xref: /linux/arch/arm64/mm/dma-mapping.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * SWIOTLB-based DMA API implementation
3  *
4  * Copyright (C) 2012 ARM Ltd.
5  * Author: Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/acpi.h>
22 #include <linux/export.h>
23 #include <linux/slab.h>
24 #include <linux/genalloc.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/dma-contiguous.h>
27 #include <linux/vmalloc.h>
28 #include <linux/swiotlb.h>
29 
30 #include <asm/cacheflush.h>
31 
32 static pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot,
33 				 bool coherent)
34 {
35 	if (!coherent || dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs))
36 		return pgprot_writecombine(prot);
37 	return prot;
38 }
39 
40 static struct gen_pool *atomic_pool;
41 
42 #define DEFAULT_DMA_COHERENT_POOL_SIZE  SZ_256K
43 static size_t atomic_pool_size __initdata = DEFAULT_DMA_COHERENT_POOL_SIZE;
44 
45 static int __init early_coherent_pool(char *p)
46 {
47 	atomic_pool_size = memparse(p, &p);
48 	return 0;
49 }
50 early_param("coherent_pool", early_coherent_pool);
51 
52 static void *__alloc_from_pool(size_t size, struct page **ret_page, gfp_t flags)
53 {
54 	unsigned long val;
55 	void *ptr = NULL;
56 
57 	if (!atomic_pool) {
58 		WARN(1, "coherent pool not initialised!\n");
59 		return NULL;
60 	}
61 
62 	val = gen_pool_alloc(atomic_pool, size);
63 	if (val) {
64 		phys_addr_t phys = gen_pool_virt_to_phys(atomic_pool, val);
65 
66 		*ret_page = phys_to_page(phys);
67 		ptr = (void *)val;
68 		memset(ptr, 0, size);
69 	}
70 
71 	return ptr;
72 }
73 
74 static bool __in_atomic_pool(void *start, size_t size)
75 {
76 	return addr_in_gen_pool(atomic_pool, (unsigned long)start, size);
77 }
78 
79 static int __free_from_pool(void *start, size_t size)
80 {
81 	if (!__in_atomic_pool(start, size))
82 		return 0;
83 
84 	gen_pool_free(atomic_pool, (unsigned long)start, size);
85 
86 	return 1;
87 }
88 
89 static void *__dma_alloc_coherent(struct device *dev, size_t size,
90 				  dma_addr_t *dma_handle, gfp_t flags,
91 				  struct dma_attrs *attrs)
92 {
93 	if (dev == NULL) {
94 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
95 		return NULL;
96 	}
97 
98 	if (IS_ENABLED(CONFIG_ZONE_DMA) &&
99 	    dev->coherent_dma_mask <= DMA_BIT_MASK(32))
100 		flags |= GFP_DMA;
101 	if (dev_get_cma_area(dev) && gfpflags_allow_blocking(flags)) {
102 		struct page *page;
103 		void *addr;
104 
105 		page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
106 							get_order(size));
107 		if (!page)
108 			return NULL;
109 
110 		*dma_handle = phys_to_dma(dev, page_to_phys(page));
111 		addr = page_address(page);
112 		memset(addr, 0, size);
113 		return addr;
114 	} else {
115 		return swiotlb_alloc_coherent(dev, size, dma_handle, flags);
116 	}
117 }
118 
119 static void __dma_free_coherent(struct device *dev, size_t size,
120 				void *vaddr, dma_addr_t dma_handle,
121 				struct dma_attrs *attrs)
122 {
123 	bool freed;
124 	phys_addr_t paddr = dma_to_phys(dev, dma_handle);
125 
126 	if (dev == NULL) {
127 		WARN_ONCE(1, "Use an actual device structure for DMA allocation\n");
128 		return;
129 	}
130 
131 	freed = dma_release_from_contiguous(dev,
132 					phys_to_page(paddr),
133 					size >> PAGE_SHIFT);
134 	if (!freed)
135 		swiotlb_free_coherent(dev, size, vaddr, dma_handle);
136 }
137 
138 static void *__dma_alloc(struct device *dev, size_t size,
139 			 dma_addr_t *dma_handle, gfp_t flags,
140 			 struct dma_attrs *attrs)
141 {
142 	struct page *page;
143 	void *ptr, *coherent_ptr;
144 	bool coherent = is_device_dma_coherent(dev);
145 	pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, false);
146 
147 	size = PAGE_ALIGN(size);
148 
149 	if (!coherent && !gfpflags_allow_blocking(flags)) {
150 		struct page *page = NULL;
151 		void *addr = __alloc_from_pool(size, &page, flags);
152 
153 		if (addr)
154 			*dma_handle = phys_to_dma(dev, page_to_phys(page));
155 
156 		return addr;
157 	}
158 
159 	ptr = __dma_alloc_coherent(dev, size, dma_handle, flags, attrs);
160 	if (!ptr)
161 		goto no_mem;
162 
163 	/* no need for non-cacheable mapping if coherent */
164 	if (coherent)
165 		return ptr;
166 
167 	/* remove any dirty cache lines on the kernel alias */
168 	__dma_flush_range(ptr, ptr + size);
169 
170 	/* create a coherent mapping */
171 	page = virt_to_page(ptr);
172 	coherent_ptr = dma_common_contiguous_remap(page, size, VM_USERMAP,
173 						   prot, NULL);
174 	if (!coherent_ptr)
175 		goto no_map;
176 
177 	return coherent_ptr;
178 
179 no_map:
180 	__dma_free_coherent(dev, size, ptr, *dma_handle, attrs);
181 no_mem:
182 	*dma_handle = DMA_ERROR_CODE;
183 	return NULL;
184 }
185 
186 static void __dma_free(struct device *dev, size_t size,
187 		       void *vaddr, dma_addr_t dma_handle,
188 		       struct dma_attrs *attrs)
189 {
190 	void *swiotlb_addr = phys_to_virt(dma_to_phys(dev, dma_handle));
191 
192 	size = PAGE_ALIGN(size);
193 
194 	if (!is_device_dma_coherent(dev)) {
195 		if (__free_from_pool(vaddr, size))
196 			return;
197 		vunmap(vaddr);
198 	}
199 	__dma_free_coherent(dev, size, swiotlb_addr, dma_handle, attrs);
200 }
201 
202 static dma_addr_t __swiotlb_map_page(struct device *dev, struct page *page,
203 				     unsigned long offset, size_t size,
204 				     enum dma_data_direction dir,
205 				     struct dma_attrs *attrs)
206 {
207 	dma_addr_t dev_addr;
208 
209 	dev_addr = swiotlb_map_page(dev, page, offset, size, dir, attrs);
210 	if (!is_device_dma_coherent(dev))
211 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
212 
213 	return dev_addr;
214 }
215 
216 
217 static void __swiotlb_unmap_page(struct device *dev, dma_addr_t dev_addr,
218 				 size_t size, enum dma_data_direction dir,
219 				 struct dma_attrs *attrs)
220 {
221 	if (!is_device_dma_coherent(dev))
222 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
223 	swiotlb_unmap_page(dev, dev_addr, size, dir, attrs);
224 }
225 
226 static int __swiotlb_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
227 				  int nelems, enum dma_data_direction dir,
228 				  struct dma_attrs *attrs)
229 {
230 	struct scatterlist *sg;
231 	int i, ret;
232 
233 	ret = swiotlb_map_sg_attrs(dev, sgl, nelems, dir, attrs);
234 	if (!is_device_dma_coherent(dev))
235 		for_each_sg(sgl, sg, ret, i)
236 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
237 				       sg->length, dir);
238 
239 	return ret;
240 }
241 
242 static void __swiotlb_unmap_sg_attrs(struct device *dev,
243 				     struct scatterlist *sgl, int nelems,
244 				     enum dma_data_direction dir,
245 				     struct dma_attrs *attrs)
246 {
247 	struct scatterlist *sg;
248 	int i;
249 
250 	if (!is_device_dma_coherent(dev))
251 		for_each_sg(sgl, sg, nelems, i)
252 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
253 					 sg->length, dir);
254 	swiotlb_unmap_sg_attrs(dev, sgl, nelems, dir, attrs);
255 }
256 
257 static void __swiotlb_sync_single_for_cpu(struct device *dev,
258 					  dma_addr_t dev_addr, size_t size,
259 					  enum dma_data_direction dir)
260 {
261 	if (!is_device_dma_coherent(dev))
262 		__dma_unmap_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
263 	swiotlb_sync_single_for_cpu(dev, dev_addr, size, dir);
264 }
265 
266 static void __swiotlb_sync_single_for_device(struct device *dev,
267 					     dma_addr_t dev_addr, size_t size,
268 					     enum dma_data_direction dir)
269 {
270 	swiotlb_sync_single_for_device(dev, dev_addr, size, dir);
271 	if (!is_device_dma_coherent(dev))
272 		__dma_map_area(phys_to_virt(dma_to_phys(dev, dev_addr)), size, dir);
273 }
274 
275 static void __swiotlb_sync_sg_for_cpu(struct device *dev,
276 				      struct scatterlist *sgl, int nelems,
277 				      enum dma_data_direction dir)
278 {
279 	struct scatterlist *sg;
280 	int i;
281 
282 	if (!is_device_dma_coherent(dev))
283 		for_each_sg(sgl, sg, nelems, i)
284 			__dma_unmap_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
285 					 sg->length, dir);
286 	swiotlb_sync_sg_for_cpu(dev, sgl, nelems, dir);
287 }
288 
289 static void __swiotlb_sync_sg_for_device(struct device *dev,
290 					 struct scatterlist *sgl, int nelems,
291 					 enum dma_data_direction dir)
292 {
293 	struct scatterlist *sg;
294 	int i;
295 
296 	swiotlb_sync_sg_for_device(dev, sgl, nelems, dir);
297 	if (!is_device_dma_coherent(dev))
298 		for_each_sg(sgl, sg, nelems, i)
299 			__dma_map_area(phys_to_virt(dma_to_phys(dev, sg->dma_address)),
300 				       sg->length, dir);
301 }
302 
303 static int __swiotlb_mmap(struct device *dev,
304 			  struct vm_area_struct *vma,
305 			  void *cpu_addr, dma_addr_t dma_addr, size_t size,
306 			  struct dma_attrs *attrs)
307 {
308 	int ret = -ENXIO;
309 	unsigned long nr_vma_pages = (vma->vm_end - vma->vm_start) >>
310 					PAGE_SHIFT;
311 	unsigned long nr_pages = PAGE_ALIGN(size) >> PAGE_SHIFT;
312 	unsigned long pfn = dma_to_phys(dev, dma_addr) >> PAGE_SHIFT;
313 	unsigned long off = vma->vm_pgoff;
314 
315 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
316 					     is_device_dma_coherent(dev));
317 
318 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
319 		return ret;
320 
321 	if (off < nr_pages && nr_vma_pages <= (nr_pages - off)) {
322 		ret = remap_pfn_range(vma, vma->vm_start,
323 				      pfn + off,
324 				      vma->vm_end - vma->vm_start,
325 				      vma->vm_page_prot);
326 	}
327 
328 	return ret;
329 }
330 
331 static int __swiotlb_get_sgtable(struct device *dev, struct sg_table *sgt,
332 				 void *cpu_addr, dma_addr_t handle, size_t size,
333 				 struct dma_attrs *attrs)
334 {
335 	int ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
336 
337 	if (!ret)
338 		sg_set_page(sgt->sgl, phys_to_page(dma_to_phys(dev, handle)),
339 			    PAGE_ALIGN(size), 0);
340 
341 	return ret;
342 }
343 
344 static struct dma_map_ops swiotlb_dma_ops = {
345 	.alloc = __dma_alloc,
346 	.free = __dma_free,
347 	.mmap = __swiotlb_mmap,
348 	.get_sgtable = __swiotlb_get_sgtable,
349 	.map_page = __swiotlb_map_page,
350 	.unmap_page = __swiotlb_unmap_page,
351 	.map_sg = __swiotlb_map_sg_attrs,
352 	.unmap_sg = __swiotlb_unmap_sg_attrs,
353 	.sync_single_for_cpu = __swiotlb_sync_single_for_cpu,
354 	.sync_single_for_device = __swiotlb_sync_single_for_device,
355 	.sync_sg_for_cpu = __swiotlb_sync_sg_for_cpu,
356 	.sync_sg_for_device = __swiotlb_sync_sg_for_device,
357 	.dma_supported = swiotlb_dma_supported,
358 	.mapping_error = swiotlb_dma_mapping_error,
359 };
360 
361 static int __init atomic_pool_init(void)
362 {
363 	pgprot_t prot = __pgprot(PROT_NORMAL_NC);
364 	unsigned long nr_pages = atomic_pool_size >> PAGE_SHIFT;
365 	struct page *page;
366 	void *addr;
367 	unsigned int pool_size_order = get_order(atomic_pool_size);
368 
369 	if (dev_get_cma_area(NULL))
370 		page = dma_alloc_from_contiguous(NULL, nr_pages,
371 							pool_size_order);
372 	else
373 		page = alloc_pages(GFP_DMA, pool_size_order);
374 
375 	if (page) {
376 		int ret;
377 		void *page_addr = page_address(page);
378 
379 		memset(page_addr, 0, atomic_pool_size);
380 		__dma_flush_range(page_addr, page_addr + atomic_pool_size);
381 
382 		atomic_pool = gen_pool_create(PAGE_SHIFT, -1);
383 		if (!atomic_pool)
384 			goto free_page;
385 
386 		addr = dma_common_contiguous_remap(page, atomic_pool_size,
387 					VM_USERMAP, prot, atomic_pool_init);
388 
389 		if (!addr)
390 			goto destroy_genpool;
391 
392 		ret = gen_pool_add_virt(atomic_pool, (unsigned long)addr,
393 					page_to_phys(page),
394 					atomic_pool_size, -1);
395 		if (ret)
396 			goto remove_mapping;
397 
398 		gen_pool_set_algo(atomic_pool,
399 				  gen_pool_first_fit_order_align,
400 				  (void *)PAGE_SHIFT);
401 
402 		pr_info("DMA: preallocated %zu KiB pool for atomic allocations\n",
403 			atomic_pool_size / 1024);
404 		return 0;
405 	}
406 	goto out;
407 
408 remove_mapping:
409 	dma_common_free_remap(addr, atomic_pool_size, VM_USERMAP);
410 destroy_genpool:
411 	gen_pool_destroy(atomic_pool);
412 	atomic_pool = NULL;
413 free_page:
414 	if (!dma_release_from_contiguous(NULL, page, nr_pages))
415 		__free_pages(page, pool_size_order);
416 out:
417 	pr_err("DMA: failed to allocate %zu KiB pool for atomic coherent allocation\n",
418 		atomic_pool_size / 1024);
419 	return -ENOMEM;
420 }
421 
422 /********************************************
423  * The following APIs are for dummy DMA ops *
424  ********************************************/
425 
426 static void *__dummy_alloc(struct device *dev, size_t size,
427 			   dma_addr_t *dma_handle, gfp_t flags,
428 			   struct dma_attrs *attrs)
429 {
430 	return NULL;
431 }
432 
433 static void __dummy_free(struct device *dev, size_t size,
434 			 void *vaddr, dma_addr_t dma_handle,
435 			 struct dma_attrs *attrs)
436 {
437 }
438 
439 static int __dummy_mmap(struct device *dev,
440 			struct vm_area_struct *vma,
441 			void *cpu_addr, dma_addr_t dma_addr, size_t size,
442 			struct dma_attrs *attrs)
443 {
444 	return -ENXIO;
445 }
446 
447 static dma_addr_t __dummy_map_page(struct device *dev, struct page *page,
448 				   unsigned long offset, size_t size,
449 				   enum dma_data_direction dir,
450 				   struct dma_attrs *attrs)
451 {
452 	return DMA_ERROR_CODE;
453 }
454 
455 static void __dummy_unmap_page(struct device *dev, dma_addr_t dev_addr,
456 			       size_t size, enum dma_data_direction dir,
457 			       struct dma_attrs *attrs)
458 {
459 }
460 
461 static int __dummy_map_sg(struct device *dev, struct scatterlist *sgl,
462 			  int nelems, enum dma_data_direction dir,
463 			  struct dma_attrs *attrs)
464 {
465 	return 0;
466 }
467 
468 static void __dummy_unmap_sg(struct device *dev,
469 			     struct scatterlist *sgl, int nelems,
470 			     enum dma_data_direction dir,
471 			     struct dma_attrs *attrs)
472 {
473 }
474 
475 static void __dummy_sync_single(struct device *dev,
476 				dma_addr_t dev_addr, size_t size,
477 				enum dma_data_direction dir)
478 {
479 }
480 
481 static void __dummy_sync_sg(struct device *dev,
482 			    struct scatterlist *sgl, int nelems,
483 			    enum dma_data_direction dir)
484 {
485 }
486 
487 static int __dummy_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
488 {
489 	return 1;
490 }
491 
492 static int __dummy_dma_supported(struct device *hwdev, u64 mask)
493 {
494 	return 0;
495 }
496 
497 struct dma_map_ops dummy_dma_ops = {
498 	.alloc                  = __dummy_alloc,
499 	.free                   = __dummy_free,
500 	.mmap                   = __dummy_mmap,
501 	.map_page               = __dummy_map_page,
502 	.unmap_page             = __dummy_unmap_page,
503 	.map_sg                 = __dummy_map_sg,
504 	.unmap_sg               = __dummy_unmap_sg,
505 	.sync_single_for_cpu    = __dummy_sync_single,
506 	.sync_single_for_device = __dummy_sync_single,
507 	.sync_sg_for_cpu        = __dummy_sync_sg,
508 	.sync_sg_for_device     = __dummy_sync_sg,
509 	.mapping_error          = __dummy_mapping_error,
510 	.dma_supported          = __dummy_dma_supported,
511 };
512 EXPORT_SYMBOL(dummy_dma_ops);
513 
514 static int __init arm64_dma_init(void)
515 {
516 	return atomic_pool_init();
517 }
518 arch_initcall(arm64_dma_init);
519 
520 #define PREALLOC_DMA_DEBUG_ENTRIES	4096
521 
522 static int __init dma_debug_do_init(void)
523 {
524 	dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
525 	return 0;
526 }
527 fs_initcall(dma_debug_do_init);
528 
529 
530 #ifdef CONFIG_IOMMU_DMA
531 #include <linux/dma-iommu.h>
532 #include <linux/platform_device.h>
533 #include <linux/amba/bus.h>
534 
535 /* Thankfully, all cache ops are by VA so we can ignore phys here */
536 static void flush_page(struct device *dev, const void *virt, phys_addr_t phys)
537 {
538 	__dma_flush_range(virt, virt + PAGE_SIZE);
539 }
540 
541 static void *__iommu_alloc_attrs(struct device *dev, size_t size,
542 				 dma_addr_t *handle, gfp_t gfp,
543 				 struct dma_attrs *attrs)
544 {
545 	bool coherent = is_device_dma_coherent(dev);
546 	int ioprot = dma_direction_to_prot(DMA_BIDIRECTIONAL, coherent);
547 	size_t iosize = size;
548 	void *addr;
549 
550 	if (WARN(!dev, "cannot create IOMMU mapping for unknown device\n"))
551 		return NULL;
552 
553 	size = PAGE_ALIGN(size);
554 
555 	/*
556 	 * Some drivers rely on this, and we probably don't want the
557 	 * possibility of stale kernel data being read by devices anyway.
558 	 */
559 	gfp |= __GFP_ZERO;
560 
561 	if (gfpflags_allow_blocking(gfp)) {
562 		struct page **pages;
563 		pgprot_t prot = __get_dma_pgprot(attrs, PAGE_KERNEL, coherent);
564 
565 		pages = iommu_dma_alloc(dev, iosize, gfp, attrs, ioprot,
566 					handle, flush_page);
567 		if (!pages)
568 			return NULL;
569 
570 		addr = dma_common_pages_remap(pages, size, VM_USERMAP, prot,
571 					      __builtin_return_address(0));
572 		if (!addr)
573 			iommu_dma_free(dev, pages, iosize, handle);
574 	} else {
575 		struct page *page;
576 		/*
577 		 * In atomic context we can't remap anything, so we'll only
578 		 * get the virtually contiguous buffer we need by way of a
579 		 * physically contiguous allocation.
580 		 */
581 		if (coherent) {
582 			page = alloc_pages(gfp, get_order(size));
583 			addr = page ? page_address(page) : NULL;
584 		} else {
585 			addr = __alloc_from_pool(size, &page, gfp);
586 		}
587 		if (!addr)
588 			return NULL;
589 
590 		*handle = iommu_dma_map_page(dev, page, 0, iosize, ioprot);
591 		if (iommu_dma_mapping_error(dev, *handle)) {
592 			if (coherent)
593 				__free_pages(page, get_order(size));
594 			else
595 				__free_from_pool(addr, size);
596 			addr = NULL;
597 		}
598 	}
599 	return addr;
600 }
601 
602 static void __iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
603 			       dma_addr_t handle, struct dma_attrs *attrs)
604 {
605 	size_t iosize = size;
606 
607 	size = PAGE_ALIGN(size);
608 	/*
609 	 * @cpu_addr will be one of 3 things depending on how it was allocated:
610 	 * - A remapped array of pages from iommu_dma_alloc(), for all
611 	 *   non-atomic allocations.
612 	 * - A non-cacheable alias from the atomic pool, for atomic
613 	 *   allocations by non-coherent devices.
614 	 * - A normal lowmem address, for atomic allocations by
615 	 *   coherent devices.
616 	 * Hence how dodgy the below logic looks...
617 	 */
618 	if (__in_atomic_pool(cpu_addr, size)) {
619 		iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
620 		__free_from_pool(cpu_addr, size);
621 	} else if (is_vmalloc_addr(cpu_addr)){
622 		struct vm_struct *area = find_vm_area(cpu_addr);
623 
624 		if (WARN_ON(!area || !area->pages))
625 			return;
626 		iommu_dma_free(dev, area->pages, iosize, &handle);
627 		dma_common_free_remap(cpu_addr, size, VM_USERMAP);
628 	} else {
629 		iommu_dma_unmap_page(dev, handle, iosize, 0, NULL);
630 		__free_pages(virt_to_page(cpu_addr), get_order(size));
631 	}
632 }
633 
634 static int __iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
635 			      void *cpu_addr, dma_addr_t dma_addr, size_t size,
636 			      struct dma_attrs *attrs)
637 {
638 	struct vm_struct *area;
639 	int ret;
640 
641 	vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot,
642 					     is_device_dma_coherent(dev));
643 
644 	if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
645 		return ret;
646 
647 	area = find_vm_area(cpu_addr);
648 	if (WARN_ON(!area || !area->pages))
649 		return -ENXIO;
650 
651 	return iommu_dma_mmap(area->pages, size, vma);
652 }
653 
654 static int __iommu_get_sgtable(struct device *dev, struct sg_table *sgt,
655 			       void *cpu_addr, dma_addr_t dma_addr,
656 			       size_t size, struct dma_attrs *attrs)
657 {
658 	unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
659 	struct vm_struct *area = find_vm_area(cpu_addr);
660 
661 	if (WARN_ON(!area || !area->pages))
662 		return -ENXIO;
663 
664 	return sg_alloc_table_from_pages(sgt, area->pages, count, 0, size,
665 					 GFP_KERNEL);
666 }
667 
668 static void __iommu_sync_single_for_cpu(struct device *dev,
669 					dma_addr_t dev_addr, size_t size,
670 					enum dma_data_direction dir)
671 {
672 	phys_addr_t phys;
673 
674 	if (is_device_dma_coherent(dev))
675 		return;
676 
677 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
678 	__dma_unmap_area(phys_to_virt(phys), size, dir);
679 }
680 
681 static void __iommu_sync_single_for_device(struct device *dev,
682 					   dma_addr_t dev_addr, size_t size,
683 					   enum dma_data_direction dir)
684 {
685 	phys_addr_t phys;
686 
687 	if (is_device_dma_coherent(dev))
688 		return;
689 
690 	phys = iommu_iova_to_phys(iommu_get_domain_for_dev(dev), dev_addr);
691 	__dma_map_area(phys_to_virt(phys), size, dir);
692 }
693 
694 static dma_addr_t __iommu_map_page(struct device *dev, struct page *page,
695 				   unsigned long offset, size_t size,
696 				   enum dma_data_direction dir,
697 				   struct dma_attrs *attrs)
698 {
699 	bool coherent = is_device_dma_coherent(dev);
700 	int prot = dma_direction_to_prot(dir, coherent);
701 	dma_addr_t dev_addr = iommu_dma_map_page(dev, page, offset, size, prot);
702 
703 	if (!iommu_dma_mapping_error(dev, dev_addr) &&
704 	    !dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
705 		__iommu_sync_single_for_device(dev, dev_addr, size, dir);
706 
707 	return dev_addr;
708 }
709 
710 static void __iommu_unmap_page(struct device *dev, dma_addr_t dev_addr,
711 			       size_t size, enum dma_data_direction dir,
712 			       struct dma_attrs *attrs)
713 {
714 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
715 		__iommu_sync_single_for_cpu(dev, dev_addr, size, dir);
716 
717 	iommu_dma_unmap_page(dev, dev_addr, size, dir, attrs);
718 }
719 
720 static void __iommu_sync_sg_for_cpu(struct device *dev,
721 				    struct scatterlist *sgl, int nelems,
722 				    enum dma_data_direction dir)
723 {
724 	struct scatterlist *sg;
725 	int i;
726 
727 	if (is_device_dma_coherent(dev))
728 		return;
729 
730 	for_each_sg(sgl, sg, nelems, i)
731 		__dma_unmap_area(sg_virt(sg), sg->length, dir);
732 }
733 
734 static void __iommu_sync_sg_for_device(struct device *dev,
735 				       struct scatterlist *sgl, int nelems,
736 				       enum dma_data_direction dir)
737 {
738 	struct scatterlist *sg;
739 	int i;
740 
741 	if (is_device_dma_coherent(dev))
742 		return;
743 
744 	for_each_sg(sgl, sg, nelems, i)
745 		__dma_map_area(sg_virt(sg), sg->length, dir);
746 }
747 
748 static int __iommu_map_sg_attrs(struct device *dev, struct scatterlist *sgl,
749 				int nelems, enum dma_data_direction dir,
750 				struct dma_attrs *attrs)
751 {
752 	bool coherent = is_device_dma_coherent(dev);
753 
754 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
755 		__iommu_sync_sg_for_device(dev, sgl, nelems, dir);
756 
757 	return iommu_dma_map_sg(dev, sgl, nelems,
758 			dma_direction_to_prot(dir, coherent));
759 }
760 
761 static void __iommu_unmap_sg_attrs(struct device *dev,
762 				   struct scatterlist *sgl, int nelems,
763 				   enum dma_data_direction dir,
764 				   struct dma_attrs *attrs)
765 {
766 	if (!dma_get_attr(DMA_ATTR_SKIP_CPU_SYNC, attrs))
767 		__iommu_sync_sg_for_cpu(dev, sgl, nelems, dir);
768 
769 	iommu_dma_unmap_sg(dev, sgl, nelems, dir, attrs);
770 }
771 
772 static struct dma_map_ops iommu_dma_ops = {
773 	.alloc = __iommu_alloc_attrs,
774 	.free = __iommu_free_attrs,
775 	.mmap = __iommu_mmap_attrs,
776 	.get_sgtable = __iommu_get_sgtable,
777 	.map_page = __iommu_map_page,
778 	.unmap_page = __iommu_unmap_page,
779 	.map_sg = __iommu_map_sg_attrs,
780 	.unmap_sg = __iommu_unmap_sg_attrs,
781 	.sync_single_for_cpu = __iommu_sync_single_for_cpu,
782 	.sync_single_for_device = __iommu_sync_single_for_device,
783 	.sync_sg_for_cpu = __iommu_sync_sg_for_cpu,
784 	.sync_sg_for_device = __iommu_sync_sg_for_device,
785 	.dma_supported = iommu_dma_supported,
786 	.mapping_error = iommu_dma_mapping_error,
787 };
788 
789 /*
790  * TODO: Right now __iommu_setup_dma_ops() gets called too early to do
791  * everything it needs to - the device is only partially created and the
792  * IOMMU driver hasn't seen it yet, so it can't have a group. Thus we
793  * need this delayed attachment dance. Once IOMMU probe ordering is sorted
794  * to move the arch_setup_dma_ops() call later, all the notifier bits below
795  * become unnecessary, and will go away.
796  */
797 struct iommu_dma_notifier_data {
798 	struct list_head list;
799 	struct device *dev;
800 	const struct iommu_ops *ops;
801 	u64 dma_base;
802 	u64 size;
803 };
804 static LIST_HEAD(iommu_dma_masters);
805 static DEFINE_MUTEX(iommu_dma_notifier_lock);
806 
807 static bool do_iommu_attach(struct device *dev, const struct iommu_ops *ops,
808 			   u64 dma_base, u64 size)
809 {
810 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
811 
812 	/*
813 	 * If the IOMMU driver has the DMA domain support that we require,
814 	 * then the IOMMU core will have already configured a group for this
815 	 * device, and allocated the default domain for that group.
816 	 */
817 	if (!domain || iommu_dma_init_domain(domain, dma_base, size)) {
818 		pr_warn("Failed to set up IOMMU for device %s; retaining platform DMA ops\n",
819 			dev_name(dev));
820 		return false;
821 	}
822 
823 	dev->archdata.dma_ops = &iommu_dma_ops;
824 	return true;
825 }
826 
827 static void queue_iommu_attach(struct device *dev, const struct iommu_ops *ops,
828 			      u64 dma_base, u64 size)
829 {
830 	struct iommu_dma_notifier_data *iommudata;
831 
832 	iommudata = kzalloc(sizeof(*iommudata), GFP_KERNEL);
833 	if (!iommudata)
834 		return;
835 
836 	iommudata->dev = dev;
837 	iommudata->ops = ops;
838 	iommudata->dma_base = dma_base;
839 	iommudata->size = size;
840 
841 	mutex_lock(&iommu_dma_notifier_lock);
842 	list_add(&iommudata->list, &iommu_dma_masters);
843 	mutex_unlock(&iommu_dma_notifier_lock);
844 }
845 
846 static int __iommu_attach_notifier(struct notifier_block *nb,
847 				   unsigned long action, void *data)
848 {
849 	struct iommu_dma_notifier_data *master, *tmp;
850 
851 	if (action != BUS_NOTIFY_ADD_DEVICE)
852 		return 0;
853 
854 	mutex_lock(&iommu_dma_notifier_lock);
855 	list_for_each_entry_safe(master, tmp, &iommu_dma_masters, list) {
856 		if (do_iommu_attach(master->dev, master->ops,
857 				master->dma_base, master->size)) {
858 			list_del(&master->list);
859 			kfree(master);
860 		}
861 	}
862 	mutex_unlock(&iommu_dma_notifier_lock);
863 	return 0;
864 }
865 
866 static int __init register_iommu_dma_ops_notifier(struct bus_type *bus)
867 {
868 	struct notifier_block *nb = kzalloc(sizeof(*nb), GFP_KERNEL);
869 	int ret;
870 
871 	if (!nb)
872 		return -ENOMEM;
873 	/*
874 	 * The device must be attached to a domain before the driver probe
875 	 * routine gets a chance to start allocating DMA buffers. However,
876 	 * the IOMMU driver also needs a chance to configure the iommu_group
877 	 * via its add_device callback first, so we need to make the attach
878 	 * happen between those two points. Since the IOMMU core uses a bus
879 	 * notifier with default priority for add_device, do the same but
880 	 * with a lower priority to ensure the appropriate ordering.
881 	 */
882 	nb->notifier_call = __iommu_attach_notifier;
883 	nb->priority = -100;
884 
885 	ret = bus_register_notifier(bus, nb);
886 	if (ret) {
887 		pr_warn("Failed to register DMA domain notifier; IOMMU DMA ops unavailable on bus '%s'\n",
888 			bus->name);
889 		kfree(nb);
890 	}
891 	return ret;
892 }
893 
894 static int __init __iommu_dma_init(void)
895 {
896 	int ret;
897 
898 	ret = iommu_dma_init();
899 	if (!ret)
900 		ret = register_iommu_dma_ops_notifier(&platform_bus_type);
901 	if (!ret)
902 		ret = register_iommu_dma_ops_notifier(&amba_bustype);
903 #ifdef CONFIG_PCI
904 	if (!ret)
905 		ret = register_iommu_dma_ops_notifier(&pci_bus_type);
906 #endif
907 
908 	/* handle devices queued before this arch_initcall */
909 	if (!ret)
910 		__iommu_attach_notifier(NULL, BUS_NOTIFY_ADD_DEVICE, NULL);
911 	return ret;
912 }
913 arch_initcall(__iommu_dma_init);
914 
915 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
916 				  const struct iommu_ops *ops)
917 {
918 	struct iommu_group *group;
919 
920 	if (!ops)
921 		return;
922 	/*
923 	 * TODO: As a concession to the future, we're ready to handle being
924 	 * called both early and late (i.e. after bus_add_device). Once all
925 	 * the platform bus code is reworked to call us late and the notifier
926 	 * junk above goes away, move the body of do_iommu_attach here.
927 	 */
928 	group = iommu_group_get(dev);
929 	if (group) {
930 		do_iommu_attach(dev, ops, dma_base, size);
931 		iommu_group_put(group);
932 	} else {
933 		queue_iommu_attach(dev, ops, dma_base, size);
934 	}
935 }
936 
937 void arch_teardown_dma_ops(struct device *dev)
938 {
939 	struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
940 
941 	if (WARN_ON(domain))
942 		iommu_detach_device(domain, dev);
943 
944 	dev->archdata.dma_ops = NULL;
945 }
946 
947 #else
948 
949 static void __iommu_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
950 				  const struct iommu_ops *iommu)
951 { }
952 
953 #endif  /* CONFIG_IOMMU_DMA */
954 
955 void arch_setup_dma_ops(struct device *dev, u64 dma_base, u64 size,
956 			const struct iommu_ops *iommu, bool coherent)
957 {
958 	if (!dev->archdata.dma_ops)
959 		dev->archdata.dma_ops = &swiotlb_dma_ops;
960 
961 	dev->archdata.dma_coherent = coherent;
962 	__iommu_setup_dma_ops(dev, dma_base, size, iommu);
963 }
964