447 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page, 448 unsigned long offset, size_t size, 449 enum dma_data_direction dir, 450 struct dma_attrs *attrs) 451 { 452 return DMA_ERROR_CODE; 453 } 454 455 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr, 456 size_t size, enum dma_data_direction dir, 457 struct dma_attrs *attrs) 458 { 459 } 460 461 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl, 462 int nelems, enum dma_data_direction dir, 463 struct dma_attrs *attrs) 464 { 465 return 0; 466 } 467 468 static void __dummy_unmap_sg(struct device *dev, 469 struct scatterlist *sgl, int nelems, 470 enum dma_data_direction dir, 471 struct dma_attrs *attrs) 472 { 473 } 474 475 static void __dummy_sync_single(struct device *dev, 476 dma_addr_t dev_addr, size_t size, 477 enum dma_data_direction dir) 478 { 479 } 480 481 static void __dummy_sync_sg(struct device *dev, 482 struct scatterlist *sgl, int nelems, 483 enum dma_data_direction dir) 484 { 485 } 486 487 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr) 488 { 489 return 1; 490 } 491 492 static int __dummy_dma_supported(struct device *hwdev, u64 mask) 493 { 494 return 0; 495 } 496 497 struct dma_map_ops dummy_dma_ops = { 498 .alloc = __dummy_alloc, 499 .free = __dummy_free, 500 .mmap = __dummy_mmap, 501 .map_page = __dummy_map_page, 502 .unmap_page = __dummy_unmap_page, 503 .map_sg = __dummy_map_sg, 504 .unmap_sg = __dummy_unmap_sg, 505 .sync_single_for_cpu = __dummy_sync_single, 506 .sync_single_for_device = __dummy_sync_single, 507 .sync_sg_for_cpu = __dummy_sync_sg, 508 .sync_sg_for_device = __dummy_sync_sg, 509 .mapping_error = __dummy_mapping_error, 510 .dma_supported = __dummy_dma_supported, 511 }; 512 EXPORT_SYMBOL(dummy_dma_ops); 513 514 static int __init arm64_dma_init(void) 515 { 516 return atomic_pool_init(); 517 } 518 arch_initcall(arm64_dma_init); 519 520 #define PREALLOC_DMA_DEBUG_ENTRIES 4096 521 522 static int __init dma_debug_do_init(void) 523 { 524 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES); 525 return 0; 526 } 527 fs_initcall(dma_debug_do_init); 528 529 530 #ifdef CONFIG_IOMMU_DMA 531 #include <linux/dma-iommu.h> 532 #include <linux/platform_device.h> 533 #include <linux/amba/bus.h> 534 535 /* Thankfully, all cache ops are by VA so we can ignore phys here */ 536 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys) 537 { 538 __dma_flush_range(virt, virt + PAGE_SIZE); 539 } 540 541 static void *__iommu_alloc_attrs(struct device *dev, size_t size, 542 dma_addr_t *handle, gfp_t gfp, 543 struct dma_attrs *attrs) 544 { 545 bool coherent = is_device_dma_coherent(dev); 546 int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent); 547 size_t iosize = size; 548 void *addr; 549 550 if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n")) 551 return NULL; 552 553 size = PAGE_ALIGN(size); 554 555 /* 556 * Some drivers rely on this, and we probably don't want the 557 * possibility of stale kernel data being read by devices anyway. 558 */ 559 gfp |= __GFP_ZERO; 560 561 if (gfpflags_allow_blocking(gfp)) { 562 struct page **pages; 563 pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent); 564 565 pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot, 566 handle, flush_page); 567 if (!pages) 568 return NULL; 569 570 addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot, 571 __builtin_return_address(0)); 572 if (!addr) 573 iommu_dma_free(dev, pages, iosize, handle); 574 } else { 575 struct page *page; 576 /* 577 * In atomic context we can't remap anything, so we'll only 578 * get the virtually contiguous buffer we need by way of a 579 * physically contiguous allocation. 580 */ 581 if (coherent) { 582 page = alloc_pages(gfp, get_order(size)); 583 addr = page ? page_address(page) : NULL; 584 } else { 585 addr = __alloc_from_pool(size, &page, gfp); 586 } 587 if (!addr) 588 return NULL; 589 590 *handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot); 591 if (iommu_dma_mapping_error(dev, *handle)) { 592 if (coherent) 593 __free_pages(page, get_order(size)); 594 else 595 __free_from_pool(addr, size); 596 addr = NULL; 597 } 598 } 599 return addr; 600 } 601 602 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr, 603 dma_addr_t handle, struct dma_attrs *attrs) 604 { 605 size_t iosize = size; 606 607 size = PAGE_ALIGN(size); 608 /* 609 * @cpu_addr will be one of 3 things depending on how it was allocated: 610 * - A remapped array of pages from iommu_dma_alloc(), for all 611 * non-atomic allocations. 612 * - A non-cacheable alias from the atomic pool, for atomic 613 * allocations by non-coherent devices. 614 * - A normal lowmem address, for atomic allocations by 615 * coherent devices. 616 * Hence how dodgy the below logic looks... 617 */ 618 if (__in_atomic_pool(cpu_addr, size)) { 619 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); 620 __free_from_pool(cpu_addr, size); 621 } else if (is_vmalloc_addr(cpu_addr)){ 622 struct vm_struct *area = find_vm_area(cpu_addr); 623 624 if (WARN_ON(!area || !area->pages)) 625 return; 626 iommu_dma_free(dev, area->pages, iosize, &handle); 627 dma_common_free_remap(cpu_addr, size, VM_USERMAP); 628 } else { 629 iommu_dma_unmap_page(dev, handle, iosize, 0, NULL); 630 __free_pages(virt_to_page(cpu_addr), get_order(size)); 631 } 632 } 633 634 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 635 void *cpu_addr, dma_addr_t dma_addr, size_t size, 636 struct dma_attrs *attrs) 637 { 638 struct vm_struct *area; 639 int ret; 640 641 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot, 642 is_device_dma_coherent(dev)); 643 644 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret)) 645 return ret; 646 647 area = find_vm_area(cpu_addr); 648 if (WARN_ON(!area || !area->pages)) 649 return -ENXIO; 650 651 return iommu_dma_mmap(area->pages, size, vma); 652 } 653 654 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt, 655 void *cpu_addr, dma_addr_t dma_addr, 656 size_t size, struct dma_attrs *attrs) 657 { 658 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT; 659 struct vm_struct *area = find_vm_area(cpu_addr); 660 661 if (WARN_ON(!area || !area->pages)) 662 return -ENXIO; 663 664 return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size, 665 GFP_KERNEL); 666 } 667 668 static void __iommu_sync_single_for_cpu(struct device *dev, 669 dma_addr_t dev_addr, size_t size, 670 enum dma_data_direction dir) 671 { 672 phys_addr_t phys; 673 674 if (is_device_dma_coherent(dev)) 675 return; 676 677 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 678 __dma_unmap_area(phys_to_virt(phys), size, dir); 679 } 680 681 static void __iommu_sync_single_for_device(struct device *dev, 682 dma_addr_t dev_addr, size_t size, 683 enum dma_data_direction dir) 684 { 685 phys_addr_t phys; 686 687 if (is_device_dma_coherent(dev)) 688 return; 689 690 phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr); 691 __dma_map_area(phys_to_virt(phys), size, dir); 692 } 693 694 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page, 695 unsigned long offset, size_t size, 696 enum dma_data_direction dir, 697 struct dma_attrs *attrs) 698 { 699 bool coherent = is_device_dma_coherent(dev); 700 int prot = dma_direction_to_prot(dir, coherent); 701 dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot); 702 703 if (!iommu_dma_mapping_error(dev, dev_addr) && 704 !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 705 __iommu_sync_single_for_device(dev, dev_addr, size, dir); 706 707 return dev_addr; 708 } 709 710 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr, 711 size_t size, enum dma_data_direction dir, 712 struct dma_attrs *attrs) 713 { 714 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 715 __iommu_sync_single_for_cpu(dev, dev_addr, size, dir); 716 717 iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs); 718 } 719 720 static void __iommu_sync_sg_for_cpu(struct device *dev, 721 struct scatterlist *sgl, int nelems, 722 enum dma_data_direction dir) 723 { 724 struct scatterlist *sg; 725 int i; 726 727 if (is_device_dma_coherent(dev)) 728 return; 729 730 for_each_sg(sgl, sg, nelems, i) 731 __dma_unmap_area(sg_virt(sg), sg->length, dir); 732 } 733 734 static void __iommu_sync_sg_for_device(struct device *dev, 735 struct scatterlist *sgl, int nelems, 736 enum dma_data_direction dir) 737 { 738 struct scatterlist *sg; 739 int i; 740 741 if (is_device_dma_coherent(dev)) 742 return; 743 744 for_each_sg(sgl, sg, nelems, i) 745 __dma_map_area(sg_virt(sg), sg->length, dir); 746 } 747 748 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl, 749 int nelems, enum dma_data_direction dir, 750 struct dma_attrs *attrs) 751 { 752 bool coherent = is_device_dma_coherent(dev); 753 754 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 755 __iommu_sync_sg_for_device(dev, sgl, nelems, dir); 756 757 return iommu_dma_map_sg(dev, sgl, nelems, 758 dma_direction_to_prot(dir, coherent)); 759 } 760 761 static void __iommu_unmap_sg_attrs(struct device *dev, 762 struct scatterlist *sgl, int nelems, 763 enum dma_data_direction dir, 764 struct dma_attrs *attrs) 765 { 766 if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs)) 767 __iommu_sync_sg_for_cpu(dev, sgl, nelems, dir); 768 769 iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs); 770 } 771 772 static struct dma_map_ops iommu_dma_ops = { 773 .alloc = __iommu_alloc_attrs, 774 .free = __iommu_free_attrs, 775 .mmap = __iommu_mmap_attrs, 776 .get_sgtable = __iommu_get_sgtable, 777 .map_page = __iommu_map_page, 778 .unmap_page = __iommu_unmap_page, 779 .map_sg = __iommu_map_sg_attrs, 780 .unmap_sg = __iommu_unmap_sg_attrs, 781 .sync_single_for_cpu = __iommu_sync_single_for_cpu, 782 .sync_single_for_device = __iommu_sync_single_for_device, 783 .sync_sg_for_cpu = __iommu_sync_sg_for_cpu, 784 .sync_sg_for_device = __iommu_sync_sg_for_device, 785 .dma_supported = iommu_dma_supported, 786 .mapping_error = iommu_dma_mapping_error, 787 }; 788 789 /* 790 * TODO: Right now __iommu_setup_dma_ops() gets called too early to do 791 * everything it needs to - the device is only partially created and the 792 * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we 793 * need this delayed attachment dance. Once IOMMU probe ordering is sorted 794 * to move the arch_setup_dma_ops() call later, all the notifier bits below 795 * become unnecessary, and will go away. 796 */ 797 struct iommu_dma_notifier_data { 798 struct list_head list; 799 struct device *dev; 800 const struct iommu_ops *ops; 801 u64 dma_base; 802 u64 size; 803 }; 804 static LIST_HEAD(iommu_dma_masters); 805 static DEFINE_MUTEX(iommu_dma_notifier_lock); 806 807 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops, 808 u64 dma_base, u64 size) 809 { 810 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 811 812 /* 813 * If the IOMMU driver has the DMA domain support that we require, 814 * then the IOMMU core will have already configured a group for this 815 * device, and allocated the default domain for that group. 816 */ 817 if (!domain || iommu_dma_init_domain(domain, dma_base, size)) { 818 pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n", 819 dev_name(dev)); 820 return false; 821 } 822 823 dev->archdata.dma_ops = &iommu_dma_ops; 824 return true; 825 } 826 827 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops, 828 u64 dma_base, u64 size) 829 { 830 struct iommu_dma_notifier_data *iommudata; 831 832 iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL); 833 if (!iommudata) 834 return; 835 836 iommudata->dev = dev; 837 iommudata->ops = ops; 838 iommudata->dma_base = dma_base; 839 iommudata->size = size; 840 841 mutex_lock(&iommu_dma_notifier_lock); 842 list_add(&iommudata->list, &iommu_dma_masters); 843 mutex_unlock(&iommu_dma_notifier_lock); 844 } 845 846 static int __iommu_attach_notifier(struct notifier_block *nb, 847 unsigned long action, void *data) 848 { 849 struct iommu_dma_notifier_data *master, *tmp; 850 851 if (action != BUS_NOTIFY_ADD_DEVICE) 852 return 0; 853 854 mutex_lock(&iommu_dma_notifier_lock); 855 list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) { 856 if (do_iommu_attach(master->dev, master->ops, 857 master->dma_base, master->size)) { 858 list_del(&master->list); 859 kfree(master); 860 } 861 } 862 mutex_unlock(&iommu_dma_notifier_lock); 863 return 0; 864 } 865 866 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus) 867 { 868 struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL); 869 int ret; 870 871 if (!nb) 872 return -ENOMEM; 873 /* 874 * The device must be attached to a domain before the driver probe 875 * routine gets a chance to start allocating DMA buffers. However, 876 * the IOMMU driver also needs a chance to configure the iommu_group 877 * via its add_device callback first, so we need to make the attach 878 * happen between those two points. Since the IOMMU core uses a bus 879 * notifier with default priority for add_device, do the same but 880 * with a lower priority to ensure the appropriate ordering. 881 */ 882 nb->notifier_call = __iommu_attach_notifier; 883 nb->priority = -100; 884 885 ret = bus_register_notifier(bus, nb); 886 if (ret) { 887 pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n", 888 bus->name); 889 kfree(nb); 890 } 891 return ret; 892 } 893 894 static int __init __iommu_dma_init(void) 895 { 896 int ret; 897 898 ret = iommu_dma_init(); 899 if (!ret) 900 ret = register_iommu_dma_ops_notifier(&platform_bus_type); 901 if (!ret) 902 ret = register_iommu_dma_ops_notifier(&amba_bustype); 903 #ifdef CONFIG_PCI 904 if (!ret) 905 ret = register_iommu_dma_ops_notifier(&pci_bus_type); 906 #endif 907 908 /* handle devices queued before this arch_initcall */ 909 if (!ret) 910 __iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL); 911 return ret; 912 } 913 arch_initcall(__iommu_dma_init); 914 915 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 916 const struct iommu_ops *ops) 917 { 918 struct iommu_group *group; 919 920 if (!ops) 921 return; 922 /* 923 * TODO: As a concession to the future, we're ready to handle being 924 * called both early and late (i.e. after bus_add_device). Once all 925 * the platform bus code is reworked to call us late and the notifier 926 * junk above goes away, move the body of do_iommu_attach here. 927 */ 928 group = iommu_group_get(dev); 929 if (group) { 930 do_iommu_attach(dev, ops, dma_base, size); 931 iommu_group_put(group); 932 } else { 933 queue_iommu_attach(dev, ops, dma_base, size); 934 } 935 } 936 937 void arch_teardown_dma_ops(struct device *dev) 938 { 939 struct iommu_domain *domain = iommu_get_domain_for_dev(dev); 940 941 if (WARN_ON(domain)) 942 iommu_detach_device(domain, dev); 943 944 dev->archdata.dma_ops = NULL; 945 } 946 947 #else 948 949 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 950 const struct iommu_ops *iommu) 951 { } 952 953 #endif /* CONFIG_IOMMU_DMA */ 954 955 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size, 956 const struct iommu_ops *iommu, bool coherent) 957 { 958 if (!dev->archdata.dma_ops) 959 dev->archdata.dma_ops = &swiotlb_dma_ops; 960 961 dev->archdata.dma_coherent = coherent; 962 __iommu_setup_dma_ops(dev, dma_base, size, iommu); 963 } 964