xref: /linux/arch/arm64/mm/context.c (revision 088e88be5a380cc4e81963a9a02815da465d144f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/context.c
4  *
5  * Copyright (C) 2002-2003 Deep Blue Solutions Ltd, all rights reserved.
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/bitops.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 
14 #include <asm/cpufeature.h>
15 #include <asm/mmu_context.h>
16 #include <asm/smp.h>
17 #include <asm/tlbflush.h>
18 
19 static u32 asid_bits;
20 static DEFINE_RAW_SPINLOCK(cpu_asid_lock);
21 
22 static atomic64_t asid_generation;
23 static unsigned long *asid_map;
24 
25 static DEFINE_PER_CPU(atomic64_t, active_asids);
26 static DEFINE_PER_CPU(u64, reserved_asids);
27 static cpumask_t tlb_flush_pending;
28 
29 #define ASID_MASK		(~GENMASK(asid_bits - 1, 0))
30 #define ASID_FIRST_VERSION	(1UL << asid_bits)
31 
32 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
33 #define NUM_USER_ASIDS		(ASID_FIRST_VERSION >> 1)
34 #define asid2idx(asid)		(((asid) & ~ASID_MASK) >> 1)
35 #define idx2asid(idx)		(((idx) << 1) & ~ASID_MASK)
36 #else
37 #define NUM_USER_ASIDS		(ASID_FIRST_VERSION)
38 #define asid2idx(asid)		((asid) & ~ASID_MASK)
39 #define idx2asid(idx)		asid2idx(idx)
40 #endif
41 
42 /* Get the ASIDBits supported by the current CPU */
43 static u32 get_cpu_asid_bits(void)
44 {
45 	u32 asid;
46 	int fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64MMFR0_EL1),
47 						ID_AA64MMFR0_ASID_SHIFT);
48 
49 	switch (fld) {
50 	default:
51 		pr_warn("CPU%d: Unknown ASID size (%d); assuming 8-bit\n",
52 					smp_processor_id(),  fld);
53 		/* Fallthrough */
54 	case 0:
55 		asid = 8;
56 		break;
57 	case 2:
58 		asid = 16;
59 	}
60 
61 	return asid;
62 }
63 
64 /* Check if the current cpu's ASIDBits is compatible with asid_bits */
65 void verify_cpu_asid_bits(void)
66 {
67 	u32 asid = get_cpu_asid_bits();
68 
69 	if (asid < asid_bits) {
70 		/*
71 		 * We cannot decrease the ASID size at runtime, so panic if we support
72 		 * fewer ASID bits than the boot CPU.
73 		 */
74 		pr_crit("CPU%d: smaller ASID size(%u) than boot CPU (%u)\n",
75 				smp_processor_id(), asid, asid_bits);
76 		cpu_panic_kernel();
77 	}
78 }
79 
80 static void flush_context(void)
81 {
82 	int i;
83 	u64 asid;
84 
85 	/* Update the list of reserved ASIDs and the ASID bitmap. */
86 	bitmap_clear(asid_map, 0, NUM_USER_ASIDS);
87 
88 	for_each_possible_cpu(i) {
89 		asid = atomic64_xchg_relaxed(&per_cpu(active_asids, i), 0);
90 		/*
91 		 * If this CPU has already been through a
92 		 * rollover, but hasn't run another task in
93 		 * the meantime, we must preserve its reserved
94 		 * ASID, as this is the only trace we have of
95 		 * the process it is still running.
96 		 */
97 		if (asid == 0)
98 			asid = per_cpu(reserved_asids, i);
99 		__set_bit(asid2idx(asid), asid_map);
100 		per_cpu(reserved_asids, i) = asid;
101 	}
102 
103 	/*
104 	 * Queue a TLB invalidation for each CPU to perform on next
105 	 * context-switch
106 	 */
107 	cpumask_setall(&tlb_flush_pending);
108 }
109 
110 static bool check_update_reserved_asid(u64 asid, u64 newasid)
111 {
112 	int cpu;
113 	bool hit = false;
114 
115 	/*
116 	 * Iterate over the set of reserved ASIDs looking for a match.
117 	 * If we find one, then we can update our mm to use newasid
118 	 * (i.e. the same ASID in the current generation) but we can't
119 	 * exit the loop early, since we need to ensure that all copies
120 	 * of the old ASID are updated to reflect the mm. Failure to do
121 	 * so could result in us missing the reserved ASID in a future
122 	 * generation.
123 	 */
124 	for_each_possible_cpu(cpu) {
125 		if (per_cpu(reserved_asids, cpu) == asid) {
126 			hit = true;
127 			per_cpu(reserved_asids, cpu) = newasid;
128 		}
129 	}
130 
131 	return hit;
132 }
133 
134 static u64 new_context(struct mm_struct *mm)
135 {
136 	static u32 cur_idx = 1;
137 	u64 asid = atomic64_read(&mm->context.id);
138 	u64 generation = atomic64_read(&asid_generation);
139 
140 	if (asid != 0) {
141 		u64 newasid = generation | (asid & ~ASID_MASK);
142 
143 		/*
144 		 * If our current ASID was active during a rollover, we
145 		 * can continue to use it and this was just a false alarm.
146 		 */
147 		if (check_update_reserved_asid(asid, newasid))
148 			return newasid;
149 
150 		/*
151 		 * We had a valid ASID in a previous life, so try to re-use
152 		 * it if possible.
153 		 */
154 		if (!__test_and_set_bit(asid2idx(asid), asid_map))
155 			return newasid;
156 	}
157 
158 	/*
159 	 * Allocate a free ASID. If we can't find one, take a note of the
160 	 * currently active ASIDs and mark the TLBs as requiring flushes.  We
161 	 * always count from ASID #2 (index 1), as we use ASID #0 when setting
162 	 * a reserved TTBR0 for the init_mm and we allocate ASIDs in even/odd
163 	 * pairs.
164 	 */
165 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, cur_idx);
166 	if (asid != NUM_USER_ASIDS)
167 		goto set_asid;
168 
169 	/* We're out of ASIDs, so increment the global generation count */
170 	generation = atomic64_add_return_relaxed(ASID_FIRST_VERSION,
171 						 &asid_generation);
172 	flush_context();
173 
174 	/* We have more ASIDs than CPUs, so this will always succeed */
175 	asid = find_next_zero_bit(asid_map, NUM_USER_ASIDS, 1);
176 
177 set_asid:
178 	__set_bit(asid, asid_map);
179 	cur_idx = asid;
180 	return idx2asid(asid) | generation;
181 }
182 
183 void check_and_switch_context(struct mm_struct *mm, unsigned int cpu)
184 {
185 	unsigned long flags;
186 	u64 asid, old_active_asid;
187 
188 	if (system_supports_cnp())
189 		cpu_set_reserved_ttbr0();
190 
191 	asid = atomic64_read(&mm->context.id);
192 
193 	/*
194 	 * The memory ordering here is subtle.
195 	 * If our active_asids is non-zero and the ASID matches the current
196 	 * generation, then we update the active_asids entry with a relaxed
197 	 * cmpxchg. Racing with a concurrent rollover means that either:
198 	 *
199 	 * - We get a zero back from the cmpxchg and end up waiting on the
200 	 *   lock. Taking the lock synchronises with the rollover and so
201 	 *   we are forced to see the updated generation.
202 	 *
203 	 * - We get a valid ASID back from the cmpxchg, which means the
204 	 *   relaxed xchg in flush_context will treat us as reserved
205 	 *   because atomic RmWs are totally ordered for a given location.
206 	 */
207 	old_active_asid = atomic64_read(&per_cpu(active_asids, cpu));
208 	if (old_active_asid &&
209 	    !((asid ^ atomic64_read(&asid_generation)) >> asid_bits) &&
210 	    atomic64_cmpxchg_relaxed(&per_cpu(active_asids, cpu),
211 				     old_active_asid, asid))
212 		goto switch_mm_fastpath;
213 
214 	raw_spin_lock_irqsave(&cpu_asid_lock, flags);
215 	/* Check that our ASID belongs to the current generation. */
216 	asid = atomic64_read(&mm->context.id);
217 	if ((asid ^ atomic64_read(&asid_generation)) >> asid_bits) {
218 		asid = new_context(mm);
219 		atomic64_set(&mm->context.id, asid);
220 	}
221 
222 	if (cpumask_test_and_clear_cpu(cpu, &tlb_flush_pending))
223 		local_flush_tlb_all();
224 
225 	atomic64_set(&per_cpu(active_asids, cpu), asid);
226 	raw_spin_unlock_irqrestore(&cpu_asid_lock, flags);
227 
228 switch_mm_fastpath:
229 
230 	arm64_apply_bp_hardening();
231 
232 	/*
233 	 * Defer TTBR0_EL1 setting for user threads to uaccess_enable() when
234 	 * emulating PAN.
235 	 */
236 	if (!system_uses_ttbr0_pan())
237 		cpu_switch_mm(mm->pgd, mm);
238 }
239 
240 /* Errata workaround post TTBRx_EL1 update. */
241 asmlinkage void post_ttbr_update_workaround(void)
242 {
243 	asm(ALTERNATIVE("nop; nop; nop",
244 			"ic iallu; dsb nsh; isb",
245 			ARM64_WORKAROUND_CAVIUM_27456,
246 			CONFIG_CAVIUM_ERRATUM_27456));
247 }
248 
249 static int asids_init(void)
250 {
251 	asid_bits = get_cpu_asid_bits();
252 	/*
253 	 * Expect allocation after rollover to fail if we don't have at least
254 	 * one more ASID than CPUs. ASID #0 is reserved for init_mm.
255 	 */
256 	WARN_ON(NUM_USER_ASIDS - 1 <= num_possible_cpus());
257 	atomic64_set(&asid_generation, ASID_FIRST_VERSION);
258 	asid_map = kcalloc(BITS_TO_LONGS(NUM_USER_ASIDS), sizeof(*asid_map),
259 			   GFP_KERNEL);
260 	if (!asid_map)
261 		panic("Failed to allocate bitmap for %lu ASIDs\n",
262 		      NUM_USER_ASIDS);
263 
264 	pr_info("ASID allocator initialised with %lu entries\n", NUM_USER_ASIDS);
265 	return 0;
266 }
267 early_initcall(asids_init);
268