xref: /linux/arch/arm64/mm/context.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/context.c
4  *
5  * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 
14 #include <asm/cpufeature.h>
15 #include <asm/mmu_context.h>
16 #include <asm/smp.h>
17 #include <asm/tlbflush.h>
18 
19 static u32 asid_bits;
20 static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
21 
22 static atomic64_t asid_generation;
23 static unsigned long *asid_map;
24 
25 static DEFINE_PER_CPU(atomic64_t, active_asids);
26 static DEFINE_PER_CPU(u64, reserved_asids);
27 static cpumask_t tlb_flush_pending;
28 
29 #define ASID_MASK		(~GENMASK(asid_bits - 1, 0))
30 #define ASID_FIRST_VERSION	(1UL << asid_bits)
31 
32 #define NUM_USER_ASIDS		ASID_FIRST_VERSION
33 #define asid2idx(asid)		((asid) & ~ASID_MASK)
34 #define idx2asid(idx)		asid2idx(idx)
35 
36 /* Get the ASIDBits supported by the current CPU */
37 static u32 get_cpu_asid_bits(void)
38 {
39 	u32 asid;
40 	int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
41 						ID_AA64MMFR0_ASID_SHIFT);
42 
43 	switch (fld) {
44 	default:
45 		pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
46 					smp_processor_id(),  fld);
47 		/* Fallthrough */
48 	case 0:
49 		asid = 8;
50 		break;
51 	case 2:
52 		asid = 16;
53 	}
54 
55 	return asid;
56 }
57 
58 /* Check if the current cpu's ASIDBits is compatible with asid_bits */
59 void verify_cpu_asid_bits(void)
60 {
61 	u32 asid = get_cpu_asid_bits();
62 
63 	if (asid < asid_bits) {
64 		/*
65 		 * We cannot decrease the ASID size at runtime, so panic if we support
66 		 * fewer ASID bits than the boot CPU.
67 		 */
68 		pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
69 				smp_processor_id(), asid, asid_bits);
70 		cpu_panic_kernel();
71 	}
72 }
73 
74 static void set_kpti_asid_bits(void)
75 {
76 	unsigned int len = BITS_TO_LONGS(NUM_USER_ASIDS) * sizeof(unsigned long);
77 	/*
78 	 * In case of KPTI kernel/user ASIDs are allocated in
79 	 * pairs, the bottom bit distinguishes the two: if it
80 	 * is set, then the ASID will map only userspace. Thus
81 	 * mark even as reserved for kernel.
82 	 */
83 	memset(asid_map, 0xaa, len);
84 }
85 
86 static void set_reserved_asid_bits(void)
87 {
88 	if (arm64_kernel_unmapped_at_el0())
89 		set_kpti_asid_bits();
90 	else
91 		bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
92 }
93 
94 static void flush_context(void)
95 {
96 	int i;
97 	u64 asid;
98 
99 	/* Update the list of reserved ASIDs and the ASID bitmap. */
100 	set_reserved_asid_bits();
101 
102 	for_each_possible_cpu(i) {
103 		asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
104 		/*
105 		 * If this CPU has already been through a
106 		 * rollover, but hasn't run another task in
107 		 * the meantime, we must preserve its reserved
108 		 * ASID, as this is the only trace we have of
109 		 * the process it is still running.
110 		 */
111 		if (asid == 0)
112 			asid = per_cpu(reserved_asids, i);
113 		__set_bit(asid2idx(asid), asid_map);
114 		per_cpu(reserved_asids, i) = asid;
115 	}
116 
117 	/*
118 	 * Queue a TLB invalidation for each CPU to perform on next
119 	 * context-switch
120 	 */
121 	cpumask_setall(&tlb_flush_pending);
122 }
123 
124 static bool check_update_reserved_asid(u64 asid, u64 newasid)
125 {
126 	int cpu;
127 	bool hit = false;
128 
129 	/*
130 	 * Iterate over the set of reserved ASIDs looking for a match.
131 	 * If we find one, then we can update our mm to use newasid
132 	 * (i.e. the same ASID in the current generation) but we can't
133 	 * exit the loop early, since we need to ensure that all copies
134 	 * of the old ASID are updated to reflect the mm. Failure to do
135 	 * so could result in us missing the reserved ASID in a future
136 	 * generation.
137 	 */
138 	for_each_possible_cpu(cpu) {
139 		if (per_cpu(reserved_asids, cpu) == asid) {
140 			hit = true;
141 			per_cpu(reserved_asids, cpu) = newasid;
142 		}
143 	}
144 
145 	return hit;
146 }
147 
148 static u64 new_context(struct mm_struct *mm)
149 {
150 	static u32 cur_idx = 1;
151 	u64 asid = atomic64_read(&mm->context.id);
152 	u64 generation = atomic64_read(&asid_generation);
153 
154 	if (asid != 0) {
155 		u64 newasid = generation | (asid & ~ASID_MASK);
156 
157 		/*
158 		 * If our current ASID was active during a rollover, we
159 		 * can continue to use it and this was just a false alarm.
160 		 */
161 		if (check_update_reserved_asid(asid, newasid))
162 			return newasid;
163 
164 		/*
165 		 * We had a valid ASID in a previous life, so try to re-use
166 		 * it if possible.
167 		 */
168 		if (!__test_and_set_bit(asid2idx(asid), asid_map))
169 			return newasid;
170 	}
171 
172 	/*
173 	 * Allocate a free ASID. If we can't find one, take a note of the
174 	 * currently active ASIDs and mark the TLBs as requiring flushes.  We
175 	 * always count from ASID #2 (index 1), as we use ASID #0 when setting
176 	 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
177 	 * pairs.
178 	 */
179 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
180 	if (asid != NUM_USER_ASIDS)
181 		goto set_asid;
182 
183 	/* We're out of ASIDs, so increment the global generation count */
184 	generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
185 						 &asid_generation);
186 	flush_context();
187 
188 	/* We have more ASIDs than CPUs, so this will always succeed */
189 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
190 
191 set_asid:
192 	__set_bit(asid, asid_map);
193 	cur_idx = asid;
194 	return idx2asid(asid) | generation;
195 }
196 
197 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
198 {
199 	unsigned long flags;
200 	u64 asid, old_active_asid;
201 
202 	if (system_supports_cnp())
203 		cpu_set_reserved_ttbr0();
204 
205 	asid = atomic64_read(&mm->context.id);
206 
207 	/*
208 	 * The memory ordering here is subtle.
209 	 * If our active_asids is non-zero and the ASID matches the current
210 	 * generation, then we update the active_asids entry with a relaxed
211 	 * cmpxchg. Racing with a concurrent rollover means that either:
212 	 *
213 	 * - We get a zero back from the cmpxchg and end up waiting on the
214 	 *   lock. Taking the lock synchronises with the rollover and so
215 	 *   we are forced to see the updated generation.
216 	 *
217 	 * - We get a valid ASID back from the cmpxchg, which means the
218 	 *   relaxed xchg in flush_context will treat us as reserved
219 	 *   because atomic RmWs are totally ordered for a given location.
220 	 */
221 	old_active_asid = atomic64_read(&per_cpu(active_asids, cpu));
222 	if (old_active_asid &&
223 	    !((asid ^ atomic64_read(&asid_generation)) >> asid_bits) &&
224 	    atomic64_cmpxchg_relaxed(&per_cpu(active_asids, cpu),
225 				     old_active_asid, asid))
226 		goto switch_mm_fastpath;
227 
228 	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
229 	/* Check that our ASID belongs to the current generation. */
230 	asid = atomic64_read(&mm->context.id);
231 	if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) {
232 		asid = new_context(mm);
233 		atomic64_set(&mm->context.id, asid);
234 	}
235 
236 	if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
237 		local_flush_tlb_all();
238 
239 	atomic64_set(&per_cpu(active_asids, cpu), asid);
240 	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
241 
242 switch_mm_fastpath:
243 
244 	arm64_apply_bp_hardening();
245 
246 	/*
247 	 * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
248 	 * emulating PAN.
249 	 */
250 	if (!system_uses_ttbr0_pan())
251 		cpu_switch_mm(mm->pgd, mm);
252 }
253 
254 /* Errata workaround post TTBRx_EL1 update. */
255 asmlinkage void post_ttbr_update_workaround(void)
256 {
257 	asm(ALTERNATIVE("nop; nop; nop",
258 			"ic iallu; dsb nsh; isb",
259 			ARM64_WORKAROUND_CAVIUM_27456,
260 			CONFIG_CAVIUM_ERRATUM_27456));
261 }
262 
263 static int asids_init(void)
264 {
265 	asid_bits = get_cpu_asid_bits();
266 	/*
267 	 * Expect allocation after rollover to fail if we don't have at least
268 	 * one more ASID than CPUs. ASID #0 is reserved for init_mm.
269 	 */
270 	WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus());
271 	atomic64_set(&asid_generation, ASID_FIRST_VERSION);
272 	asid_map = kcalloc(BITS_TO_LONGS(NUM_USER_ASIDS), sizeof(*asid_map),
273 			   GFP_KERNEL);
274 	if (!asid_map)
275 		panic("Failed to allocate bitmap for %lu ASIDs\n",
276 		      NUM_USER_ASIDS);
277 
278 	/*
279 	 * We cannot call set_reserved_asid_bits() here because CPU
280 	 * caps are not finalized yet, so it is safer to assume KPTI
281 	 * and reserve kernel ASID's from beginning.
282 	 */
283 	if (IS_ENABLED(CONFIG_UNMAP_KERNEL_AT_EL0))
284 		set_kpti_asid_bits();
285 
286 	pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS);
287 	return 0;
288 }
289 early_initcall(asids_init);
290